1	Derivation and Internal Validation of Prediction Models for
2	Pulmonary Hypertension Risk Assessment in a Cohort
3	Inhabiting Tibet, China
4	Authors
5	Junhui Tang ¹ , Rui Yang ² , Hui Li ¹ , Xiaodong Wei ¹ , Zhen Yang ¹ , Wenbin Cai ¹ , Yao Jiang ¹ ,
6	Ga Zhuo ¹ , Li Meng ¹ , Yali Xu ³ *
7	Junhui Tang and Rui Yang contributed equally to this work.
8	
9	Affiliations
10	1. Department of Ultrasound, the General Hospital of Tibet Military Area Command, Tibet,
11	China
12	2. Department of High Mountain Sickness, the General Hospital of Tibet Military Area
13	Command, Tibet, China
14	3. Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
15	
16	Corresponding author *
17	Yali Xu, MD, PhD
18	Department of Ultrasound, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street,
19	Shapingba District, Chongqing, 400037, PR China.
20	Tel.: +86 18523384936
21	E-mail address: xuyali1976@163.com
22	

23 This research was supported by the Talent Program of Army Medical University (No. 2019R038). NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Α

G

Set x-axis ranges
Predict

Quit

Press Quit to exit the application

Threshold probability

Threshold probability

0.8

1	Derivation and Internal Validation of Prediction Models for
2	Pulmonary Hypertension Risk Assessment in a Cohort
3	Inhabiting Tibet, China
4	Authors
5	Junhui Tang ¹ , Rui Yang ² , Hui Li ¹ , Xiaodong Wei ¹ , Zhen Yang ¹ , Wenbin Cai ¹ , Yao Jiang ¹ ,
6	Ga Zhuo ¹ , Li Meng ¹ , Yali Xu ^{3*}
7	Junhui Tang and Rui Yang contributed equally to this work.
8	
9	Affiliations
10	1. Department of Ultrasound, the General Hospital of Tibet Military Area Command, Tibet,
11	China
12	2. Department of High Mountain Sickness, the General Hospital of Tibet Military Area
13	Command, Tibet, China
14	3. Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
15	
16	Corresponding author *
17	Yali Xu, MD, PhD
18	Department of Ultrasound, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street,
19	Shapingba District, Chongqing, 400037, PR China.
20	E-mail address: xuyali1976@163.com

21

22 Abstract

Background: Due to exposure to hypoxic environments, individuals residing in plateau regions
are susceptible to pulmonary hypertension (PH). Consequently, there is an urgent need for a
simple and efficient nomogram to assess the risk of PH in this population.

26 Methods: This study included a total of 6,603 subjects, who were randomly divided into a 27 validation set and a derivation set at a ratio of 7:3. Optimal predictive features were identified 28 through the least absolute shrinkage and selection operator regression technique, and nomograms 29 were constructed using multivariate logistic regression. The performance of these nomograms was 30 evaluated and validated using the area under the curve (AUC), calibration curves, the 31 Hosmer-Lemeshow test, and decision curve analysis. Comparisons between nomograms were 32 conducted using the net reclassification improvement (NRI) and integrated discrimination 33 improvement (IDI) indices.

34 **Results:** Nomogram¹ was established based on independent risk factors, including gender, Tibetan 35 ethnicity, age, incomplete right bundle branch block (IRBBB), atrial fibrillation (AF), sinus tachycardia (ST), and T wave changes (TC). The AUCs for Nomogram^I were 0.716 in the 36 derivation set and 0.718 in the validation set. Nomogram^{II} was established based on independent 37 38 risk factors, including Tibetan ethnicity, age, right axis deviation (RAD), high voltage in the right ventricle (HVRV), IRBBB, AF, pulmonary P waves, ST, and TC. The AUCs for Nomogram^{II} were 39 40 0.844 in the derivation set and 0.801 in the validation set. Both nomograms demonstrated 41 satisfactory clinical consistency. The IDI and NRI indices confirmed that Nomogram^{II} outperformed Nomogram^I. Therefore, the online dynamic Nomogram^{II} was established. 42

43 Conclusions: A reliable and straightforward nomogram was developed to predict the risks of PH44 in the plateau population.

45

46 Introduction

47 Pulmonary hypertension (PH) is a chronic, progressive condition characterised by elevated 48 pulmonary arterial pressure, primarily resulting from pulmonary vascular remodelling. This 49 remodelling is driven by the infiltration of inflammatory cells, endothelial-to-mesenchymal 50 transition, and hyperplasia of the pulmonary intima (Rubin & Naeije, 2023; Shah, Beckmann, 51 Vorla, & Kalra, 2023; Simonneau et al., 2019). PH often presents similarly to other lung diseases, 52 leading to diagnostic delays and, consequently, delays in receiving optimal treatment. 53 Approximately 1% of the adult population and more than half of individuals with congestive heart 54 failure are affected by PH (Hoeper et al., 2016; Mandras, Mehta, & Vaidya, 2020). Moreover, as 55 the pulmonary vascular load increases, PH can ultimately lead to life-threatening right heart 56 failure. The 1-year and 3-year survival rates for patients with PH range from 68% to 93% and 39% 57 to 77%, respectively (Naeije, Richter, & Rubin, 2022; Ruopp & Cockrill, 2022).

Right-heart catheterisation (RHC) is recognised as the gold standard for diagnosing PH, clarifying the specific diagnosis, and determining the severity of the condition. However, due to its invasive nature, RHC is not suitable as a widespread population screening tool for PH (McGoon et al., 2004). Transthoracic echocardiography (TTE), a non-invasive screening test, is extensively used for PH because it can provide estimates of pulmonary arterial systolic pressure (sPAP) and evaluates cardiac structure and function. A clinical study involving 731 patients in China found no significant difference between RHC and TTE in assessing sPAP in PH caused by hypoxia.

