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Abstract 

We have generated whole-blood DNA methylation profiles from 18,869 Generation Scotland 

Scottish Family Health Study (GS) participants, resulting in, at the time of writing, the largest single-

cohort DNA methylation resource for basic biological and medical research: Methylation in 

Generation Scotland (MeGS). GS is a community- and family-based cohort, which recruited over 

24,000 participants from Scotland between 2006 and 2011. Comprehensive phenotype information, 

including detailed data on cognitive function, personality traits, and mental health, is available for all 

participants. The majority (83%) have genome-wide SNP genotype data (Illumina 

HumanOmniExpressExome-8 array v1.0 and v1.2), and over 97% of GS participants have given 

consent for health record linkage and re-contact. At baseline, blood-based DNA methylation was 

characterised at ~850,000 sites across four batches using the Illumina EPICv1 array. MeGS 

participants were aged between 17 and 99 years at the time of enrolment to GS.  Blood-based DNA 

methylation EPICv1 array profiles collected at a follow-up appointment that took place 4.3-12.2 

years (mean=7.1 years) after baseline are also available for 796 MeGS participants. Access to MeGS 

for researchers in the UK and international collaborators is via application to the GS Access 

Committee (access@generationscotland.org). 

Data resource basics  

MeGS, which was initiated in 2016, was established to allow integration of whole blood DNA 

methylation data with the rich phenotypic, genetic, and electronic health record linkage already 

available for Generation Scotland (GS) a population- and family-based cohort (N=24,096 from 6,862 

families) [1–3]. DNA methylation is an epigenetic modification influenced by both genetic and 

environmental factors, making it an attractive candidate for investigating mechanisms underlying 

complex traits and disease. In some circumstances, DNA methylation is associated with the 

expression of nearby or, less often, distal genes. There is clear evidence for associations between 

variation in DNA methylation and health-related behaviours, complex phenotypes, and disease 

outcomes [4–11]. MeGS, which is located in Edinburgh, UK was primarily funded through Wellcome 

Trust support.  

 

GS was established through a multi-institutional collaboration, involving Scottish medical schools 

and the National Health Service [1,2]. It is an ideal cohort for the development of clinical and 

research biomarkers for use in disease prevention, detection, and monitoring, as whole blood is 

available from almost all participants, whilst linkage to health and prescription records allows for 

assessment of associations with both past and future health outcomes. Moreover, as participants 

have provided permission for re-contact, the potential to add additional longitudinal data points to 

MeGS exists, permitting studies of changes in methylation across the life course.  

 

MeGS comprises blood-based DNA methylation profiles from 18,869 individuals making it, at the 

time of writing, the largest published single-cohort methylation resource in the world. For 796 of 

these participants, a second blood DNA methylation profile (the longitudinal MeGS sample) is 

available from an appointment that took place between 2015 and 2018 as part of a sub-study called 

“Stratifying Resilience and Depression Longitudinally” (STRADL). Key demographic information for 

MeGS is displayed in Table 1. The MeGS cohort is broadly representative of the larger GS cohort, 

containing a higher proportion of females (58.8%), an average age of 47.12 years (SD 14.90 years), 

higher education levels and lower deprivation levels than the general population (Table 1). However, 
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the participants for whom DNA methylation from a second time-point is available are older, have a 

greater average BMI, and are from less deprived localities than the baseline population (Table 1).  

 

Recruitment to GS is ongoing (“NextGenScot”, https://www.ed.ac.uk/generation-scotland) [12] with 

the aim of doubling the cohort size by recruiting additional members of existing families, new 

families, and lowering the minimum age of participation to 12 years. It is anticipated that saliva-

based DNA methylation will be profiled in the newly recruited participants. 

 

Data collected 

Baseline Data and Sampling  

The data and biological samples collected at the baseline clinic visit have been described in detail 

previously [2]. Participants completed a comprehensive pre-clinical questionnaire capturing 

information on various demographic variables, social characteristics, personal behaviours, cognitive 

and mental health and self-reported health data. Participants also attended a clinic, where physical 

and cognitive measurements were acquired, along with blood and urine samples.  

