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Abstract 
 
Idiopathic and substance-induced forms of psychotic illness afflict millions of people worldwide, 
and it is largely unknown whether these two forms emerge through the same molecular 
mechanisms. Though genetic studies have implicated thousands of genes in idiopathic 
psychotic illnesses (e.g., schizophrenia), consensus is lacking regarding which of these genes 
are most likely to treat psychotic illness when modulated pharmacologically and, as a result, 
antipsychotic medications targeting these genes have yet to be developed. Previous studies 
suggest that one way to determine if a candidate target gene is likely to lead to an effective 
treatment for a given illness is if the gene is implicated by multiple lines of evidence (e.g., 
genetic, pharmacologic). Here, pharmacologic, genetic, and clinical data were leveraged to 
determine if the idiopathic and substance-induced forms of psychotic illness are related to one 
another through a common set of genes. A set of medications that cause psychotic illness as a 
side effect (“propsychotics”) were identified by analyzing 15 million medication side effects 
reports from over 100 countries. There was a significant overlap of target genes among 
propsychotics and antipsychotics and for many of the shared target genes propsychotics act 
through a mechanism that was qualitatively the opposite of the mechanism through which 
antipsychotics act (e.g., activation vs. inhibition). Propsychotic and antipsychotic target genes 
were significantly enriched for genes implicated in schizophrenia by rare loss-of-function genetic 
variation but not for genes implicated in schizophrenia by common genetic variation. Only one 
gene – GRIN2A, encoding the GluN2A subunit of the NMDA glutamate receptor – was 
implicated in psychotic illness by propsychotics, rare loss-of-function genetic variation, and 
common genetic variation. Mining genetic data from a diverse cohort of 30,000 adults treated in 
a New York City health system, a carrier of a rare loss-of-function variant in GRIN2A with 
severe psychotic illness was identified with a clinical course notable for psychotic symptoms and 
cognitive deficits that are not targeted by current antipsychotics. Altogether, this report shows 
how integrating pharmacologic, genetic, and clinical data from large cohorts can prioritize target 
genes for novel drug development and align the prioritized targets with specific clinical 
presentations.  
 
Introduction  
 
The idiopathic and substance-induced forms of psychotic illness both afflict millions of people 
worldwide and are defined in the Diagnostic and Statistical Manual (DSM) by the presence of at 
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least one of five types of psychotic symptoms: delusions, hallucinations, disorganized thinking, 
disorganized behavior, and negative symptoms1. Idiopathic forms include schizophrenia, 
schizoaffective disorder, and bipolar disorder. Substances that induce psychosis include 
amphetamines, phencyclidine, and psilocybin. The symptomatology and longitudinal course of 
psychotic illness can vary widely between affected individuals regardless of the cause2-4. 
Psychotic symptoms can be improved by “antipsychotics,” a class of medications that has been 
used in routine clinical practice to treat psychotic illnesses since the 1950s. Antipsychotics have 
helped millions of individuals and are featured in the list of essential medicines maintained by 
the World Health Organization to meet minimum needs of a basic health system5. Yet, 
antipsychotics are ineffective or intolerable in up to 75% of affected individuals, do not treat all 
the symptoms of psychotic illness, and do not modify disease progression6-9. The primary 
molecular mechanism through which most antipsychotics are believed to exert clinical effects – 
dopamine receptor antagonism – has remained unchanged since the first antipsychotic 
chlorpromazine was introduced. Therefore, a long-standing and urgent unmet need is the 
development of a new generation of antipsychotics.  
 
To develop a new generation of antipsychotics, target genes (i.e., the gene products through 
which a medication exerts clinical effects) must be prioritized for further investigation. A proven 
strategy for prioritizing target genes is to leverage knowledge of the pharmacology of psychotic 
illness (i.e., knowledge of the mechanisms through which substances modulate symptoms of 
psychotic illness). Dopamine receptors, serotonin receptors, and muscarinic receptors – which, 
collectively, comprise the target genes of most antipsychotics used in clinical practice – were all 
prioritized as target genes based on observations that psychotic symptoms can be induced 
and/or treated through pharmacological modulation of these receptors10-12. Using knowledge of 
pharmacology to prioritize target genes for drug development is now a scalable research 
strategy, as large databases linking medications to clinical effects and target genes have been 
created that can be mined using computational techniques. Of the many target genes that can 
be prioritized using these techniques, only a small number are likely to result in the development 
of effective treatments. Previous studies suggest that one way to determine if a target gene is 
likely to lead to an effective treatment is to consider whether genetic variation linked to that gene 
contributes to increased risk of that illness13.  
 
The most common idiopathic forms of psychotic illness (e.g., schizophrenia) are up to 80% 
heritable14, and as such these illnesses have been a major focus of human genetics research. 
Studies of large populations have identified many genetic variants that contribute to 
schizophrenia and other idiopathic forms of psychotic illness (“psychosis risk variants”), and 
these variants are linked to thousands of genes (“psychosis risk genes”). The class of psychosis 
risk variants that make the greatest contribution to the heritability of psychotic illnesses are 
common single-nucleotide polymorphisms (SNPs), which account for up to ~25% of the 
heritability of schizophrenia15. Risk variants of this class are identified through genome-wide 
association studies (GWAS), and the most recent schizophrenia GWAS – the third GWAS 
reported by the Psychiatric Genomics Consortium Schizophrenia Working Group (“the 
PGC3SCZ GWAS”) – identified risk SNPs in 287 genomic regions including thousands of 
genes15. Rare loss-of-function (LoF) variants comprise another class of psychosis risk variants, 
and these are variants that are rare in the population and change the coding sequence of a 
gene in a manner predicted to result in a dysfunctional gene product16,17. Recently, the 
Schizophrenia Exome Meta-analysis (SCHEMA) study reported 10 genes harboring an excess 
of rare LoF variants in cases compared to controls17 and a subsequent study identified two 
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additional genes16. Rare LoF variants account for a small amount of the heritability of psychotic 
illnesses but can contribute substantially to risk in individual cases. While thousands of genes 
have been implicated in psychotic illness through pharmacology and genetics research only a 
few antipsychotics have been developed that target these genes18, in part because there is a 
lack of consensus regarding which of the many genes implicated should be pursued as a target 
of novel treatments. 
 
Here, pharmacologic, genetic, and clinical data are leveraged to prioritize target genes for novel 
antipsychotic development. A large database of medication side effect reports is used to identify 
medications that cause psychotic illness as a side effect (“propsychotics”). Using databases that 
link medications to target genes, propsychotic target genes are identified and compared to 
antipsychotic target genes, revealing a shared set of targets that propsychotics act on through a 
mechanism (e.g., activation) that is qualitatively the opposite of the mechanism exerted by 
antipsychotics on the targets (e.g., inhibition). Significant overlap was observed between 
propsychotic target genes and genes implicated in psychotic illnesses by rare LoF variants but 
not between propsychotic target genes and genes implicated in psychotic illnesses by common 
SNPs. By aggregating pharmacologic and genetic data, activation of GRIN2A is prioritized as a 
mechanism to pursue in the development of novel antipsychotics. To begin to determine the 
clinical presentation of psychotic illness that may be most likely to respond to this 
pharmacologic mechanism, a case report of schizophrenia linked to a rare LoF variant in 
GRIN2A is presented that is most notable for the prominence of disorganized thought, 
disorganized behavior, deficits in cognitive function, and co-morbid epilepsy. Altogether, this 
report provides an approach to prioritize individual target genes to pursue in developing novel 
treatments for a highly polygenic and symptomatically heterogeneous illness. 
 
Results 
 
Defining propsychotics  
 
For each database used in the current report to link medications to clinical effects (i.e., side 
effects, indications) or target genes, the medication and clinical effect terms used in the 
database were standardized to RxNorm and Medical Dictionary for Regulatory Activities 
[MedDRA] terms, respectively (Supplementary Information). Psychosis side effects were 
defined as a manually curated set of MedDRA terms relevant to psychosis. VigiBase19, a 
medication side effect reporting database with over 15 million reports maintained by the World 
Health Organization (WHO), was used to identify medications that induce psychotic symptoms 
as a side effect (i.e., propsychotics) (Figure 1). Each VigiBase report represents an instance 
where a medical professional suspects a medication has caused a side effect. The statistical 
significance of each reported medication side effect in VigiBase was assessed using 
disproportionality analysis, which tests if the medication and side effect co-occur in the reports 
of the database more than expected by chance20,21. After excluding antipsychotics from 
consideration (Supplementary Table 1), 276 medications were defined as propsychotics by 
being linked to >= 1 psychosis side effect term (66 psychosis side effect terms were linked to >= 
1 propsychotic; Supplementary Tables 2-3). The psychosis side effect terms linked to the 
greatest number of propsychotics were hallucinations (linked to 111 propsychotics), psychotic 
disorder (linked to 61 propsychotics), visual hallucinations (linked to 54 propsychotics), 
depersonalization/derealization disorder (linked to 48 propsychotics), and paranoia (linked to 35 
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propsychotics) (Figure 2; Supplementary Table 4). Using ATC level 3 categories to group 
medications into pharmacological subgroups, propsychotics were found to span 85 different 
pharmacological subgroups. The five subgroups that included the most propsychotics were 
hypnotics and sedatives (16 propsychotics), antihistamines (15 propsychotics), antidepressants 
(15 propsychotics), antiepileptics (13 propsychotics), and dopaminergic agents (12 
propsychotics) (Figure 3; Supplementary Table 5). The Side Effect Resource (SIDER), a 
database that links medications to side effects reported on Food and Drug Administration (FDA) 
labels22, was used to validate the set of 276 propsychotics defined using VigiBase. Of the 1,334 
unique medications in SIDER, 412 were linked to at least one psychosis side effect term and 
were not an antipsychotic. The number of medications overlapping this set and the set of 
propsychotics identified using VigiBase (N = 148 in both sets) represented a 2.57-fold increase 
of the number expected by chance (hypergeometric p-value = 1.15 x 10-46).  
 