Furthermore, Pearson correlation analysis between RHC and TTE demonstrated a moderate
overall correlation (Hong et al., 2023; McGoon et al., 2004; Xu & Jing, 2009).

67 According to literature reviews, nearly 140 million individuals reside in high-altitude regions 68 (altitudes exceeding 2,500 meters), and the number of people visiting these areas for economic or 69 recreational reasons has been increasing over the past few decades (Moore, Niermeyer, & 70 Zamudio, 1998; West, 2012; Xu & Jing, 2009). High altitude typically signifies a hypoxic 71 environment due to the decrease in barometric pressure as altitude increases, which proportionally 72 reduces PO2, resulting in hypotaric hypoxia (Gassmann et al., 2021). PH arising from prolonged 73 exposure to hypoxic conditions at high altitudes is termed high-altitude pulmonary hypertension 74 (Xu & Jing, 2009). Hypoxia triggers hypoxic pulmonary vasoconstriction (HPV), a physiological 75 response aimed at optimising ventilation/perfusion matching by redirecting blood to 76 better-oxygenated segments of the lung through the constriction of small pulmonary arteries 77 (Dunham-Snary et al., 2017). Furthermore, sustained hypoxia leads to pulmonary vascular 78 remodelling, increasing resistance to blood flow due to reduced vessel elasticity and decreased 79 vessel diameter. HPV and vascular remodelling are the primary mechanisms underlying 80 hypoxia-induced PH, which significantly impairs right ventricular function and can ultimately 81 result in fatal heart failure (Julian & Moore, 2019; Penaloza & Arias-Stella, 2007). Consequently, 82 there is a pressing need for a straightforward and dependable model to assist clinicians and 83 individuals in assessing the risk of PH in populations at high altitudes.

84 In this study, we developed and validated two risk prediction models for high-altitude PH85 based on TTE results by examining routine inspection parameters in Tibet, China.

87 Materials and methods

88 Study population and data collection

89 Upon gathering data from all patients who underwent both TTE and 12-lead electrocardiogram 90 (ECG) examinations at the General Hospital of Tibet Military Aera Command between April 2021 91 and October 2023, we further screened the records based on the following criteria: (1) age > 1492 years; (2) interval between the TTE and ECG examinations < 2 months, and (3) for patients with 93 multiple TTE and/or ECG records, only the examination with the shortest interval between TTE 94 and ECG was selected. Ultimately, we compiled examination data for 6,603 eligible patients. 95 The retrospectively-collected clinical data were categorised into two main groups: (1) 96 demographic characteristics, including name, age, gender, and Tibetan ethnicity; (2) ECG results, 97 encompassing right axis deviation (RAD), clockwise rotation (CR), counterclockwise rotation 98 (CCR), high voltage in the right ventricle (HVRV), incomplete right bundle branch block 99 (IRBBB), complete right bundle branch block (CRBBB), atrial fibrillation (AF), sinus arrhythmia 100 (SA), sinus bradycardia (SB), sinus tachycardia (ST), T wave changes (TC), ST-segment changes 101 (STC), atrial premature beats (APB), ventricular premature beats (VPB), junctional premature 102 beats (JPB), complete left bundle branch block (CLBBB), first-degree atrioventricular block 103 (IAB), and pulmonary P waves (PP); (3) TTE results: pulmonary arterial systolic pressure (sPAP) 104 was measured via TTE to evaluate PH. PH was graded as follows: Grade I PH (50 mmHg > sPAP 105 \geq 30 mmHg), Grade II PH (70 mmHg > sPAP \geq 50 mmHg), and Grade III PH (sPAP \geq 70 106 mmHg). The severity of PH increases with its grade, indicating a higher risk of the condition. 107 All procedures were conducted following the approval of the Ethics Committee of the General 108 Hospital of Tibet Military Area Command (APPROVAL NUMBER: 2024-KD002-01).

109 Subsequently, the data from all participants were anonymised and de-identified prior to analysis.

110 Consequently, the requirement for informed consent was waived.

111

112 Statistical analysis

- 113
- 114 Statistical analysis was performed with R software version 4.3.2. P < 0.05 (double-tailed)

115 was considered statistically significant.

For validation and derivation of the prediction model, subjects were divided into a validation set and a derivation set randomly, at a ratio of 7:3, respectively. Categorical variables were transformed into dichotomous variables, and continuous variables were expressed by concrete values (means \pm standard deviation) and analysed using Student's t-test. Fisher's exact test or Pearson's χ 2 test was applied for categorical variables.

121 The derivation set was used to select optimal predictive factors through the least absolute 122 shrinkage and selection operator (LASSO) regression technique. Independent factors were 123 identified via multivariate logistic regression analysis, incorporating variables selected during the 124 LASSO regression. A backward step-down selection process, guided by the Akaike information 125 criterion, determined the final model. The predictive accuracy of the nomograms was assessed 126 using the AUC of the ROC curve in both the derivation and validation sets. The 127 Hosmer-Lemeshow test and calibration curves were employed to evaluate the consistency between 128 actual outcomes and predicted probabilities. The clinical utility of the nomograms was assessed 129 through decision curve analysis (DCA). The cut-off value for the total score in the nomogram was 130 established based on the ROC curve, with patients categorised into low-risk and high-risk groups. 131 The performance comparison between nomograms was analysed using the integrated

132 discrimination improvement (IDI) and net reclassification improvement (NRI).