The full range of phenotypic, clinical, and biochemical data available for GS (and, therefore, MeGS) 

participants has been described previously [1–3] and is searchable via the GS data dictionary 

(https://datashare.ed.ac.uk/handle/10283/2988). Genome-wide genotype information is available 

for the majority of MeGS participants (99.9%) [13]. When recruited between 2006-2011, GS 

participants provided blood or saliva samples (for biochemistry, and cryopreservation) and a urine 

sample, meaning it is possible to measure additional biomarkers in this cohort. As a condition of 

access by external researchers, any resource generated from GS must be returned to the study to be 

made available to the wider research community. This has resulted in the availability of cardiac and 

inflammatory biomarker data (NT-proBNP, GDF-15, cardiac troponins, and C-reactive protein) [14]. 

Furthermore, additional layers of omics data including mass spectrometry proteomics data (N = 

15,818; NMeGS = 14,671) and Nightingale metabolomics data (N = 2,907; NMeGS = 2,745) have also 

been made available to GS through this route. 

A subset of the MeGS cohort (44.4%) is also enrolled in the STRADL sub-study, in which 

questionnaires examining psychological resilience, coping style, threatening life experiences, and 

physical and mental health, were administered to 21,525 eligible GS participants, with 9,618 

respondents (8,379 in MeGS) [15]. Of the 8,379 participants, 1,033 attended an in-person 

appointment where additional clinical and cognitive assessments were performed, blood, saliva, and 

hair samples collected, and neuroimaging performed [16].  

Plasma levels of 4,058 proteins were measured using SOMAscan® V.4 technology in 839 MeGS 

participants from samples collected at the STRADL appointment [17]. Hormone levels were assayed 

from hair samples acquired as part of STRADL in 1,009 individuals, of whom 732 have methylation at 

both baseline and longitudinal time points. A subset of MeGS participants (N=4,233) also took part in 

the CovidLife surveys, which examined the effects of COVID-19 measures on health and well-being 

[18]. 

 

Data linkage  
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Ninety-seven percent of GS participants consented to linkage to their NHS Scotland records. Linked 

datasets include hospital admissions from the Scottish Morbidity Record (SMR), dispensed 

prescription information, MIDAS dental data, and the Scottish Drug Misuse Database. SMR linkage 

includes general hospital admissions, maternity and neonatal data, psychiatric admissions, and 

diabetes and cancer registries. Mortality data is also available through linkage to the National 

Records of Scotland. New linkages, such as Scottish Medical Imaging (SMI), radiology reports, and 

retinal scans, are planned to continue following participants over time [3]. Linkage to primary care is 

also available for GS, albeit currently limited to a subset of 6,486 MeGS participants due to the 

constraints of data controller permission requirements. 

 

Sample processing  

DNA methylation was profiled using the Infinium MethylationEPIC BeadChip v1 (Illumina Inc., CA), 

which measures methylation at over 850,000 sites across the human genome, covering 99% of 

RefSeq genes, and providing enhanced coverage of regulatory regions compared to previous Illumina 

methylation arrays. Peripheral blood samples were collected in EDTA tubes according to standard 

procedures and DNA extracted using Nucleon BACC3 extraction kits. Whole blood genomic DNA 

(500ng) was treated with sodium bisulphite using the EZ-96 DNA Methylation Kit (Zymo Research, 

Irvine, California), following the manufacturer’s instructions. DNA methylation was then measured 

using the MethylationEPIC BeadChip, according to the manufacturer’s instructions. Array scanning 

was performed using a HiScan scanner (Illumina Inc., San Diego, California) and an initial review of 

the data quality was carried out using GenomeStudio (version 2011.1).  

DNA methylation was profiled in four waves between 2016 and 2021 (Table 2). For all waves, the 

raw intensity data (IDAT) files were read into R, using functions within minfi v.1.20.2 – 1.42.0 [19].  