Comparing mechanisms of propsychotics and antipsychotics 
 
Two databases were used to link medications to target genes: (1) DrugBank, which links 
medications to target genes through curation of scientific literature23; (2) SeaChange, which 
predicts the target genes of a medication based on the chemical structure of the medication24. 
Of the 276 propsychotics identified in VigiBase, 240 were linked to at least one target gene 
through either DrugBank or SeaChange (1,134 target genes were linked to at least one 
propsychotic). A permutation approach was used to identify genes significantly overrepresented 
as targets of propsychotics. For each putative target gene, the number of propsychotics 
targeting the gene was compared to the number of medications targeting the gene in a 
randomly selected set of 240 medications. This analysis yielded 170 propsychotic target genes 
with an empirical p-value below 0.05 after 100,000 permutations (Supplementary Table 6). 
Using a similar procedure to define propsychotic target genes, 129 antipsychotic target genes 
were identified with an empirical p-value below 0.05 after 100,000 permutations 
(Supplementary Table 6). A significant overlap was observed between the 170 propsychotic 
target genes and the 129 antipsychotic target genes (N = 67 shared target genes; Fisher’s exact 
test odds ratio [OR] = 33.3, p-value = 1.57 x 10-57). This overlap remained significant when 
considering (1) only experimentally validated target genes defined in DrugBank (OR = 110.0, p-
value = 2.0 x 10-34) and (2) only propsychotics not classified as nervous system medications 
(OR = 22.9, p-value = 1.61 x 10-38). 
 
DrugBank contains data on the mechanisms of action of medications on target genes (i.e., 
whether a medication activates or inhibits the activity of a target gene). Each mechanism of 
action term in DrugBank (e.g., “agonist”) was classified as either an activating action or an 
inhibiting action. Mechanism of action information was available for 107 of the 170 propsychotic 
target genes and for 45 of the 129 antipsychotic target genes. For both the propsychotic and 
antipsychotic medication classes, a permutation procedure was used to determine if for a given 
target gene the medications in the class exerted either an activating or inhibiting action more 
than expected by chance (i.e., more than was observed for random sets of medications chosen 
over 100,000 permutations; Supplementary Table 7). Propsychotics were found to exert an 
activating action on 52 target genes and an inhibiting action on 63 target genes (for 25 target 
genes, propsychotics were found to exert both an activating and inhibiting action). 
Antipsychotics were found to exert an activating action on 6 target genes and an inhibiting 
action on 45 target genes. As expected, the target gene inhibited by the largest number of 
antipsychotics is DRD2 (inhibited by over 75% of antipsychotics, Figure 4A). For 24 of the 
genes targeted by both propsychotics and antipsychotics (“shared target genes”), propsychotics 
were found to act on the target through a mechanism that is qualitatively the opposite of the 
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mechanism through which antipsychotics were found to act on the target (Figure 4A). Target 
genes were grouped by neurotransmitter receptor class (Figure 4A), revealing for 
dopaminergic, serotonergic, muscarinic, and adrenergic receptor classes propsychotics exert 
activating actions while antipsychotics exert inhibiting actions (Supplementary Table 8). For 
several receptor classes, a significant mechanism of action was found for propsychotics but not 
for antipsychotics, and these include gamma-aminobutyric acid (GABA) and glutamate 
receptors, upon which propsychotics exert activating and inhibiting actions, respectively (Figure 
4; Supplementary Table 8). Propsychotics and antipsychotics exert the same action on 27 
target genes, the majority of which (N = 20) are also amongst the 24 target genes where 
propsychotics and antipsychotics exerted opposing actions.  
 
Enrichment of propsychotic and antipsychotic target genes for psychosis risk genes 
 
Analyses were performed testing whether propsychotic and antipsychotic target genes are 
enriched for genes implicated in psychotic illness through large-scale genetic studies. The 
strength of association between psychosis risk and a gene was defined in two ways: (1) “rare 
LoF variant psychosis risk” was defined as the p-value for association between the burden of 
rare LoF variants in the gene and schizophrenia in the SCHEMA study17; (2) “common SNP 
psychosis risk” was defined as the p-value for association between the gene and schizophrenia 
(defined using MAGMA) in the PGC3SCZ GWAS15. Only genes that were a target of at least 
one medication in the databases used in this report were included in these analyses. For 
antipsychotics and propsychotics, two two-sample Wilcoxon tests were run that each compared 
target genes to non-target genes – one test to assess if target genes had greater rare LoF 
psychosis risk and another test to assess if target genes had greater common SNP psychosis 
risk. Confirming findings from prior work25, antipsychotic target genes had increased rare LoF 
psychosis risk compared to other genes (p-value = 0.006) but no difference in common SNP 
psychosis risk compared to other genes (p-value = 0.08). Similarly, propsychotic target genes 
had increased rare LoF psychosis risk compared to other genes (p-value = 0.011) and no 
difference in common SNP psychosis risk compared to other genes (p-value = 0.23). High-
confidence psychosis risk genes were defined as genes with statistically significant associations 
with schizophrenia in either the SCHEMA study (N = 10 as defined by the SCHEMA authors; 
“rare LoF psychosis risk genes”) or the PGC3SCZ GWAS (N = 636 with significant MAGMA p-
values after multiple test correction; “common SNP psychosis risk genes”). Among the 170 
propsychotic target genes, 8 were a high-confidence psychosis risk gene (GRIN2A, DRD2, 
CYP2D6, CHRNB4, CHRM4, GABBR1, GRM3, CHRNA3). All 8 of these were a common SNP 
psychosis risk gene, but only a single gene – GRIN2A – was implicated in psychotic illness as a 
propsychotic target gene (Figure 4B), a rare LoF psychosis risk gene, and a common SNP 
psychosis risk gene.  
 
Clinical characteristics of psychotic illness in a carrier of a rare LoF variant in GRIN2A 
 
GRIN2A was associated with schizophrenia through rare LoF variants in the SCHEMA study, 
but the clinical presentations of the schizophrenia cases harboring these variants in that study 
were not described26. The results in the previous section suggest activation of GRIN2A is a 
promising mechanism to pursue in developing novel antipsychotics, and since schizophrenia is 
a heterogeneous clinical condition, it is possible that activation of GRIN2A may be most 
promising for treating individuals with a specific clinical presentation. As a first step towards 
characterizing the schizophrenia clinical presentation that may be most likely to improve with 
activation of GRIN2A, whole-exome sequencing data from approximately 30,000 individuals in a 
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large United States health system were mined to identify and clinically characterize carriers of 
rare LoF variants in GRIN2A (i.e., using the same definitions of rare and of LoF used in the 
study that implicated GRIN2A rare LoF variants in schizophrenia). One carrier was identified 
who had a previous diagnosis of schizophrenia, and the rare LoF variant in this carrier (“the 
founder”) is located at position 9,798,422 on chromosome 16 within the exon 
ENSE00001304023 (genome build GRCh38/hg38). The founder is a heterozygote at this 
position, with one copy of the reference allele G and one copy of the alternate allele C. The 
alternate allele C has a frequency of 0 in the Genome Aggregation Database (gnomAD; v4.0.0). 
In the coding sequence of GRIN2A, the presence of this variant results in a premature stop 
codon in four of the known RNA transcript isoforms of GRIN2A (ENST00000330684, 
ENST00000396573, ENST00000535259, and ENST00000562109). A clinical case history was 
assembled through chart review and interviews with the founder and the founder’s family 
members. Four notable observations emerged from this case history. First, the onset of 
neurological and mental illness in the founder was in childhood, when the founder was 
diagnosed with a seizure disorder and a non-specific intellectual disability referred to by treating 
physicians in the medical chart as “mild mental retardation.” Second, in adolescence, the 
intellectual disability persisted, as evidenced by the founder’s placement first in a high school 
and later in a job training program designated for individuals with such disabilities. Third, when 
the founder reached the fourth decade of life, psychosis came to dominate the clinical picture 
with the first of seven inpatient hospitalizations for severe psychosis. Of the five domains of 
psychotic illness defined in the DSM, the acute psychotic presentations documented for the 
founder were most notable for disorganized thinking (e.g., loosening of associations, 
incomprehensible speech) and disorganized behavior (e.g., unpredictable agitation, going 
missing from home, inappropriate laughter). The founder has never experienced hallucinations 
or delusions, and the negative symptoms of psychosis (e.g., avolition, anhedonia) – while not 
absent altogether – seem to have been moderate. Fourth, the founder has multiple siblings who 
also reportedly have medical histories notable for psychotic illnesses, seizure disorders, and/or 
non-specific intellectual disabilities (genotypes and detailed case histories are not available from 
these individuals at the time of writing). 
 