133

135	
136	Figure 1. Flow diagram. Based on the exclusion and inclusion criteria, 6,603 patients were
137	included in this study. Patients were divided into a validation set and a derivation set randomly
138	following a 7:3 ratio. pulmonary hypertension, PH; right axis deviation, RAD; high voltage in the
139	right ventricle, HVRV; incomplete right bundle branch block, IRBBB; atrial fibrillation, AF; sinus
140	tachycardia, ST; T wave changes, TC; Pulmonary P waves, PP.
141	
142	Results

143

Table 1. Baseline characteristics of individuals in the derivation and validation sets

Variable	Derivation set (n = 4622)	Validation set (n = 1981)	Р
Age			
Total (Mean ± SD)	42.43 ± 16.93	42.05 ± 16.41	0.390
Age≪42, n (%)	2619(56.66)	1135(57.29)	
Age>42, n (%)	2003(43.34)	846(42.71)	0.635
Tibetan, n (%)			0.538
No	2856 (61.79)	1240 (62.59)	
Yes	1766 (38.21)	741 (37.41)	
Gender, n (%)			0.260
female	1219 (26.37)	549 (27.71)	

male	3403 (73.63)	1432 (72.29)	
RAD, n (%)			0.141
No	3833 (82.93)	1672 (84.40)	
Yes	789 (17.07)	309 (15.60)	
CR, n (%)			0.387
No	4000 (86.54)	1730 (87.33)	
Yes	622 (13.46)	251 (12.67)	
CCR, n (%)			0.402
No	3994 (86.41)	1727 (87.18)	
Yes	628 (13.59)	254 (12.82)	
HVRV, n (%)			0.102
No	4151 (89.81)	1805 (91.12)	
Yes	471 (10.19)	176 (8.88)	
IRBBB, n (%)			0.573
No	4547 (98.38)	1945 (98.18)	
Yes	75 (1.62)	36 (1.82)	
CRBBB, n (%)			0.945
No	4444 (96.15)	1904 (96.11)	
Yes	178 (3.85)	77 (3.89)	

AF, n (%)

0.594

No	4551 (98.46)	1954 (98.64)	
Yes	71 (1.54)	27 (1.36)	
SA, n (%)			0.243
No	4247 (91.89)	1837 (92.73)	
Yes	375 (8.11)	144 (7.27)	
ST, n (%)			0.910
No	4395 (95.09)	1885 (95.15)	
Yes	227 (4.91)	96 (4.85)	
SB, n (%)			0.345
No	4245 (91.84)	1833 (92.53)	
Yes	377 (8.16)	148 (7.47)	
TC, n (%)			0.769
No	4003 (86.61)	1721 (86.88)	
Yes	619 (13.39)	260 (13.12)	
STC, n (%)			0.415
No	4399 (95.18)	1876 (94.70)	
Yes	223 (4.82)	105 (5.30)	
APB, n (%)			0.219
No	4587 (99.24)	1960 (98.94)	
Yes	35 (0.76)	21 (1.06)	

JPB, n (%)			0.425
No	4603 (99.59)	1970 (99.44)	
Yes	19 (0.41)	11 (0.56)	
VPB, n (%)			0.844
No	4580 (99.09)	1962 (99.04)	
Yes	42 (0.91)	19 (0.96)	
PP, n (%)			0.439
No	4507 (97.51)	1938 (97.83)	
Yes	115 (2.49)	43 (2.17)	
CLBBB, n (%)			0.757
No	4610 (99.74)	1975 (99.70)	
Yes	12 (0.26)	6 (0.30)	
IAB, n (%)			0.910
No	4556 (98.57)	1952 (98.54)	
Yes	66 (1.43)	29 (1.46)	
PH ≥ I grade, n (%)			0.820
No	2793 (60.43)	1203 (60.73)	
Yes	1829 (39.57)	778 (39.27)	
PH ≥ II grade, n(%)			0.962
No	4227 (91.45)	1811 (91.42)	

	Yes	395 (8.55)	170 (8.58)	
146 147 148	Subjects' characteristics	3		
149	Following a 7:3 allocation	ion ratio, 4,622 subjects were	placed in the derivation set an	d 1,981
150	subjects in the validation set	. The characteristics of the s	ubjects are presented in Table	1. The
151	prevalence of PH of Grade I of	or higher was 39.57% (1,829 c	ases) in the derivation set and	39.27%
152	(778 cases) in the validation s	et (P= $0.820 > 0.05$). The preve	alence of PH of Grade II or hig	her was
153	8.55% (395 cases) in the der	ivation set and 8.58% (170 c	ases) in the validation set (P=0	0.962 >
154	0.05). No significant different	ce was observed in the age d	istribution between the derivat	ion and
155	validation sets (42.43 \pm 16.93	vs. 42.05 ± 16.41, P=0.390 >	> 0.05), with age categorised in	nto ≤42
156	and >42 subgroups based on	the mean age. The composition	on ratios of the two age subgro	ups did
157	not significantly differ betwee	n the validation and derivation	n sets (P=0.6352 > 0.05). Furth	ermore,
158	no significant differences we	re observed in the characteris	tics related to gender, Tibetan	or not,
159	RAD, CR, CCR, HVRV, IRB	BB, CRBBB, AF, SA, ST, SB	, TC, STC, APB, VPB, JPB, P	P, IAB,
160	and CLBBB. (Table 1)			
161				
162	Independent risk factors	s in PH≥I grade group and PH	I≥II grade group	
163				
164	In the PH≥I grade grou	p, based on the λ _min criterio	on in the LASSO regression mo	odel, 18
165	out of 22 variables were sele	ected. However, this selection	n was deemed excessive for p	oractical
166	clinical applications. Therefo	re, we further refined the me	odel using the λ_1 se criterion,	, which
167	reduced the number of variab	les, albeit with a significant d	ecrease in the AUC of the RO	C curve
168	$(\lambda_1 se)$ compared to the ROC	curve (λ _min) (Fig. 2 C, E, C	δ). Ultimately, 9 variables were	chosen