Quality control (QC) and normalisation was applied to each wave separately, at the time it was 

produced, to enable insights from these novel data as they emerged. Prior to commencing QC of the 

first wave, ten samples were removed as they were derived from saliva and were mistakenly 

submitted for whole blood methylation profiling. Three further samples were removed due to 

inaccurate self-report data (i.e., answering ‘Yes’ to all self-reported conditions).  Another sample was 

removed as information from a separate study highlighted that they were likely to be XXY. For the 

first wave, QC was performed using shinyMethyl v1.10.0 [20]. First, technical outliers were removed 

based on visual inspection of a plot of the log median intensity of the methylated versus 

unmethylated signal for each array. ShinyMethyl's control probe plots were then inspected to 

identify outliers. Next, samples for which the sex predicted from the methylation data (based on the 

difference between the median copy number intensity for the Y chromosome and the median copy 

number intensity for the X chromosome) did not match the participant’s self-reported sex were 

removed. Multi-dimensional scaling (MDS) plots were inspected for any additional sample outliers, 

but none were detected. The pfilter function within wateRmelon v.1.18.0 [21] was used to remove: 

(i) samples where ≥ 1% of CpGs had a detection p-value > 0.05; (ii) probes with a beadcount of < 3 in 

> 5% samples; and (iii) probes for which ≥ 0.5% of samples had a detection p-value > 0.05. 

Proportions of six white blood cell types (monocytes, granulocytes, CD 4+ T-cells, CD 8+ T-cells, B-

cells, and natural killer cells) were estimated using minfi’s implementation of the Houseman 

algorithm [22] with Reinius et al.’s peripheral blood reference data [23]. 

The QC of the DNA methylation data produced in waves two to four was carried out using both 

meffil vs.1.1.0 and 1.1.2 [24] and shinyMethyl vs.1.14.0 and 1.30.0 [20]. Meffil was used to perform 
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dye-bias and background correction using the “noob” method [25], and exclude: samples affected by 

a strong dye bias or issues affecting bisulphite conversion (using default thresholds); samples for 

which the median methylated signal intensity was more than three standard deviations lower than 

expected; and samples where the methylation-predicted sex deviated from self-reported sex. 

Deviations between methylation-predicted sex and self-reported sex were also assessed using 

shinyMethyl’s sex prediction function, which uses a different methodology to meffil. ShinyMethyl 

was additionally used to plot the output of all control probes to permit the detection of outliers by 

visual inspection. Following these sample removal steps, meffil was used to filter poor-performing 

samples and probes. Samples were removed if they had > 0.5% CpG sites with a detection p-value > 

0.01.  Once the poor-performing samples had been removed, meffil was re-run on the remaining 

dataset to identify poor-performing probes. These were defined as probes with a beadcount of < 3 in 

> 5% samples and/or > 1% samples with a detection p-value > 0.01. White blood cell proportions 

were estimated using meffil’s implementation of the Houseman algorithm [22] with Reinius et al.’s 

peripheral blood reference data [23].  

 

Following QC, the data from Y chromosome probes were removed, and the data from each of the 

four waves were normalised using the dasen method from the R package wateRmelon v.2.2.0 [21], 

accounting for the EPIC arrays differing assay chemistries. Dasen involves adjusting the background 

difference between Type I assays (which interrogate methylated and unmethylated CpGs with 

separate probes) and Type II assays (which interrogate methylated and unmethylated CpGs with a 

single probe), by adding the offset between Type I and II probe intensities to Type I intensities.  

Between-array quantile normalisation is then performed for the methylated and unmethylated 

signal intensities separately, with Type I and Type II assays being normalised separately. The dasen-

normalised beta-values were logit-transformed to methylation M-values, using the beta2M function 

in the R package lumi v.2.30.0 [26]. M-values can be denoted as log2((M + α)/(U + α)), where M 

corresponds to the methylated signal, U corresponds to the unmethylated signal, and α corresponds 

to a constant offset (usually 100) to regularise the Beta value when both M and U values are small. 