Discussion 
 
This report integrates pharmacologic, genetic, and clinical data from a total of over 15 million 
individuals to make four key observations. First, a set of medications linked to psychotic illness 
as a side effect were defined (propsychotics). Second, the target genes of propsychotics were 
found to overlap with the target genes of antipsychotics, and for many of these shared target 
genes the action exerted by propsychotics on the gene (e.g., activation) was found to be the 
opposite of the action exerted by antipsychotics on the gene (e.g., inhibition). Third, both 
propsychotic and antipsychotic target genes were found to be enriched for genes implicated in 
schizophrenia through rare loss-of-function genetic variation but not through common genetic 
variation. Fourth, activation of GRIN2A was prioritized as a mechanism to develop new 
antipsychotics around, and a clinical case report of schizophrenia in a carrier of a rare LoF 
variant in GRIN2A provided clues regarding the schizophrenia clinical presentation to target with 
this pharmacological strategy.  
 
Propsychotics were defined by mining a large-scale medication side effect reporting database. 
These medications spanned many classes, including some that were intuitively expected (e.g., 
classes of medications that were designed to act in the nervous system [e.g., dopaminergic 
agents]) and some that were not (e.g., quinolone antibiotics). The set of propsychotics defined 
using this approach was validated using independent data, and some of the less intuitive 
medication classes represented in propsychotics had prior literature support for association to 
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psychotic illness27. Since VigiBase is limited to reports about medications that are used in 
clinical practice, propsychotics defined in this report do not include substances that are used to 
induce psychotic experiences recreationally (e.g., PCP, MDMA, psilocybin). In recent years, 
several of these substances have become treatments of affective illnesses28-30 but these agents 
were not represented by reports in the version of VigiBase analyzed for this report and therefore 
are not driving the primary findings of the study. 
 
 
The approach used to link propsychotics to target genes highlights one way to systematically 
identify genes capable of inducing a complex illness in humans when acted upon 
pharmacologically. The 170 propsychotic target genes are highly overlapping with the 129 
antipsychotic target genes found using this approach, and for many of the genes targeted by 
both propsychotics and antipsychotics (“shared target genes”), propsychotics act on the target 
through a mechanism that is qualitatively the opposite of the mechanism through which 
antipsychotics act on the target. While for a few of the shared target genes this observation is 
not novel12, for most shared target genes there are no previous reports of the observation. 
Receptors from most of the major neurotransmitter systems are represented in both 
propsychotic and antipsychotic target genes, illustrating the complexity of psychosis 
pharmacology and supporting the notion that there are multiple pharmacological mechanisms 
through which psychotic illness can be both induced and treated. Interestingly, both 
antipsychotics and propsychotics were found to exhibit inhibiting actions on CHRM4 (Figure 
4A), which encodes the muscarinic acetylcholine receptor M4  and is the primary target gene of 
the newly-approved antipsychotic xanomeline that exerts an activating action on CHRM431 
(since xanomeline was just recently approved for clinical use, it is not in the set of antipsychotics 
defined by the ATC used in this report). As expected, over 75% of antipsychotics exert inhibiting 
actions on DRD2 and over 50% of antipsychotics exert inhibiting actions on HTR2A; in contrast, 
the percentage of propsychotics that act on a target gene through the same mechanism is less 
than 15% for all target genes. This difference highlights that the method used to define 
propsychotics for this report did not simply identify a set of medications that act through a 
mechanism that is the inverse of the primary mechanism of antipsychotics. Indeed, receptors for 
several neurotransmitter classes represented in propsychotic target genes are not represented 
in antipsychotic target genes, including receptors for GABA (i.e., the primary inhibitory 
neurotransmitter in the central nervous system) and glutamate (i.e., the primary excitatory 
neurotransmitter in the central nervous system). The observation that propsychotics primarily 
activate GABA receptors and primarily inhibit glutamate receptors suggests that (1) a state of 
psychotic illness can be induced pharmacologically in an individual either by increasing 
inhibitory tone or by decreasing excitatory tone and (2) maintaining a balance between 
excitatory and inhibitory tone may be key for maintaining an individual in a non-psychotic state. 
 
The complex picture of psychosis pharmacology that emerged from linking propsychotics to 
their target genes (i.e., the large number of target genes that included receptors for many 
neurotransmitter classes) appeared consistent with the complex picture of the genetic 
architecture of psychotic illness that has been emerging from population genetics over the past 
two decades. When this apparent consistency was more deeply investigated, the target genes 
of propsychotics were found to be enriched for genes implicated in psychotic illness through 
rare loss-of-function genetic variation but not for genes implicated in psychotic illness through 
common genetic variation. This finding is consistent with an earlier study of antipsychotics only25 
and validates the notion that propsychotic target genes contribute to psychotic symptoms. 
Common genetic variation accounts for a substantial amount of the heritability of psychotic 
illnesses at the population level, while rare loss-of-function genetic variation accounts for a small 
amount of the heritability at the population level but can contribute substantially to risk at the 
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individual level. The observation that propsychotic target genes overlap with the genes linked to 
psychosis through rare loss-of-function genetic variation may reflect that there is a relatively 
small subset of genes in the human genome capable of exerting large effects on psychosis risk 
when dysfunctional. These genes, which can be identified by as the genes implicated in 
psychotic illness through both pharmacologic and genetic evidence, may be the most promising 
candidate target genes for novel antipsychotics13.  
 
 
GRIN2A is a gene located in chromosome 16 that encodes for a subunit of the N-methyl-D-
aspartate (NMDA)-type glutamate receptor (NMDAR) and was the only gene in the current 
report linked to psychotic illness as a propsychotic target gene, a rare LoF psychosis risk gene, 
and a common SNP psychosis risk gene. NMDARs are ionotropic glutamate receptors involved 
in many aspects of excitatory neurotransmission32. Each NMDAR is composed of four protein 
subunits that, together, span the plasma membrane and form an ion channel pore, and the 
biological properties of NMDARs are determined by the combination of subunits used. The 
proteins GluN1, GluN2, and GluN3 are the possible NMDAR subunits, and every NMDAR is 
composed of two GluN1 subunits with (1) two GluN2 subunits, (2) two GluN3 subunits, or (3) 
one GluN2 subunit and one GluN3 subunit. The GluN2A subunit encoded by GRIN2A is one of 
four distinct types of GluN2 subunits (the other three are GluN2B, GluN2C, and GluN2D), each 
encoded by a different gene. The biological processes that rely on GluN2A-containing NMDARs 
are still a matter of debate but may include long-term potentiation, a type of synaptic plasticity 
where synaptic activity induces a chronic increase in signal transmission between two 
neurons33. GRIN2A is one of only two genes in the genome that have been linked to 
schizophrenia through both rare loss-of-function genetic variation and common genetic 
variation, and the other gene, SP4, encodes a transcription factor that regulates GRIN2A 
expression1,2,4. Decreased NMDAR activity is suggested as a mechanism in the pathogenesis of 
psychotic illness not only by the pharmacologic and genetic evidence presented in this report, 
but also by (1) clinical immunology, where autoantibodies against NMDAR subunits (including 
the GluN2A subunit) downregulate NMDAR activity and cause a psychotic illness that clinically 
can be indistinguishable from schizophrenia6 and (2) rodent models of NMDA receptor 
hypofunction, where restoring NMDA receptor activity rescues psychosis-like phenotypes7. 
Taken together, these diverse lines of evidence support the hypothesis that pharmacologically 
increasing GRIN2A activity could treat psychotic symptoms. This hypothesis has not been 
adequately tested in human clinical trials. 
 
In addition to identifying target genes, identifying clinical presentations to target is key for novel 
antipsychotic development34. The clinical case summary in this report of a carrier of a rare loss-
of-function variant affected with schizophrenia begins to seek out the presentations of psychotic 
illness that may be most likely to respond to pharmacologic activation of GRIN2A. This is not the 
first case summary to characterize carriers of putatively disease-causing genetic variants in 
GRIN2A35-37. What separates the case described here, however, is the approach used to 
identify the carrier: the variant annotation strategy was modeled closely after the variant 
annotation strategy used in the study that linked rare loss-of-function variation in GRIN2A to 
schizophrenia at the population level (i.e. the SCHEMA study)17. The most prominent symptoms 
of the illness in this individual (e.g., disorganized thought and behavior, cognitive deficits) are 
amongst the symptoms of schizophrenia that are the most debilitating and the least responsive 
to current antipsychotics. In addition to schizophrenia, large-scale genetic studies have also 
implicated rare loss-of-function variants in GRIN2A to seizure and neurodevelopmental 
disorders, and it has been proposed that the illness that results from a rare loss-of-function 
variants in GRIN2A (i.e., schizophrenia vs. epilepsy vs. intellectual disability) depends on the 
specific loss-of-function variant37. However, the clinical course reported here – which included 
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schizophrenia, epilepsy, and intellectual disability all in the same individual – suggests the same 
loss-of-function variant may predispose to all of these illnesses. As novel antipsychotics that 
activate GRIN2A are developed, clinical trials may be more likely to success if the participants 
included are enriched for those with similar clinical presentations to the case presented in this 
report.  
 