169	according to λ_1 se, including gender, Tibetan ethnicity, age ≤ 42 , age >42 , IRBBB, CRBBB, AF,
170	ST, and TC (Fig. 2 I). Gender, Tibetan ethnicity, age, IRBBB, AF, ST, and TC were subsequently
171	identified as independent risk factors for PH≥I grade through multivariate logistic regression
172	analysis and were used to develop Nomogram ^I . (Table 2)
173	In the PH≥II grade group, based on the λ_1 se criterion in the LASSO regression model (Fig.
174	2 D, F), 11 variables were selected to align with clinical needs. These variables were Tibetan
175	ethnicity, age ≤42, age >42, RAD, HVRV, IRBBB, CRBBB, AF, PP, ST, and TC (Fig. 2 J).
176	Tibetan ethnicity, age, RAD, HVRV, IRBBB, AF, PP, ST, and TC were determined to be
177	independent risk factors for PH≥II grade through multivariate logistic regression analysis and
178	were utilised to construct Nomogram ^{II} . (Table 3).

Variable	β -Coefficient	OR (95%CI)	Р
Tibetan	0.34	1.40 (1.23-1.60)	<0.001
Gender	-0.3	0.74 (0.65-0.84)	<0.001
Age	0.034	1.03 (1.03-1.04)	<0.001
IRBBB	1.106	3.02 (1.96-4.67)	<0.001
AF	1.431	4.18 (2.19-7.97)	<0.001
ST	0.369	1.45 (1.14-1.84)	0.003
ТС	0.306	1.36 (1.16-1.59)	<0.001

180 Table 2. Risk factors for PH≥I grade in the derivation set

Variable	β -Coefficient	OR (95%CI)	Р
Tibetan	0.689	1.99 (1.55-2.57)	<0.001
Age	0.042	1.04 (1.03-1.05)	<0.001
RAD	0.751	2.12 (1.56-2.88)	<0.001
HVRV	0.486	1.63 (1.14-2.31)	0.007
IRBBB	1.512	4.53 (2.77-7.42)	<0.001
AF	2.102	8.18 (5.13-13.05)	<0.001
ST	1.247	3.48 (2.58-4.70)	<0.001
TC	0.592	1.81 (1.44-2.27)	<0.001
РР	1.486	4.42 (2.96-6.61)	<0.001

182 Table 3. Risk factors for PH≥II grade in the derivation set

186 Figure 2 illustrates the optimal predictive variables as determined by the LASSO binary187 logistic regression model. Panels A and B depict the measurement of tricuspid regurgitation

188	spectra via transthoracic echocardiography in patients with Grade I PH (A) and Grade III PH (B).
189	Panels C to J demonstrate the identification of the optimal penalisation coefficient lambda (λ) in
190	the LASSO model using 10-fold cross-validation for the PH≥I grade group (C) and the PH≥II
191	grade group (D). The dotted line on the left (λ _min) represents the value of the harmonic
192	parameter $log(\lambda)$ at which the model's error is minimised, and the dotted line on the right (λ_1 se)
193	indicates the value of the harmonic parameter $log(\lambda)$ at which the model's error is minimal minus 1
194	standard deviation. The LASSO coefficient profiles of 22 predictive factors for the PH≥I grade
195	group (E) and the PH≥II grade group (F) show that as the value of λ decreased, the degree of
196	model compression increased, enhancing the model's ability to select significant variables. ROC
197	curves were constructed for three models (LASSO, LASSO- λ _min, LASSO- λ _lse) in both the PH
198	≥I grade group (G) and the PH≥II grade group (H). Histograms depict the final variables selected
199	according to λ_1 se and their coefficients for the PH≥I grade group (I) and the PH≥II grade group
200	(J). Asterisks denote levels of statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001.
201	
202	Construction of Nomogram ^I in $PH \ge I$ grade group and Nomogram ^{II} in $PH \ge II$ grade group
203	
204	In the PH≥I grade group, a predictive Nomogram' for PH≥I grade was developed based on
205	independent risk factors, including gender, Tibetan ethnicity, age, IRBBB, AF, ST, and TC. Points
206	are assigned to each independent factor by drawing a vertical line to the points scale. The total
207	points for an individual correspond to their risk of developing PH. Patients were then classified
208	into high-risk and low-risk subgroups according to the total score's cut-off value (cut-off value:
209	45), which was determined based on the ROC curve (Fig. 3 A). The risks for the two groups were
210	evaluated in both the derivation and validation sets. In the derivation set, the risk of PH in the

211	high-risk group was significantly higher than in the low-risk group (odds ratio [OR]: 4.210, 95%
212	confidence interval [CI]: 3.715-4.775) (Fig. 3 B), as was also observed in the validation set (odds
213	ratio [OR]: 4.207, 95% confidence interval [CI]: 3.476-5.102) (Fig. 3 C).
214	In the PH≥II grade group, a predictive Nomogram ^{II} for PH≥II grade was developed using
215	independent risk factors, including Tibetan ethnicity, age, RAD, HVRV, IRBBB, AF, PP, ST and
216	TC. Based on the cut-off value of the total score (cut-off value: 76), determined in line with the
217	ROC curve, patients were categorised into high-risk and low-risk subgroups (Fig. 3 D). The risks
218	for the two groups were evaluated in both the derivation and validation sets. In the derivation set,
219	the risk of PH in the high-risk group was significantly greater than in the low-risk group (odds
220	ratio [OR]: 11.591, 95% confidence interval [CI]: 9.128-14.845) (Fig. 3 E), a finding that was
221	replicated in the validation set (odds ratio [OR]: 7.103, 95% confidence interval [CI]: 5.106-9.966)
222	(Fig. 3 F)

223

.