Following normalisation, X chromosome probes were excluded from the dataset together with 

probes that have been predicted to bind sub-optimally according to Zhou et al. (2017) [27] or 

McCartney et al. (2016) [28]. The normalised data (with and without the data from the X 

chromosome probes) were inspected by multidimensional scaling (MDS) plots to identify any 

remaining outlier samples. MDS plots were generated from subsets of the (i) 10,000 and (ii) 100,000 

most variable probes, colour-coding by batch and sex. Visual inspection of these plots identified 40 

male outliers in wave 3 who did not cluster with the other males. As a precaution, these samples 

were removed. For waves 2 and 3, the normalised datasets were subsequently separated into 

baseline and longitudinal sample sets. A jointly-normalised dataset is also available, whereby the 

four separately QC’d waves were combined and normalised using dasen. The dasen-normalised 

beta-values were converted to M-values as described above. 

 

Data Resource Use 

The analysis of DNA methylation data can: provide novel insights into the mechanisms underlying 

diseases, health traits, and basic biological phenomena; identify biomarkers; and improve the 

prediction of future health outcomes. MeGS has contributed to research efforts across all these 

domains, resulting in 59 publications to date (Supplementary Table 1). We provide some examples 

below. 
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• Methylome-wide association studies (MWASs): MWASs have been carried out to identify 

associations between DNA methylation and a range of complex traits and diseases 

(Supplementary Table 1). As an illustrative example, we report here MWASs for two 

personality traits, neuroticism and extraversion, which have not been assessed previously in 

a large sample. MWASs were performed using limma v.3.54 [29]. Methylation levels in M-

values (pre-corrected for relatedness using a genomic relationship matrix) at 752,721 CpG 

sites were included as the dependent variable and the and the independent variable was 

score on a personality trait (neuroticism: n = 18,788, extraversion: n = 18,783). The following 

model was fitted for each trait:  

 

DNA methylation (corrected M-values) ~ personality trait score + age + sex + methylation 

batch + estimated blood cell counts + methylation-derived smoking score + 20 methylation-

based principal components.  

 

A threshold of p < 3.6 x 10
-8

 was used to identify methylome-wide significant associations 

[30]. Fourteen CpG sites were identified as significantly associated with extraversion (Figure 

1A and Table 3). No sites were significantly associated with neuroticism (Figure 1B).  

 

• Prediction of health outcomes and complex traits: Barbu et al. (2022) [4] showed that a risk 

score calculated from methylation data explained 1.75% of the variance in major depressive 

disorder (MDD). McCartney et al. (2018) [9] derived DNA methylation predictors for 10 

modifiable health and lifestyle factors and showed that a DNA methylation predictor of body 

mass index (BMI), when used in conjunction with a polygenic risk score, could explain 

approximately twice as much trait variance compared to the polygenic risk score alone. 

Cheng et al (2023) [31] have used MeGS to augment 10-year risk prediction of diabetes. 

Previous work on subsets of the MeGS baseline data has included the identification of 

methylation sites associated with: genetic risk factors for depression [32]; antidepressant 

treatment [33]; alcohol use disorder[34]; cognitive ability [7]; and risk factors for dementia 

[35–37]. MeGS has also contributed to collaborative meta-analyses to investigate DNA 

methylation associations with ageing [38], aggression [39], and chronic kidney disease [40]. 

In addition, the longitudinal dataset (i.e. methylation data acquired as part of STRADL) was 

used to generate signatures for 17 protein markers of brain health [41]. Finally, Chybowska 

et al. demonstrated the utility of methylation-derived EpiScores and composite measures of 

these scores to identify CVD risk, independent of traditional risk factors [42]. 

 

• Validation of proxies for blood-based protein levels: Gadd et al. related DNA methylation-

based predictors of 109 protein levels (EpiScores) to incident health outcomes over 14 years. 

Using a subset of the MeGS cohort, they identified 137 EpiScore-disease associations, 

highlighting the potential of DNA methylation-based scores for disease prediction and risk 

stratification [17]. 