There are several limitations to this work. First, the propsychotics and propsychotic target genes 
were identified based on the set of MedDRA terms used to define psychosis. This set of terms 
was manually constructed by a single study psychiatrist, and other experts when presented with 
the same task may have arrived at a different set of terms. Second, for most propsychotics 
defined by this report psychosis side effects are rare, so use of these medications to model 
psychosis in future research may be challenging. Third, the data linking medications to target 
genes and mechanisms of action is incomplete, simplified for interpretation, and/or lacking with 
respect to key variables such as binding affinity. Fourth, knowledge of the genetic architecture 
of psychotic illnesses is evolving, and it is possible that some of the findings in this report may 
change as the list of specific genes implicated in psychotic illness expands in the future. Fifth, 
the clinical presentation of only a single case of schizophrenia in a carrier of a rare loss-of-
function variant in GRIN2A is examined. As such, the features of the clinical presentation may 
not be typical of all GRIN2A-linked cases of schizophrenia and larger cohort studies are needed 
to validate the observations from this single case and more rigorously delineate the clinical 
presentation associated with dysfunction in this gene.  
 
Historically, whether idiopathic or substance-induced forms of a disease emerge through the 
same molecular mechanisms has been inadequately studied. This report approaches this 
question with a focus on psychotic illness and finds that a select set of genes are implicated 
through both genetics and pharmacology. These genes should be prioritized as target genes for 
developing a new generation of antipsychotics, with a particular emphasis on activation of 
GRIN2A given the multiple lines of evidence that together show downregulation of this gene 
induces psychotic illness in humans. Clinical characterization of psychotic illness in individuals 
with rare loss-of-function variants in genes such as GRIN2A will be crucial to link symptom 
presentation to potential therapeutic benefit. This framework provides a pathway to 
systematically prioritize genetically supported target genes for developing novel treatments for 
diseases that are polygenic and symptomatically heterogeneous. 
 
Methods 
 
Standardizing medication names and clinical concepts 
 
The databases utilized for this study to link medications to clinical concepts (i.e., side effects, 
indications; VigiBase, SIDER) and target genes (i.e., DrugBank, SeaChange) used a variety of 
lexicons to identify medications and clinical concepts. To analyze the databases together, 
names used for medications had to be mapped to a single lexicon and names used for clinical 
concepts had to be mapped to a single lexicon. Detailed descriptions of the procedures used to 
standardize medication and clinical concept names are provided in the Supplementary 
Information and described in brief here. Medication names were standardized to RxNorm 
(version of September 4th, 2018) Concept Unique Identifiers (RXCUIs) with a Source 
Abbreviation (SAB) value of “RXNORM” and a Term Type (TTY) of “IN.” Clinical concept names 
were standardized to the Medical Dictionary for Regulatory Activities (MedDRA; version 20.0) 
Preferred Terms (PT). For analyses that required medications to be categorized into medication 
classes, the primary database used to categorize medications was the World Health 
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Organization Anatomical Therapeutic Chemical Classification (ATC)38. ATC organizes 
medications into a hierarchy of five levels, and ATC Level 3 (e.g., “Antipsychotics”) was for this 
study used to categorize medications into classes based on physiological mechanisms and 
therapeutic properties. For analyses that required all medications targeting the nervous system 
to be defined, the ATC Level 1 value “Nervous System” was used.  
 
Defining psychosis side effect terms 
 
Multiple steps in the study (e.g., defining propsychotics) required the broad clinical concept of 
psychotic illness to be defined in the MedDRA lexicon terms. Since there is no single MedDRA 
PT that fully captures the complexity of psychotic illness, a set of MedDRA PTs was manually 
defined for the current study to define psychotic illness in MedDRA terms. A study psychiatrist 
(AWC) manually reviewed each of the approximately 500 PTs under the MedDRA System 
Organ Class “Psychiatric Disorder” and based on clinical experience identified the subset of 
these PTs that described either a psychotic symptom (e.g., “Hallucinations”) or a psychotic 
syndrome (e.g., “psychotic disorder”). This manual procedure resulted in a set of 124 MedDRA 
PTs (“the MedDRA psychosis PTs”; listed in Supplementary Table 2) that were used in all 
analyses requiring psychotic illness to be defined in MedDRA. 
 
Defining antipsychotics  
 
For most of the analyses of antipsychotics presented in this report that, antipsychotics were 
defined as the 64 medications in the ATC Level 3 class “Antipsychotics” (listed in 
Supplementary Table 1). For one analysis – the analysis that defined propsychotics (see 
below) – a broader set of antipsychotics was defined. The broader antipsychotic set was 
comprised of (1) the 64 antipsychotics defined using ATC and (2) medications with an indication 
in the Side Effect Resource (SIDER; version 4.1) – a database which links medications to 
indications and side effects reported on Food and Medication Administration (FDA) labels29 – 
that mapped to any of the 124 MedDRA psychosis PTs. 
 
Defining propsychotics 
 
Propsychotics (i.e., medications that induce psychotic symptoms as a side effect) were defined 
using VigiBase – a medication side effect reporting database with over 15 million reports 
maintained by the WHO – via the following four-step procedure: 
 

1. VigiBase reports that contained greater than one medication (i.e., reports of side effects 
that occurred in individuals taking greater than one medication) were removed from the 
database. 

2. Disproportionality analysis39 was performed for every medication-side effect link reported 
in VigiBase as follows. First, a two-by-two table was constructed where rows indicated 
the number of reports in VigiBase with the medication and columns indicated the number 
of reports in VigiBase with the side effect. Second, from the values in the two-by-two 
table, three disproportionality statistics were calculated, each representing a different 
way of quantifying the amount of evidence in VigiBase suggesting that the medication 
truly causes the side effect: (a) the number of reports in VigiBase reporting the 
medication-side effect link, (b) the proportional reporting ratio (PRR), and (c) the Yates’ 
chi-square test statistic40,41. 

3. For each medication-side effect link observed in VigiBase, the link was considered true if 
the following criteria established by other studies20,21 were met: (a) at least 3 reports of 



11 

the medication-side effect link were in VigiBase, (b) the PRR value was greater than or 
equal to 3, and (c) the Yates’ chi-square test statistic was greater than or equal to 4.  

4. Of the medication-side effect links considered true by the previous step, medication-side 
effects links were filtered out if (a) the medication in the link was in the broad 
antipsychotic set defined as explained above or (b) the side effect in the link was not one 
of the 124 MedDRA psychosis PTs. Propsychotics were defined as the 276 medications 
(linked to 66 psychosis side effects) that remained after applying these filters 
(Supplementary Tables 3-4).  

 
For the analyses that used SIDER to validate the propsychotics identified in VigiBase, 
propsychotics were defined in SIDER as any medication (after excluding the ATC set of 64 
antipsychotics defined above) linked by SIDER to at least one of the 124 MedDRA psychosis 
PTs. A hypergeometric test was run using R to assess whether the overlap between the two 
sets of propsychotics was significantly greater than would be expected by chance. 
 
Defining antipsychotic and propsychotic target genes 
 
Data description 
 
Two databases were used to link medications to target genes: DrugBank (version 5.1.1)23 and 
SeaChange (January 13th, 2014 version)24. Medication target gene identifiers used in DrugBank 
and SeaChange were standardized to gene symbols using the UniProt web-based mapping 
tool42. Upon combining DrugBank and SeaChange (i.e., prior to limiting only to medications in 
VigiBase), 47,985 medication-target gene links were observed (including 2,292 unique 
medications and 3,417 unique target genes). DrugBank contributed to 10,504 of these 
medication-target genes links (including 2,156 unique medications and 2,777 unique target 
genes) and SeaChange contributed to 38,761 of these medication-target gene links (including 
792 unique medications and 1,662 unique target genes). 
 
Propsychotics 
 
For propsychotics, an empirical p-value was calculated to assess if each prospective target 
gene (i.e., each target gene linked to >=1 propsychotic) was linked to the propsychotics more 
than expected by chance. The empirical null distribution used to calculate each of these p-
values was generated through 100,000 iterations of the following procedure: 
 

1. A set of medications to randomly sample from was defined (the “background medication 
set”). The background medication set was the set of medications that (1) were in 
VigiBase after removing VigiBase reports that included greater than one medication, (2) 
were not antipsychotics, and (3) could be linked to at least one target gene. 

2. A set of 240 medications (i.e., the number of propsychotics linked to >=1 target gene) 
was randomly selected from the background medication set. 

3. The proportion of the randomly selected medications linked to the target gene was 
recorded. 
 

The empirical p-value was calculated as the fraction of the 100,000 values in the null distribution 
that were greater than the proportion of propsychotics linked to the target gene. Any target gene 
with an empirical p-value less than 0.05 was considered a propsychotic target gene. 
 