Figure 3. Nomogram for predicting PH and risk stratification based on total score. (A-C)
Nomogram^I for the prediction of PH≥I grade in the PH≥I grade group. Points for each
independent factor are summed to calculate total points, determining the corresponding 'risk' level.
Patients were divided into 'High-risk' and 'Low-risk' subgroups according to the cutoff of the total

230	points (A). Histograms illustrate the odds ratio (OR) comparing the 'High-risk' group to the
231	'Low-risk' group in the derivation set (B) and validation set (C). (D-F) Nomogram ^{II} for predicting
232	PH≥II grade within the PH≥II grade group: Similarly, points from each independent factor are
233	totalled, and the corresponding 'risk' level is ascertained. Patients are divided into 'High-risk' and
234	'Low-risk' groups based on the cut-off value of the total points (D). Histograms display the OR for
235	the 'High-risk' group compared to the 'Low-risk' group in the derivation (E) and validation set (F).
236	*** $P < 0.001$. (G) Screenshot of dynamic Nomogram ^{II} 's web page.

Figure 4. Receiver operating characteristic (ROC) curves and area under the curve (AUC)
for Nomogram^I in PH≥I and Nomogram^{II} in PH≥II grade groups. (A-F) In the PH≥I grade group,
the ROC and corresponding AUC of Nomogram^I and independent factors in the derivation set
(A-C) and validation set (D-F). (G-L) In the PH≥II grade group, the ROC and corresponding AUC

243 of Nomogram^{II} and independent factors in the derivation set (G-I) and validation set (J-L).

244

Figure 5. Calibration plots and Hosmer-Lemeshow test results for Nomogram^I in PH≥I and
Nomogram^{II} in PH≥II grade groups. (A-B) In the PH≥I grade group, the calibration plots of
Nomogram^I in the derivation set (A) and the validation set (B). (C-D) In the PH≥II grade group,
the calibration plots of Nomogram^{II} in the derivation set (C) and the validation set (D). (E) In the

250	PH≥I grade group, Hosmer-Lemeshow test results for Nomogram ¹ in the derivation set and the
251	validation set. (F) In the PH≥II grade group, Hosmer-Lemeshow test results for Nomogram ^{II} in the
252	derivation set and the validation set.

253

254 Assessment and validation of Nomogram^I in the PH $\geq I$ grade group and Nomogram^{II} in the

- 255 *PH≥II grade group*
- 256

In the PH \geq I grade group, Nomogram^I was developed to predict the risk of PH \geq I grade, 257 utilising the AUC to assess its discriminative ability. The AUC value for Nomogram^I was 0.716 258 259 (95% confidence interval [CI]: 0.701 - 0.731) in the derivation set (Fig 4. A) and 0.718 (95% 260 confidence interval [CI]: 0.695 - 0.741) in the validation set (Fig 4. D). Furthermore, ROC curves were used to compare the discriminative capacity of Nomogram^I and single independent factors in 261 262 predicting PH≥I grade. Notably, the AUC of Nomogram^I was significantly higher than that of any 263 single independent factor in the derivation (Fig 4. B, C) and the validation set (Fig 4. E, F). The calibration curves for the derivation set (Fig 5. A) and the validation set (Fig 5. B) demonstrated 264 high agreement between predicted and actual values, indicating that Nomogram^I accurately 265 266 predicts PH≥I grade. The results of the Hosmer-Lemeshow test in both the derivation set (P=0.109 > 0.05) and the validation set (P=0.317 > 0.05) further confirmed the effective 267 268 performance of Nomogram^I (Fig 5. E).

Nomogram^{II} was developed to predict the risk of PH≥II grade. The AUC for Nomogram^{II}
was 0.844 (95% confidence interval [CI]: 0.823 - 0.865) in the derivation set (Fig 4. G) and 0.801
(95% confidence interval [CI]: 0.763 - 0.838) in the validation set (Fig 4. J). Furthermore, ROC
curves were used to compare the discriminative capacity of Nomogram^{II} and individual

273	independent factors in predicting PH≥II grade. The AUC of Nomogram ^{II} was significantly higher
274	than that of any single independent factor in the derivation set (Fig 4. H, I) and the validation set
275	(Fig 4. K, L). The calibration curves for the derivation set (Fig 5. C) and the validation set (Fig 5.
276	D) demonstrated high agreement between the predicted and actual values, indicating that
277	Nomogram ^{II} accurately predicts PH≥II grade. Additionally, the results of the Hosmer-Lemeshow
278	test in the derivation set (P=0.377 > 0.05) and the validation set (P=0.127 > 0.05) further
279	confirmed the good performance of Nomogram ^{II} (Fig 5. F).
280 281 282	Clinical utility of Nomogram ^I and Nomogram ^{II}
283	In the PH≥I grade group, the clinical utility of Nomogram ^I for predicting the risk of PH≥I
284	grade was assessed using DCA. This analysis revealed a significant net benefit with a threshold
285	probability range of 20% to 91% in the derivation set (Fig 6. A) and 14% to 74% in the validation
286	set (Fig 6. B). Moreover, the DCA curve from the derivation set indicated that the clinical
287	predictive capability of Nomogram ^I surpassed that of any single independent factor, a finding that
288	was corroborated in the validation set (Fig 6. C, D).
289	
290	In the PH \geq II grade group, the clinical utility of Nomogram ^{II} for predicting the risk of PH \geq II
291	grade was evaluated using DCA, which showed a clear net benefit within the threshold probability
292	range of 1% to 70% in the derivation set (Fig 6. E) and 1% to 82% in the validation set (Fig 6. F).
293	Additionally, the DCA curve for the derivation set demonstrated that the clinical predictive
294	effectiveness of Nomogram ^{II} exceeded that of any single independent factor, a conclusion that was

also confirmed in the validation set (Fig 6. G, H).