 

• Epigenetic clocks: The difference between a person’s actual age and their age predicted 

from their methylation data (age acceleration) provides a measure of biological ageing, 

which has been shown to be predictive of multiple health outcomes and all-cause mortality 

[43,44]. Using MeGS, we have demonstrated significant associations between age 

acceleration and several health-related traits, including BMI, smoking, socioeconomic status, 

and brain health [9,45]. In addition, we have shown that local CpG density affects the 
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trajectory and variance of age-associated DNA methylation changes [46]. We performed 

genome-wide association study meta-analyses of four epigenetic clocks and discovered 

evidence for shared genetic loci associated with the Horvath clock and expression of lipid 

metabolism and immune function genes [38]. Finally, using the MeGS cohort, Bernabeu et 

al. derived a DNA methylation-based predictor of chronological age with a median absolute 

error of 1.7 years, outperforming existing predictors by between 1.8 and 6.4 years [47]. 

 

• Improving understanding of basic biological mechanisms: MeGS has contributed to a recent 

large-scale effort to map methylation quantitative trait loci (meQTL) [48]. This represents 

the most well-powered meQTL cataloguing effort to-date and resulted in the identification 

of > 270,000 independent meQTLs. The family-based nature of MeGS has facilitated studies 

into parent-of-origin effects on DNA methylation [49,50]. 

 

• Methodological papers: MeGS has been used to develop a Bayesian inference-based 

approach to analysis of methylation data [51], and has demonstrated the utility of Whatman 

FTA® cards for collecting and storing blood samples for DNA methylation profiling [52] MeGS 

has also contributed to a study assessing variability in DNA methylation-based predictors of 

age and BMI, when integrating multiple DNA methylation datasets. This study highlighted 

the importance of selecting an appropriate normalisation method for combining datasets 

and generating epigenetic signatures [53].  

 

Strengths and Weaknesses 

Strengths 

MeGS is derived from the Generation Scotland cohort, and is at the time of writing the largest single-

population-based DNA methylation data resource. The use of the Illumina EPIC array, which almost 

doubles the coverage of its predecessor, the 450K array, is a further advantage over similar datasets 

[54]. Individuals in GS have been extensively phenotyped and the cohort is particularly well-suited 

for studies into mental health and cognitive phenotypes. In addition, record linkage to routine health 

datasets further increases the scope for investigations of both prevalent and incident diseases and 

traits. Finally, the ability to recontact participants for future studies permits longitudinal assessment.   

Weaknesses  

The EPIC array characterises only ~4% of the methylome, and cannot distinguish between DNA 

methylation and hydroxymethylation; however, it covers 99% of RefSeq genes, and has increased 

coverage of regulatory elements, such as enhancers, compared to previous Illumina methylation 

arrays. While blood is arguably not always the most mechanistically relevant tissue, the relative ease 

of obtaining peripheral blood samples makes it an appropriate tissue for development of biomarkers 

for prediction, monitoring disease course, and measuring the impact of treatment. In common with 

many other volunteer-based studies, GS has relatively small numbers of participants of non-white 

ancestry and more deprived backgrounds, and is not fully representative of the broader (Scottish) 

population. 

 

Data Resource Access  
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Researchers wishing to access the MeGS resource and wider Generation Scotland study data can do 

so by submitting an access application form to access@generationscotland.org (contact person Dr D. 

McCartney). Access applications are subject to review through GS access processes, which ensure 

that all research using the resource aims to benefit the health and wellbeing of patients and the 

public. Approved projects are subject to a Data & Materials Transfer Agreement (DMTA) or 

commercial contract. Full information on the access procedure including application forms and 

DMTA templates is available at https://www.ed.ac.uk/generation-scotland/for-researchers/access. 

Data dictionaries describing the full GS resource are available online at 

https://datashare.ed.ac.uk/handle/10283/2988.   
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Figures: 

Figure 1: Manhattan plots of MWAS of Extraversion (A) and Neuroticism (B) 

Each point represents a CpG tested for association. -log10 p-values are presented along the Y-axis 

with chromosome and genomic position along the X-axis. The red line represents the epigenome-

wide significant threshold of p=3.6 x 10
-8

.
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Tables 

Table 1: Key demographic information 

 GS Baseline (N=18,869) STRADL Follow-up (N=796) 

Age (Years)   
  

Mean (SD) 47.12 (14.90) 56.49 (9.63) 

Age Range 17-99 20-82 

  
    

Sex    
  

Males 7771 (41.1%) 342 (43.0%) 