This procedure for identifying significant propsychotic targets was performed separately for 
three versions of the data: (1) the full set of 276 propsychotics, with targets from DrugBank and 
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SeaChange; (2) the subset of the 276 propsychotics that remained after removing medications 
labeled as nervous system drugs by the ATC Level 1 term “Nervous System,” with targets from 
DrugBank and SeaChange; (3) the full set of 276 propsychotics, with targets from DrugBank 
only. 
 
Antipsychotics 
 
For antipsychotics, an empirical p-value was calculated to assess if each prospective target 
gene (i.e., each target gene linked to >=1 antipsychotic) was linked to the antipsychotics more 
than expected by chance. The empirical null distribution used to calculate each of these p-
values was generated through 100,000 iterations of the following procedure:  
 

1. A set of medications to randomly sample from was defined (the “background medication 
set”). The background medication set was the set of medications that (1) were in ATC 
Level 5, (2) were not propsychotics, and (3) could be linked to at least one target gene. 

2. A set of 46 medications (i.e., the number of antipsychotics linked to >=1 target gene) 
was randomly selected from the background medication set. 

3. The proportion of the randomly selected medications linked to the target gene was 
recorded. 

 
The empirical p-value was calculated as the fraction of the 100,000 values in the null distribution 
that were greater than the proportion of antipsychotics linked to the target gene. Any target gene 
with an empirical p-value less than 0.05 was considered an antipsychotic target gene. 
 
Defining antipsychotic and propsychotic target gene mechanisms of action 
 
Data description 
 
DrugBank was used to assign mechanism of action labels to medication-target gene links. 
Action labels were available for 1,026 propsychotic-target gene links and for 388 antipsychotic-
target gene links. Action labels were collapsed into two broad categories: activating (agonist, 
activator, inducer, potentiator, positive allosteric modulator, positive modulator, and stimulator) 
and inhibiting (inhibitor, antagonist, blocker, negative modulator, inactivator, suppressor, weak 
inhibitor, and inhibitory allosteric modulator). For each target gene, the proportion of 
medications in the class (i.e., propsychotics and antipsychotics) activating and inhibiting the 
target gene was calculated as the number of medications in the class annotated to the action 
label divided by the total number of medications in the class with any mechanism data in 
DrugBank (Supplementary Table 8). The significance of these proportions was assessed using 
the following permutation procedures. 
 
Propsychotics 
 
Two empirical values were calculated for each propsychotic target gene with a mechanism of 
action label: one empirical p-value to assess whether the target gene was assigned an 
activating mechanism of action label more than expected by chance and one empirical p-value 
to assess whether the target gene was assigned an inhibiting mechanism of action label more 
than expected by chance. The empirical null distributions used to calculate these p-values was 
generated through 100,000 iterations of the following procedure:  
 

1. A set of medications to randomly sample from was defined (the “background medication 
set”). The background medication set was the set of medications that (1) were in 
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VigiBase after removing VigiBase reports that included greater than one medication, (2) 
were not antipsychotics, and (3) could be linked to at least one target gene with a 
mechanism of action label.  

2. A set of 167 medications (i.e., the number of propsychotics linked to >=1 target gene 
with a mechanism of action label) was randomly selected from the background 
medication set.  

3. The proportion of the randomly selected medications linked to the target gene with an 
activating mechanism of action label was recorded.  

4. The proportion of the randomly selected medications linked to the target gene with an 
inhibiting mechanism of action label was recorded.  

 
The empirical p-value for the activating mechanism of action label was calculated as the fraction 
of the 100,000 values in the corresponding null distribution (i.e., the null distribution created 
from the values in the third step of the permutation procedure) that were greater than the 
proportion of propsychotics linked to the target gene with an activating mechanism of action. 
Any target gene with an empirical p-value less than 0.05 was considered a propsychotic target 
gene with an activating mechanism of action. 
 
The empirical p-value for the inhibiting mechanism of action label was calculated as the fraction 
of the 100,000 values in the corresponding null distribution (i.e., the null distribution created 
from the values in the fourth step of the permutation procedure) that were greater than the 
proportion of propsychotics linked to the target gene with an inhibiting mechanism of action. Any 
target gene with an empirical p-value less than 0.05 was considered a propsychotic target gene 
with an inhibiting mechanism of action. 
 
Antipsychotics 
 
Two empirical values were calculated for each antipsychotic target gene with a mechanism of 
action label: one empirical p-value to assess whether the target gene was assigned an 
activating mechanism of action label more than expected by chance and one empirical p-value 
to assess whether the target gene was assigned an inhibiting mechanism of action label more 
than expected by chance. The empirical null distributions used to calculate these p-values was 
generated through 100,000 iterations of the following procedure: 
 

1. A set of medications to randomly sample from was defined (the “background medication 
set”). The background medication set was the set of medications that (1) were in ATC 
Level 5, (2) were not propsychotics, and (3) could be linked to at least one target gene 
with a mechanism of action label. 

2. A set of 44 medications (i.e., the number of antipsychotics linked to >=1 target gene with 
a mechanism of action label) was randomly selected from the background medication 
set. 

3. The proportion of the randomly selected medications linked to the target gene with an 
activating mechanism of action label was recorded. 

4. The proportion of the randomly selected medications linked to the target gene with an 
inhibiting mechanism of action label was recorded. 

 
The empirical p-value for the activating mechanism of action label was calculated as the fraction 
of the 100,000 values in the corresponding null distribution (i.e., the null distribution created 
from the values in the third step of the permutation procedure) that were greater than the 
proportion of antipsychotics linked to the target gene with an activating mechanism of action. 
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Any target gene with an empirical p-value less than 0.05 was considered an antipsychotic target 
gene with an activating mechanism of action. 
 
The empirical p-value for the inhibiting mechanism of action label was calculated as the fraction 
of the 100,000 values in the corresponding null distribution (i.e., the null distribution created 
from the values in the fourth step of the permutation procedure) that were greater than the 
proportion of antipsychotics linked to the target gene with an inhibiting mechanism of action. 
Any target gene with an empirical p-value less than 0.05 was considered an antipsychotic target 
gene with an inhibiting mechanism of action. 
 
Enrichment of antipsychotic and propsychotic target genes for psychosis risk genes 
 
The strength of association between psychosis risk and a gene was defined in two ways: (1) 
“rare LoF variant psychosis risk” and (2) “common SNP psychosis risk.” To define rare LoF 
variant psychosis risk, a summary statistics file from the SCHEMA study was downloaded (i.e., 
Supplementary Table 5 from the SCHEMA study publication)17. This file was processed to (1) 
remove genes with no value in the “P meta” column, (2) remove genes appearing in greater 
than one row of the file, and (3) retain genes that were the target gene of at least one 
medication in DrugBank or SeaChange. The remaining 2,692 SCHEMA p-values defined rare 
LoF variant psychosis risk. To define common SNP psychosis risk, summary statistics from the 
PGC3SCZ GWAS were downloaded from the URL provided in the PGC3SCZ GWAS 
publication (the version of the summary statistics used was the file called 
“PGC3_SCZ_wave3.primary.autosome.public.v3.vcf.tsv.gz")15. SNPs appearing in more than 
one row of the summary statistics file were removed, and the resulting summary statistics file 
was uploaded to the FUMA web server (https://fuma.ctglab.nl; accessed April 4th, 2024)43. Using 
the SNP2GENE tool on the FUMA web server, gene-level p-values were calculated from the 
SNP summary statistics. The default SNP2GENE tool parameter settings were used with two 
exceptions: (1) the “Perform MAGMA” option was selected under the “MAGMA Analysis” section 
of the job submission form; (2) the “Perform eQTL mapping” option was selected under the 
“Gene Mapping (eQTL mapping)” section of the job submission form, and “GTEx v8 Brain (13)” 
was selected as the “Tissue Type” value to be used in the eQTL mapping analysis. Default 
SNP2GENE tool parameter settings included the reference panel population set to “1000G 
Phase3 EUR” and the exclusion of the major histocompatibility region. The PGC3SCZ GWAS 
gene-level p-values used in downstream analyses were contained in the “magma.genes.out” file 
in the output of the job submission (column titled “P”). This file was processed to (1) remove 
genes with more than one result and (2) retain genes that were the target gene of at least one 
medication in DrugBank or SeaChange. The remaining 2,621 p-values defined common SNP 
psychosis risk. The two types of psychosis genetic risk (i.e., rare LoF variant psychosis risk and 
common SNP psychosis risk) were tested for enrichment in two target gene sets (i.e., 
propsychotic target genes and antipsychotic target genes) using the following procedure: (1) the 
negative log10 value was calculated for each psychosis genetic risk p-value; (2) the distribution 
of the negative log10 p-values of target genes was compared to the distribution of the negative 
log10 p-values of all other genes using the wilcox.test() function of the base stats R package, 
with the alternative hypothesis specifying the expectation that target genes would have more 
significant p-values than other genes. High-confidence psychosis risk genes were defined in 
SCHEMA as the 10 genes with “P meta” values below the exome-wide significance threshold 
defined by the SCHEMA authors (2.14 x 10-6). High-confidence psychosis risk genes were 
defined in the PGC3SCZ GWAS as genes with Bonferroni-adjusted MAGMA p-values below 
0.05. Adjustment of the MAGMA p-values was performed in R using the p.adjust() function of 
the base stats R package. 
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GRIN2A case report 
 