298 299

Figure 6. Decision curve analysis (DCA) for Nomogram^I in the PH \geq I grade and Nomogram^{II}

in the PH≥II grade group. (A-D) In the PH≥I grade group, the DCAs of Nomogram^I and independent factors in the derivation (A, C) and validation set (B, D). (E-H) In the PH≥II grade group, the DCAs of Nomogram^{II} and independent factors in the derivation (E, G) and validation set (F, H).

304

305	Comparison	between	Nomogram ¹	and Nomogram ¹¹	
-----	------------	---------	-----------------------	----------------------------	--

- 306 In the PH≥I grade group, when comparing Nomogram^I to Nomogram^{II}, Nomogram^I exhibited
- 307 an IDI of -0.0012 (95% CI: -0.0032 to 0.0009, p=0.2777), a categorical NRI of 0.0117 (95% CI:
- 308 -0.0004 to 0.0237, p=0.0575), and a continuous NRI of -0.2423 (95% CI: -0.2992 to -0.1854,
- 309 p<0.001) in predicting the risk of PH≥I grade.
- 310 In the PH≥II grade group, compared to Nomogram^{II}, Nomogram^{II} demonstrated an IDI of
- 311 0.0366 (95% CI: 0.0247 to 0.0485, p<0.001), a categorical NRI of 0.0301 (95% CI: 0.0093 to
- 312 0.0510, p<0.05), and a continuous NRI of 0.2785 (95% CI: 0.1824 to 0.3745, p<0.001) for
- 313 predicting the risk of PH≥II grade.
- 314 These results indicate that Nomogram^{II} outperformed Nomogram^I in terms of IDI and NRI

315 values.

316 Website of Nomogram^{II}

Patients and physicians can calculate the risk of pulmonary hypertension through a free
 web-based dynamic Nomogram^{II} (https://dapeng.shinyapps.io/dynnomapp-1/).

319

320 Discussion

A significant portion of the global population lives in high-altitude areas such as the Tibetan Plateau, Ethiopian Highlands, Andes Mountains, and Pamir Plateau. These regions are marked by an extremely hypoxic environment that leads to alveolar hypoxia, posing severe risks to the cardiopulmonary system. One such risk is the development of PH, which occurs through mechanisms like hypoxic pulmonary vasoconstriction and pulmonary vascular remodelling

326	(Burtscher, Gatterer, Burtscher, & Mairbäurl, 2018; Sydykov et al., 2021; Wilkins, Ghofrani,
327	Weissmann, Aldashev, & Zhao, 2015). Accurate, timely diagnosis and early, effective treatment
328	are crucial for the clinical improvement and survival of patients with PH. Without prompt
329	intervention, PH can impair right heart function and ultimately result in fatal right heart failure
330	(Benza et al., 2010; Kim & George, 2019; McGoon et al., 2004). Thus, there is a need to develop a
331	predictive model to estimate the risk of PH, facilitating risk stratification and management. In this
332	study, we analysed routine electrocardiogram examination indicators and basic demographic
333	information to assess the risk of PH. We developed nomograms for the PH≥I grade group and the
334	PH≥II grade group, and the performance of these nomograms was evaluated and validated.
335	Currently, TTE is widely utilised for large-scale, non-invasive screening of patients at risk for
336	PH (D'Alto et al., 2018; Habib & Torbicki, 2010; Janda, Shahidi, Gin, & Swiston, 2011). However,
337	in plateau regions such as Tibet, medical resources are relatively limited, and remote villages and
338	towns lack the facilities for TTE examinations. ECG examinations, being easy to administer,
339	cost-effective, and feasible for remote delivery through telemedicine, offer a practical alternative
340	(Ismail, Jovanovic, Ramzan, & Rabah, 2023). A retrospective analysis has demonstrated that ECG
341	examination results correlate with clinical parameters reflecting the severity of PH (Michalski et
342	al., 2022). Therefore, in developing this model, we primarily relied on ECG examination results
343	from patients. Utilising ECG results as predictors of PH can significantly aid clinicians in
344	identifying potential PH patients in remote plateau areas, facilitating their access to timely and
345	relevant treatment.
0.40	

In this study, based on sPAP assessed by TTE examination, patients at risk of PH wereclassified into grades I-III. We developed and validated two nomograms for the PH≥I grade group

(Nomogram^I) and the PH≥II grade group (Nomogram^{II}), with ECG examination results serving as 348 349 the primary component for both. Nomogram^I included seven variables: gender, Tibetan ethnicity, age, IRBBB, AF, ST, and TC. Nomogram^{II} incorporated nine variables: Tibetan ethnicity, age, 350 351 RAD, HVRV, IRBBB, AF, PP, ST, and TC (Fig 3. A, D). These variables are readily available from routine ECG examinations. Additionally, patients were categorised into high-risk and 352 353 low-risk groups based on the cut-off value of the total score in the nomogram, with the OR value 354 for the high-risk group being significantly higher than that of the low-risk group (Fig 3). Therefore, 355 both nomograms offer a useful and straightforward method for in-depth evaluation, even without medical professional intervention. Both Nomogram^I and Nomogram^{II} demonstrated good 356 357 calibration and clinical utility (Fig 5, 6), though ROC analysis revealed that the AUC for 358 Nomogram^{II} was higher than that for Nomogram^I (0.844 vs 0.716). IDI and NRI are recognised 359 indicators that describe improved accuracy in predicting binary, multi-classification, or survival 360 outcomes (Wang, Cheng, Seaberg, & Becker, 2020). In a similar vein to a 10-year retrospective 361 cohort study, which constructed two nomograms for hypertension risk prediction and compared 362 them using IDI and NRI values (Deng et al., 2021), we used IDI and NRI to evaluate the performance of Nomogram^I and Nomogram^{II}. Our findings indicated no significant difference 363 between Nomogram^I and Nomogram^{II} in the PH≥I grade group; however, Nomogram^{II} exhibited 364 superior performance compared to Nomogram^I in the PH≥II grade group, thus demonstrating its 365 enhanced predictive capability. So, we created an online dynamic Nomogram^{II} for doctors and 366 367 patients to calculate the risk of PH (Fig 3. G).