Females 11094 (58.8%) 454 (57.0%) 

Not reported 0 (0%) 3 (0.4%) 

  
    

Education (Years)   
  

0 Years (%) 7 (0.04%) 0 (0%) 

1-4 Years (%) 50 (0.26%) 4 (0.5%) 

5-9 Years (%) 546 (2.9%) 16 (2.0%) 

10-11 Years (%) 4954 (26.25%) 246 (30.9%) 

12-13 Years (%) 3888 (20.6%) 171 (21.5%) 

14-15 Years (%) 2563 (13.58%) 96 (12.1%) 

16-17 Years (%) 3525 (18.68%) 137 (17.2%) 

18-19 Years (%) 1699 (9.0%) 70 (8.8%) 

20-21 Years (%) 431 (2.28%) 15 (1.89%) 

22-23 Years (%) 128 (0.68%) 8 (1.0%) 

24+ Years (%) 62 (0.33%) 2 (0.25%) 

Not Reported/Missing (%) 1016 (5.4%) 31 (3.89%) 

  
    

Deprivation (SIMD rank)   
  

Mean (SD) 3898 (1848.55) 4270 (1758.75) 

  
    

BMI (kg/m2)   
  

Mean (SD) 26.67 (5.18) 28.07 (5.58) 

Range 10.49-71.35 16.4-62.4 

  
    

Smoking   
  

Ever (%) 8630 (45.7%) 326 (40.8%) 

Never (%) 9636 (51.1%) 402 (50.3%) 

Missing (%) 603 (3.2%) 72 (9%) 
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Table 2: Details of samples processed in each of the four methylation waves 

 Wave 1 Wave 2 Wave 3 Wave 4 Combined 

Date Prepared Q4 2016 – Q1 2017 Q1 2017 – Q2 2017 Q4 2018 – Q1 2019 Q3 2021 Q2 2023 

Study Timepoint Baseline Baseline Longitudinal Baseline Longitudinal Baseline Baseline 

No. Samples (pre-QC) 5,200 465 520 4,597 373 9082 20,232 

No. Samples (post-QC) 5,087 459 501 4,450 295 8,873 18,869 

No. Probes (post-QC) 860,925 859,730 856,671 854,642 851,610 
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Table 3: Differentially Methylated CpGs associated with Extraversion at p < 3.6x10
-8

 

Probe ID Effect SE P Gene 

cg02947519 -9.14 x 10
-3

 1.41 x 10
-3

 1.05 x 10
-10

 - 

cg10501210 6.20 x 10
-3

 9.73 x 10
-4

 1.96 x 10
-10

 - 

cg15393490 8.93 x 10
-3

 1.47 x 10
-3

 1.18 x 10
-9

 - 

cg05083539 8.24 x 10
-3

 1.36 x 10
-3

 1.46 x 10
-9

 PKND; TMBIM1 

cg00329615 7.99 x 10
-3

 1.30 x 10
-3

 7.86 x 10
-10

 IGSF11 

cg06690548 -1.45 x 10
-2

 1.96 x 10
-3

 1.82 x 10
-13

 SLC7A11 

cg10585061 8.29 x 10
-3

 1.50 x 10
-3

 3.29 x 10
-8

 - 

cg01182455 6.92 x 10
-3

 1.20 x 10
-3

 8.67 x 10
-9

 - 

cg11376147 -7.51 x 10
-3

 1.06 x 10
-3

 1.20 x 10
-12

 SLC43A1 

cg10861637 6.85 x 10
-3

 1.12 x 10
-3

 8.79 x 10
-10

 CLTC 

cg11851174 8.67 x 10
-3

 1.52 x 10
-3

 1.34 x 10
-8

 RAI1 

cg02231404 -8.97 x 10
-3

 1.50 x 10
-3

 2.45 x 10
-9

 SOX18 

cg04881720 -9.88 x 10
-3

 1.67 x 10
-3

 3.66 x 10
-9

 SOX18 

cg22138735 -8.49 x 10
-3

 1.52 x 10
-3

 2.60 x 10
-8

 SOX18 
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