Genetic and clinical data from the Mount Sinai Million Health Discoveries Program (MSM-HDP; 
formerly, the BioMe Biobank Program; N = 29,064) were analyzed to identify carriers of rare 
LoF variants in GRIN2A with psychotic illness. MSM-HDP study activities for the current report 
were approved by the Icahn School of Medicine at Mount Sinai’s Institutional Review Board 
(Institutional Review Board 07–0529) and all study participants provided written informed 
consent. Data analyzed from MSM-HDP participants has been previously described, including 
pipelines for variant calling and quality control44,45.  The genetic data was comprised of DNA 
sequence variants identified through whole-exome sequencing. DNA sequence variants 
identified in MSM-HDP participants were annotated using a workflow modeled after the 
workflow used in SCHEMA46. Specifically, annotation by LOFTEE (as implemented in the 
Variant Effect Predictor)47 was applied to variants that passed quality control filters. LoFs were 
defined as any variant annotated by the LOFTEE plugin as “loss-of-function” with either “high 
confidence” or “low confidence.” LoFs were defined as rare if the minor allele count in the MSM-
HDP cohort was less than or equal to five. The electronic medical records of carriers in MSM-
HDP of rare LoFs in GRIN2A defined in this manner were reviewed by a study psychiatrist 
(AWC). The individual with evidence of psychotic illness (i.e., the founder) was recalled by the 
study team to obtain further details on the history of psychotic illness. 
 
Supplementary Information 
  
Standardizing clinical concept terminology in VigiBase  
 
Overview  
 
The reports in the version of the VigiBase database analyzed for this study contained (1) a 
description of the side effect that arose in the subject of the report as a result of a medication 
the subject was taking and (2) descriptions of conditions for which the subject of the report was 
being treated (i.e., indications) at the time of the side effect. The side effect descriptions were 
provided already standardized to MedDRA codes, but indication descriptions were not provided 
in a single standardized terminology. For example, the indication schizophrenia had over 50 
unique representations in the database (e.g., “Schizophrenia NOS”, “Other schizophrenia”, 
“Schizophrenia, unspecified”, “Schizophrenia, undifferentiated type”, “Unspecified 
schizophrenia, unspecified state”). To perform analyses on VigiBase data that consider 
information about indications, it was necessary to indication terms to MedDRA. This was 
accomplished through a multistep procedure described in this section that incorporated a variety 
of medical lexicon mapping databases through both exact and partial string matching. To 
facilitate mapping across lexicons, strings were pre-processed prior to mapping using the 
following four-step procedure: (1) letters were made lowercase; (2) whitespaces and special 
characters were converted into a period; (3) instances of 2 or more consecutive periods were 
converted to a single period; (4) leading and trailing whitespaces were removed. 
 
Exact string matching 
 
Exact string matching was used to map VigiBase indications to MedDRA terms in the MedDRA 
source files (version 20.0). Unmapped indications were then mapped using exact string 
matching to the Unified Medical Language System (UMLS, version 2016AB). The UMLS version 
used included MedDRA terms (version 19.0), and UMLS Concept Unique Identifiers (CUI) map 
MedDRA terms to other lexicons. Remaining unmapped VigiBase indications were then mapped 
using exact string matching to the Observational Medical Outcomes Partnership (OMOP) 
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Common Data Model, which like the UMLS connects MedDRA terms to terms in other medical 
lexicons. 

 
Partial string matching 

 
For all VigiBase indications that could not be mapped to MedDRA using exact string matching, a 
partial string-matching approach was utilized. Two partial string-matching tools were utilized in 
this procedure: Usagi and Fuzzywuzzy. The Observational Health Data Sciences and 
Informatics (OHDSI) Usagi software (v1.0.0x)48 is a partial string mapping tool for bioinformatics 
that has been used by other studies to map medication names to RxNorm49. Usagi performs 
matching utilizing the Apache Lucene library, which is a suite of tools commonly used for 
computer programming tasks that require text searching. In the case of Usagi, the texts that are 
searched are the suite of medical terminology databases (e.g., RxNorm, MedDRA) that are 
contained in the OHDSI data files, and the terms searched for are those input by the Usagi user 
(e.g., VigiBase indications). The Usagi software pre-processes the user-supplied terms with an 
implementation of the Porter stemmer algorithm that reduces words to their stems (e.g., “adults” 
becomes “adult”). For the current task, Usagi was run with MedDRA as the text to search and 
using as input unmapped VigiBase indications. For each term, Usagi outputs the single best 
match along with a matching confidence score. 
 
In addition to Usagi, the python library fuzzywuzzy was used for partial string mapping. 
Fuzzywuzzy contains a suite of algorithms for term similarity matching that are all based on edit 
distance, which is the minimum number of operations that are required to transform one string 
into the other. Given two strings, i and j, fuzzywuzzy calculates the edit distance as 2*(number 
of elements shared by i and j)/(number of elements in i plus the number of elements in j). What 
differentiates the algorithms in fuzzywuzzy from one another is how the two strings being 
compared are processed prior to performing this calculation. For the current task, four of the 
algorithms in the fuzzywuzzy package were utilized: WRatio, QRatio, token_set_ratio, and 
token_sort_ratio. The QRatio algorithm calculates edit distance on unprocessed strings. This 
approach fails when the two strings compared consist of the same words in different orders, for 
instance when comparing “hello world” to “world hello.” In the case of VigiBase indications, this 
algorithm would not, for example, recognize these two indications as the same concept: 
“Schizophrenia, undifferentiated” and “Undifferentiated schizophrenia.” The token_sort_ratio 
algorithm performs well with such instances, as it splits the strings into composite “tokens” (in 
this case, words) and compares the two strings to one another after sorting the tokens (e.g., 
alphabetically). The token_set_ratio algorithm builds upon the token_sort_ratio algorithm by 
further considering differences between the two strings being compared that might artificially 
make the two strings appear different when in fact they contain the same information. For 
example, consider these two potential strings that could appear in the VigiBase indications: “the 
condition the patient suffered from was schizophrenia” and “schizophrenia.” Using the 
token_sort_ratio algorithm, the similarity score for these two terms would be low since many 
letters would have to be added to “schizophrenia” to make it equal the first string. The 
token_set_ratio algorithm calculates the edit distance between the tokens that overlap with one 
another in the strings (in this case, “schizophrenia”), then generates three values by adding to 
this value the number of characters in the remaining tokens of string 1, string 2, and the 
combination of string 1 and string 2. It then outputs the highest of these three values as the 
similarity score. Since in this example string 2 has no additional characters, the maximum score 
would be based on the edit distance between the “schizophrenia” and “schizophrenia” (which is 
0), and therefore a high score would result, which would be ideal since in fact these two values 
are, for the purposes of this task, the same clinical concept. The WRatio algorithm is not a 
unique algorithm in itself, but rather is a process by which all of the fuzzywuzzy algorithms are 
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run and the outputs are weighted, and the highest weighted score returned. The four 
fuzzywuzzy algorithms were run on all unmapped VigiBase indications. In contrast to Usagi, the 
data files that fuzzywuzzy uses to match terms against are supplied by the user. Therefore, for 
this mapping procedure the input against which unmapped VigiBase indications were matched 
was a list of MedDRA codes from the MedDRA source files. 
 
Having run five different partial string-matching algorithms for each of the VigiBase indications 
that could not be mapped using exact string matching, it was then necessary to assess the 
performance of the algorithms. For every string match identified by one of the algorithms, the 
algorithm outputs a confidence score for the match. While these scores are informative in many 
respects, the performance of these algorithms depends on the nature of the input terms. 
Therefore, a manual inspection procedure was carried out to establish confidence score cutoffs 
for each algorithm below which string matches would be discarded. Matches were randomly 
sampled in batches of 10 from each algorithm’s output at confidence score windows of size 0.1 
(starting at 0.5) and up to 50 terms were evaluated per algorithm manually by a study physician 
(AWC) for correctness. For all five partial string-matching algorithms used, the performance of 
the algorithm in a given window was quantified as the proportion of the matches in the window 
that were manually reviewed that were scored by the reviewer as a true match. For each 
algorithm, a threshold was selected that maximized the number of true matches identified. In all, 
over 90% of the initial VigiBase indication terms were mapped to a MedDRA code through the 
exact and partial string-matching procedures. 
 
Standardizing medication names in VigiBase 
 
VigiBase medication identifiers were provided in terms defined in the WHO Medication 
Dictionary (WDD; version of December 1st, 2016). In the WDD, medicinal products are mapped 
to a “Substance ID” that represents the substances in the product. Two WDD medicinal 
products with the same active substance (e.g., two salt forms of the same medication) therefore 
have different Substance IDs. For instance, the medication naproxen appears in the WDD both 
as “naproxen” (WDD Substance ID 6340) and “naproxen sodium” (WDD Substance ID 6653). 
Connecting these two Substance IDs to one another is not possible using the WDD but is 
crucial to link VigiBase medication names to medication names used in other databases 
analyzed in this report and (2) calculate accurate disproportionality analyses statistics for this 
report. When the analyses for this report were performed, official maps between WDD and 
RxNorm codes had not been created by either the WDD or RxNorm developers, so it was 
necessary to create such a map for this report. 
 