368 In this study, age and Tibetan ethnicity were identified as independent predictors of PH, a369 finding that aligns with conclusions from a single-centre, cross-sectional study among native

Tibetans in Sichuan Province, China (Gou et al., 2020). We hypothesise that this association may 370 371 be due to the longer exposure to the hypoxic environment at high altitudes experienced by older 372 individuals and Tibetans, promoting hypoxic contraction of pulmonary blood vessels and 373 subsequent pulmonary vascular remodelling, thereby leading to PH. Additionally, the occurrence 374 of AF emerged as an independent predictor of PH with the highest OR values in both nomograms 375 (Table 2, 3). PH is known to be characterised by pulmonary vascular remodelling, which can 376 induce fibrosis and excessive myocardial apoptosis, ultimately contributing to AF (Yi et al., 2023), 377 a finding that corroborates our results. Nonetheless, it was observed that no single predictor alone 378 was effective in distinguishing PH, exhibiting poor clinical utility compared to the comprehensive 379 approach offered by the nomogram (Fig 4, Fig 6). 380 Our study has several limitations. Firstly, TTE serves only as a screening method for PH and 381 is not the gold standard; its results merely indicate the risk of PH in the examined individuals. Secondly, given the constrained medical resources in remote areas, we primarily incorporated 382 383 readily ECG results and basic demographic information into the nomograms, resulting in a 384 relatively simple set of independent predictors. Lastly, the dataset for this study was exclusively 385 sourced from Tibet, China, meaning the validation of the nomograms lacks external validation 386 sets.

We have developed a reliable and straightforward nomogram to predict the risks associated with PH, demonstrating satisfactory discrimination and calibration. Upon rigorous validation using external datasets, the nomogram has shown clinical utility and favourable predictive accuracy. It is anticipated to serve as an effective and convenient clinical tool for assessing the risk

387

Conclusion

392	of PH in populations residing at high altitudes.
393	
394	Acknowledgements
395	This study was funded by the Talent Program of Army Medical University (No. 2019R038).
396	
397	Statements and Declarations
398	The authors have no conflict of interest.
399	
400	Data availability statement
401	Source data files have been provided.
402	
403	References
404	
405 406 407 408	Benza, R. L., Miller, D. P., Gomberg-Maitland, M., Frantz, R. P., Foreman, A. J., Coffey, C. S., McGoon, M. D. (2010). Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation, 122:164-172. doi:10.1161/circulationaha.109.898122
409 410 411 412 413	Burtscher, M., Gatterer, H., Burtscher, J., & Mairbäurl, H. (2018). Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review. Front Physiol, 9:572. doi:10.3389/fphys.2018.00572
413 414 415	D'Alto, M., Bossone, E., Opotowsky, A. R., Ghio, S., Rudski, L. G., & Naeije, R. (2018). Strengths and weaknesses of echocardiography for the diagnosis of pulmonary hypertension. Int J
416 417	Cardiol, 263: 177-183. doi:10.1016/j.ijcard.2018.04.024
416 417 418 419 420 421	Cardiol, 263: 177-183. doi:10.1016/j.ijcard.2018.04.024 Deng, X., Hou, H., Wang, X., Li, Q., Li, X., Yang, Z., & Wu, H. (2021). Development and validation of a nomogram to better predict hypertension based on a 10-year retrospective cohort study in China. Elife, 10. doi:10.7554/eLife.66419

424 425	Medicine. Chest, 151: 181-192. doi:10.1016/j.chest.2016.09.001
426	Gassmann, M., Cowburn, A., Gu, H., Li, J., Rodriguez, M., Babicheva, A., Zhao, L. (2021).
427	Hypoxia-induced pulmonary hypertension-Utilizing experiments of nature. Br J Pharmacol, 178:
428	121-131. doi:10.1111/bph.15144
429	
430	Gou, Q., Shi, R., Zhang, X., Meng, Q., Li, X., Rong, X., Chen, X. (2020). The Prevalence and
431	Risk Factors of High-Altitude Pulmonary Hypertension Among Native Tibetans in Sichuan
432	Province, China. High Alt Med Biol, 21: 327-335. doi:10.1089/ham.2020.0022
433	
434	Habib, G., & Torbicki, A. (2010). The role of echocardiography in the diagnosis and management
435	of patients with pulmonary hypertension. Eur Respir Rev. 19: 288-299.
436	doi:10.1183/09059180.00008110
437	Hoeper, M. M., Humbert, M., Souza, R., Idrees, M., Kawut, S. M., Sliwa-Hahnle, K.,, Gibbs, J.
438	S. (2016). A global view of pulmonary hypertension. Lancet Respir Med. 4: 306-322.
439	doi:10.1016/s2213-2600(15)00543-3
440	
441	Hong, C., Chen, R., Hu, L., Liu, H., Lu, J., Zhuang, C., Zheng, Z. (2023). Aetiological
442	distribution of pulmonary hypertension and the value of transthoracic echocardiography screening
443	in the respiratory department: A retrospective analysis from China. Clin Respir J. 17: 536-547.
444	doi:10.1111/cri.13623
445	
446	Ismail, A. R., Jovanovic, S., Ramzan, N., & Rabah, H. (2023), ECG Classification Using an
447	Optimal Temporal Convolutional Network for Remote Health Monitoring, Sensors (Basel), 23:
448	doi:10.3390/s23031697
449	
450	Janda, S., Shahidi, N., Gin, K., & Swiston, J. (2011). Diagnostic accuracy of echocardiography for
451	pulmonary hypertension: a systematic review and meta-analysis. Heart. 97: 612-622.
452	doi:10.1136/hrt.2010.212084
453	
454	Julian, C. G., & Moore, L. G. (2019). Human Genetic Adaptation to High Altitude: Evidence from
455	the Andes, Genes (Basel), 10. doi:10.3390/genes10020150
456	
457	Kim, D., & George, M. P. (2019). Pulmonary Hypertension. Med Clin North Am. 103: 413-423.
458	doi:10.1016/i.mcna.2018.12.002
459	
460	Mandras S A Mehta H S & Vaidya A (2020) Pulmonary Hypertension: A Brief Guide for
461	Clinicians Mayo Clin Proc. 95: 1978-1988. doi:10.1016/j.mayocn.2020.04.039
462	Chinemans. Mayo Chin 1100, 95. 1970 1900. doi:10.1010/j.imayoup.2020.01.059
463	McGoon, M., Gutterman, D., Steen, V., Barst, R. McCrory, D. C. Fortin, T. A. & Lovd, I. F.
464	(2004) Screening early detection and diagnosis of nulmonary arterial hypertension: ΔCCP
465	evidence-based clinical practice guidelines Chest 126(1 Suppl) 14s-34s
466	doi:10.1378/chest.126.1_suppl.14S
467	and the second

468 Michalski, T. A., Pszczola, J., Lisowska, A., Knapp, M., Sobkowicz, B., Kaminski, K., & Ptaszynska-Kopczynska, K. (2022). ECG in the clinical and prognostic evaluation of patients with 469 470 pulmonary arterial hypertension: an underestimated value. Ther Adv Respir Dis, 16: 471 17534666221087846. doi:10.1177/17534666221087846 472 473 Moore, L. G., Niermeyer, S., & Zamudio, S. (1998). Human adaptation to high altitude: regional 474 Anthropol, and life-cycle perspectives. Am J Phys Suppl 27: 25-64. 475 doi:10.1002/(sici)1096-8644(1998)107:27+<25::aid-ajpa3>3.0.co;2-1 476 477 Naeije, R., Richter, M. J., & Rubin, L. J. (2022). The physiological basis of pulmonary arterial hypertension. Eur Respir J, 59. doi:10.1183/13993003.02334-2021 478 479 480 Penaloza, D., & Arias-Stella, J. (2007). The heart and pulmonary circulation at high altitudes: highlanders and chronic mountain sickness. Circulation, 481 115: 1132-1146. healthy 482 doi:10.1161/circulationaha.106.624544 483 484 Rubin, L. J., & Naeije, R. (2023). Sotatercept for pulmonary arterial hypertension: something old 485 and something new. Eur Respir J, 61. doi:10.1183/13993003.01972-2022 486 487 Ruopp, N. F., & Cockrill, B. A. (2022). Diagnosis and Treatment of Pulmonary Arterial 488 Hypertension: A Review. Jama, 327: 1379-1391. doi:10.1001/jama.2022.4402 489 490 Shah, A. J., Beckmann, T., Vorla, M., & Kalra, D. K. (2023). New Drugs and Therapies in 491 Pulmonary Arterial Hypertension. Int J Mol Sci, 24. doi:10.3390/ijms24065850 492 493 Simonneau, G., Montani, D., Celermajer, D. S., Denton, C. P., Gatzoulis, M. A., Krowka, M., ... 494 Souza, R. (2019). Haemodynamic definitions and updated clinical classification of pulmonary 495 hypertension. Eur Respir J, 53. doi:10.1183/13993003.01913-2018 496 497 Sydykov, A., Mamazhakypov, A., Maripov, A., Kosanovic, D., Weissmann, N., Ghofrani, H. A., ... 498 Schermuly, R. T. (2021). Pulmonary Hypertension in Acute and Chronic High Altitude 499 Maladaptation Disorders. Int J Environ Res Public Health, 18. doi:10.3390/ijerph18041692 500 501 Wang, Z., Cheng, Y., Seaberg, E. C., & Becker, J. T. (2020). Quantifying diagnostic accuracy 502 improvement of new biomarkers for competing risk outcomes. **Biostatistics**. 503 doi:10.1093/biostatistics/kxaa048 504 505 West, J. B. (2012). High-altitude medicine. Am J Respir Crit Care Med, 186: 1229-1237. 506 doi:10.1164/rccm.201207-1323CI 507 508 Wilkins, M. R., Ghofrani, H. A., Weissmann, N., Aldashev, A., & Zhao, L. (2015). 509 Pathophysiology and treatment of high-altitude pulmonary vascular disease. Circulation, 131: 510 582-590. doi:10.1161/circulationaha.114.006977 511

- 512 Xu, X. Q., & Jing, Z. C. (2009). High-altitude pulmonary hypertension. Eur Respir Rev, 18: 13-17.
- 513 doi:10.1183/09059180.00011104

514

- 515 Yi, Y., Tianxin, Y., Zhangchi, L., Cui, Z., Weiguo, W., & Bo, Y. (2023). Pinocembrin attenuates
- 516 susceptibility to atrial fibrillation in rats with pulmonary arterial hypertension. Eur J Pharmacol,
- 517 960: 176169. doi:10.1016/j.ejphar.2023.176169