The mapping procedure began with two text identifiers for each medication in VigiBase: the 
substance name (e.g., “naproxen”) and, for single-ingredient medications, the product name 
(e.g., “naprometin”). To facilitate mapping across lexicons, strings were pre-processed prior to 
mapping using the following four-step procedure: (1) letters were made lowercase; (2) 
whitespaces and special characters were converted into a period; (3) instances of 2 or more 
consecutive periods were converted to a single period; (4) leading and trailing whitespaces were 
removed. Both exact and partial string-matching methods were then utilized to map WDD to 
RxNorm. Exact string matching was performed first. A manually curated list of words deemed 
uninformative for this study's purposes (e.g., salts and descriptors) were removed from WDD 
strings prior to exact string matching. Next, a partial string-matching algorithm provided by 
RxNorm developers as an API was used to map the remaining unmapped WDD terms to 
RxNorm RXCUI50. Each match output by this algorithm is given a confidence score from 1 to 
100. Manual evaluation of these scores and the quality of the matches found that scores above 
50 returned correct matches nearly 100% of the time, and all matches with a score above 50 
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were called true matches. For matches with scores less than 50, true matches were called if the 
following criteria were met (these criteria were determined by manual investigation): (1) the first 
word of the WDD and RxNorm terms in the match were identical to one another; (2) the first 
word of the WDD and RxNorm terms in the match were not salt names; (3) >50% of the words 
in the WDD term represented >50% of the words in the RxNorm term. After applying these 
exact and partial string-matching procedures, approximately 80% of WDD names could be 
mapped to at least one RxNorm RXCUI. 
  
Standardizing medication names in SIDER 
 
SIDER medications are provided in the form of STITCH codes51. When the analyses for this 
report were performed, there was no official map between STITCH codes and RxNorm codes 
provided by either the STITCH source files or the RxNorm source files. Therefore, a map 
between these lexicons had to be created for this report. Six mapping pathways were devised, 
and each is detailed in this section. Altogether, employing these six mapping pathways results 
in over 95% of the STITCH codes in SIDER mapping to at least one RxNorm RXCUI. 
 
STITCH to RxNorm Mapping Pathway 1: While the STITCH source files did not contain 
mappings between STITCH codes and RxNorm codes, they did contain mappings between 
STITCH codes and the medication codes used by other lexicons. Some of these other lexicons 
were also in the RxNorm source files (e.g., ATC, DrugBank). By utilizing the lexicons present in 
both the STITCH source files and the RxNorm source files as intermediates, many STITCH 
codes in SIDER could be mapped to RxNorm RXCUI. 
 
STITCH to RxNorm Mapping Pathway 2: STITCH codes were mapped to compound names in 
the STITCH source files. Compound names were mapped to the string name in RxNorm source 
files using exact string matching. RxNorm strings were mapped to RxNorm RXCUI using the 
RxNorm source files. 
 
 
STITCH to RxNorm Mapping Pathway 3: To map the remaining unmapped STITCH codes to 
RxNorm RXCUIs required leveraging the fact that some of the lexicons linked to STITCH codes 
in the STITCH source files that were not present in the RxNorm source files could be mapped to 
lexicons in RxNorm using a mapping procedure that incorporated information from additional 
databases. Four such mapping procedures were identified (i.e., STITCH to RxNorm Mapping 
Pathways 3-6), and the first of these four was as follows. STITCH codes were mapped to 
PubChem compound identifiers (CIDs) in the STITCH source files. PubChem CIDs were linked 
to Food and Medication Administration (FDA) Unique Ingredient Identifier (UNII) codes UNII 
through (a) a linker file provided by PubChem (Linker File 1; the URL used to download this file 
is provided below) and (b) a linker file provided by UniChem (Linker File 2; the URL used to 
download this file is provided below). UNII codes could be linked to RxNorm RXCUI by a linker 
file provided by the FDA Substance Registration System (SRS) (Linker File 3; the URL used to 
download this file is provided below). 
 
STITCH to RxNorm Mapping Pathway 4: STITCH codes were mapped to PubChem CIDs in the 
STITCH source files. PubChem CIDs were mapped to FDA Structured Product Labeling (SPL) 
codes using the PCIES website. SPL codes were mapped to RxNorm RXCUI using the UMLS 
(version 2016AB).  
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STITCH to RxNorm Mapping Pathway 5: STITCH codes were mapped to FDA National Drug 
File (NDF) codes using a PubChem source file (Linker File 4). NDF codes were mapped to 
RxNorm RXCUIs using UMLS. 
 
STITCH to RxNorm Mapping Pathway 6: STITCH codes were mapped to PubChem CIDs in the 
STITCH source files. PubChem CIDs were mapped to Simplified Molecular Input Line Entry 
System (SMILES) codes using the PCIES website. SMILES were mapped to RxNorm RXCUIs 
using Linker File 3. 
  
Linker File 1 URL:  
https://pubchem.ncbi.nlm.nih.gov/source/2322#data=Annotations 
 
Linker File 2 URL: 
ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/wholeSourceMapping/src_id14/src14src
22.txt.gz 
 
Linker File 3 URL:  
https://fdasis.nlm.nih.gov/srs/download/srs/UNII_Data.zip 
 
Linker File 4 URL:  
https://ftp.ncbi.nlm.nih.gov/pubchem/RDF/compound/general/pc_compound_type.ttl.gz 
 
PCIES website:  
https://pubchem.ncbi.nlm.nih.gov/docs/identifier-exchange-service 
 
Standardizing DrugBank Medication Names 
 
The medication codes provided in DrugBank (version 5.1.1) are codes created by the DrugBank 
developers specifically for DrugBank. Since DrugBank is one of the lexicons in the RxNorm 
source files, DrugBank codes could be mapped to RxNorm RXCUI through the RxNorm source 
files. Of note, only approximately one third of the DrugBank codes mapped to a RxNorm RXCUI 
with a SAB value of “RXNORM”. This is because many of the medication compounds in 
DrugBank are not medications approved for use in humans. Filtering DrugBank codes for those 
that are medications approved for clinical use (based data provided in the DrugBank source 
files), the RxNorm source files successfully mapped over 90% of DrugBank medications 
approved for clinical use to an RXCUI with SAB value of “RXNORM”.  
 
Standardizing medication names in SeaChange 
 
In the SeaChange source files provided to the research team by the SeaChange developers, 
medications were identified as ChEMBL codes52. Since ChEMBL was not one of the lexicons in 
the RxNorm source files used for this report, a map between ChEMBL codes and RxNorm 
RXCUIs was created using the following procedure. 
 

(1) Using ChEMBL source files (accessed via the URLs below), the “preferred name” values 
for the ChEMBL codes in SeaChange were identified, and exact string matching was 
used to map these preferred names to medication names in RxNorm 

(2) Using ChEMBL source files and UniChem source files (accessed via the URLs below),  
ChEMBL codes in SeaChange were linked to codes of other medication lexicons (e.g., 
UNII, PubChem) that could then be linked to RxNorm RXCUIs using the RxNorm source 
files 
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(3) Using Linker File 3 (see above), ChEMBL codes in SeaChange were mapped to 
RxNorm RXCUIs 

 
Using these three strategies, approximately 75% of the ChEMBL codes in SeaChange could be 
mapped to at least one RxNorm RXCUI. Manual inspection of the unmappable codes revealed 
that most represented compounds with no approved clinical indications in humans.  
 
ChEMBL source files and UniChem source files: 
 
ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/wholeSourceMapping/src_id1/src1src14
.txt.gz 
ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/wholeSourceMapping/src_id1/src1src7.t
xt.gz 
ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/wholeSourceMapping/src_id1/src1src2.t
xt.gz 
ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/wholeSourceMapping/src_id1/src1src22
.txt.gz 
ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/wholeSourceMapping/src_id1/src1src4.t
xt.gz 
ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/wholeSourceMapping/src_id2/src2src22
.txt.gz 
ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest/chembl_22_1_chemreps.txt.gz 
ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest/chembl_uniprot_mapping.txt 
 
 
Standardizing medication names in ATC 
 
Medications in the ATC source files were provided as ATC codes. Level 5 ATC codes in the 
ATC source files were mapped to RxNorm RXCUIs using the RxNorm source files since ATC 
was one of the lexicons in the RxNorm version used for this report. 

 
Standardizing RxNorm RXCUIs 
 
For the purposes of the current study, different RxNorm RXCUIs could represent the same 
medication. Therefore, after procedures described above for standardizing medication names to 
RxNorm were completed, it then was necessary to relate RxNorm RXCUIs to one another by 
finding the RxNorm RXCUI representative of active ingredients. The RxNorm API was used to 
(1) map RxNorm RXCUIs to “IN” values and (2) obtain the “status” of each RxNorm RXCUI in 
the RxNorm release active at the time the RxNorm API was accessed. Possible status values 
for a RxNorm RXCUI in the RxNorm API are “Active” (the concept is in the current RxNorm data 
set and has a non-obsolete term from the RxNorm lexicon), “Alien” (the concept exists in the 
current RxNorm data set, but contains only terms from lexicons other than RxNorm), 
“Quantified” (the concept is inactive and has been quantified to one or more concepts in the 
current RxNorm data set), “Remapped” (the concept has been remapped to one or more 
concepts in the current RxNorm data set), “Retired” (the concept no longer exists in the current 
RxNorm data set, or contains only obsolete terms), or “Unknown” (the concept identifier is 
invalid). Only RxNorm RXCUIs with Active status were retained.  
 
Figure captions 
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Figure 1 
Summary of the workflow used to define propsychotics in VigiBase. SE: side effect.  
 
Figure 2  
Proportion of propsychotics linked to MedDRA terms. The vertical axis shows MedDRA 
psychosis side effect terms. The horizontal axis shows the proportion of propsychotics that were 
linked to the MedDRA psychosis side effect term on the vertical axis. Only MedDRA psychosis 
side effect terms linked to greater than 1% of propsychotics are shown.  
 
Figure 3 
Proportion of propsychotics in medication classes. The vertical axis shows ATC Level 5 
medication class. The horizontal axis shows the proportion of propsychotics that were linked to 
the ATC Level 5 medication class on the vertical axis. Only ATC classes linked to greater than 
1% of propsychotics are shown.  
 
Figure 4 
(A) For every significant antipsychotic target gene mechanism of action there is an entry on the 
x-axis. The top panel shows on the y-axis the proportion of antipsychotics that exerted an 
activating mechanism of action on the target gene (blue) and the proportion of antipsychotics 
that exerted an inhibiting mechanism of action on the target gene (orange; represented as 
negative values), and only significant values are shown. The bottom panel shows on the y-axis 
the proportion of propsychotics that exerted an activating mechanism of action on the target 
gene (blue) and the proportion of antipsychotics that exerted an inhibiting mechanism of action 
on the target gene (orange; represented as negative values), and significant values are 
indicated by an asterisk. Target genes are grouped by neurotransmitter receptor class as 
indicated by the facet labels. (B) For every significant propsychotic mechanism of action that did 
not have a significant mechanism of action for antipsychotics there is an entry on the y-axis. On 
the x-axis is shown the proportion of propsychotics that exerted an activating mechanism of 
action on the target gene (blue) and the proportion of antipsychotics that exerted an inhibiting 
mechanism of action on the target gene (orange; represented as negative values), and only 
significant values are shown. 
 
Supplementary table captions 
  
Supplementary Table 1  
List of the 64 antipsychotic drugs defined using the Anatomical Therapeutic Chemical 
Classification (ATC) Level 3.  
  
Supplementary Table 2  
List of the 124 Medical Dictionary for Regulatory Activities (MedDRA) terms used to represent 
psychotic illness.  
  
Supplementary Table 3  
List of the 276 propsychotic drugs defined using Vigibase.  
  
Supplementary Table 4  
List of 66 adverse events associated with the propsychotic drugs in Supplementary Table 3.  
 

Supplementary Table 5  
The proportion of propsychotics mapping to each of 85 different pharmacological subgroups 
defined by ATC Level 3.  
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Supplementary Table 6  
Results of analyses linking propsychotics and antipsychotics to target genes.  
  
Supplementary Table 7  
Results of analyses linking propsychotics and antipsychotics to mechanisms of action on target 
genes.  
  
Supplementary Table 8  
Table of targets showing the observed proportion and p-value for upregulated and 
downregulated mechanisms of action.  
  
Data and materials availability 
 
Publicly available data analyzed for this report was obtained through the following URLs:  
 

• VigiBase:  https://who-umc.org/vigibase/.  
• SIDER: http://sideeffects.embl.de/ 
• DrugBank: https://go.drugbank.com/ 
• RxNorm: https://www.nlm.nih.gov/research/umls/rxnorm/index.html 
• MedDRA: https://www.meddra.org/ 
• SCHEMA: https://schema.broadinstitute.org/ 
• PGC3SCZ: https://pgc.unc.edu/for-researchers/download-results/ 

 
All code used for this report will be made available upon publication.  
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VigiBase (>15,000,000 reports)
5,031 unique drugs
18,656 unique SEs

2,667 unique drugs
9,035 unique SEs

Defining "propsychotics"  using VigiBase database

Limit to single drug reports
- 53.7% of all reports

3,721 unique drugs
16,232 unique SEs

Perform disproportionality analysis
- Proportional reporting ratio (PRR) >= 3
- Yates' chi-square test statistic >= 4
- Count of reports with drug/SE pair >= 3

276 unique drugs
66 unique SEs

Limit drug/SE pairs by
- manually curated 124 psychosis SEs
- removing antipsychotic drugs



Persecutory delusion
Hypnagogic hallucination
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Delusional disorder, persecutory type

Pressure of speech
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Delusional disorder, unspecified type

Flight of ideas
Disorganised speech
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Dissociative disorder
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Psychotic behaviour
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Schizophreniform disorder
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Illusion
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Substance−induced psychotic disorder
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Staring
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Depersonalisation/derealisation disorder
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Proportion of each MedDRA term
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Nervous system drugs
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Urologicals
Immunostimulants

Other antineoplastic agents
Other cardiac preparations
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Other dermatological preparations
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Corticosteroids, other combinations
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Corticosteroids

Antipruritics
Intestinal antiinflammatory agents

Anesthetics, general
Muscle relaxants

Analgesics and antipyretics
Addictive disorder drugs

Corticosteroids, plain
Antimigraine preparations

Beta blocking agents
Anti−dementia drugs

Stomatological preparations
Gynecologicals

Cough suppressants
Antiinflammatory agents

Beta−lactam antibacterials
Corticosteroids, systemic

Anticholinergic agents
Mydriatics and cycloplegics

Antiinfectives
Direct acting antivirals

Opioids
Antiobesity preparations

Anxiolytics
Psychostimulants

Quinolone antibacterials
Dopaminergic agents

Antiepileptics
Antihistamines

Antidepressants
Hypnotics and sedatives

Proportion of propsychotics in medication classes

Proportion of propsychotic drugs

0.00 0.02 0.04



Adrenergic Cholinergic Dopamine Histamine Serotonin Other

−0.75

−0.50

−0.25

0.00

P
ro

po
rt

io
n 

of
 A

nt
ip

sy
ch

ot
ic

s 
Ta

rg
et

tin
g

A

* * *

* * *

* *

* * * *

* *

*

* *

*

*

*

*

* * *

*

*

*

*

*

*

* * *
*

*

*

*

* *

*

*

*

*

*

* * *

*

* *

Adrenergic Cholinergic Dopamine Histamine Serotonin Other

A
D

R
A

1A

A
D

R
A

1B

A
D

R
A

1D

A
D

R
A

2A

A
D

R
A

2B

A
D

R
A

2C

C
H

R
M

1

C
H

R
M

2

C
H

R
M

3

C
H

R
M

4

C
H

R
M

5

D
R

D
1

D
R

D
2

D
R

D
3

D
R

D
4

D
R

D
5

H
R

H
1

H
R

H
2

H
R

H
4

H
T

R
1A

H
T

R
1B

H
T

R
1D

H
T

R
1E

H
T

R
1F

H
T

R
2A

H
T

R
2B

H
T

R
2C

H
T

R
3A

H
T

R
3B

H
T

R
3C

H
T

R
3D

H
T

R
3E

H
T

R
4

H
T

R
5A

H
T

R
6

H
T

R
7

C
A

LM
1

C
A

LY

C
Y

P
2D

6

IM
PA

2

K
C

N
H

2

S
10

0A
4

S
IG

M
A

R
1

S
LC

6A
2

S
LC

6A
4

−0.15

−0.10

−0.05

0.00

0.05

Gene

P
ro

po
rt

io
n 

of
 P

ro
ps

yc
ho

tic
s 

Ta
rg

et
tin

g

  

Acetylcholine receptor

DNA topoisomerase

Dopamine transporter

GABA receptor

Glutamate receptor

Opioid receptor

Sodium channel

Other

−0.05 0.00 0.05 0.10 0.15

CHRNA2

CHRNA3

CHRNA4

CHRNA7

CHRNB2

GYRA

PARC

PARE

TOP2A

SLC18A2

SLC6A3

GABBR1

GABRA1

GABRA2

GABRA3

GABRA4

GABRA5

GABRA6

GABRB1

GABRB2

GABRB3

GABRD

GABRE

GABRG1

GABRG2

GABRG3

GABRP

GABRQ

GABRR1

GABRR2

GABRR3

GRIN1

GRIN2A

GRIN2B

GRIN2C

GRIN2D

GRIN3A

GRIN3B

OPRD1

OPRK1

OPRM1

SCN1A

SCN1B

SCN2A

SCN2B

SCN3A

SCN3B

SCN4A

SCN4B

SCN5A

SCN9A

ACHE

ADRB1

ANXA1

BCHE

ESR1

MPO

NEU2

TAAR1

TSPO

Proportion of Propsychotics Targetting

G
en

e

B


