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Abstract 

Introduction: Evaluating the generalizability of dementia risk scores, primarily developed in 

non-Latinx White (NLW) participants, and interactions with genetic risk factors in diverse 

populations is crucial for addressing health disparities.  

 

Methods: We analyzed the association of the Cardiovascular Risk Factors, Aging, and Incidence 

of Dementia (CAIDE) and modified CAIDE (mCAIDE) scores with dementia risk using logistic 

regression models stratified by race/ethnicity in NACC and ADNI, and assessed their interaction 

with APOE.  

 

Results: Higher CAIDE scores were associated with an increased risk of dementia in Asian, 

Latinx, and NLW participants but not in Black participants. In contrast, higher mCAIDE scores 

were also associated with an increased risk of dementia in Black participants. Unfavorable 

mCAIDE risk profiles exacerbated the APOE*ε4 risk effect and attenuated the APOE*ε2 

protective effect. 

 

Discussion: Our findings underscore the importance of evaluating the validity of dementia risk 

scores in diverse populations for their use in personalized medicine approaches to promote 

brain health.  
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Introduction 

Older Black and Latinx individuals are disproportionately more likely than older non-Latinx 

Whites (NLW) to develop Alzheimer’s disease (AD) or other related dementias [1]. Addressing 

health disparities in AD will require identifying individuals at risk of dementia and developing 

personalized disease prevention strategies [2]. As AD is a complex multifactorial 

neurodegenerative disease, it is essential to develop integrative risk models that combine 

genetic and environmental risk factors for predicting the risk of developing AD [3,4]. However, 

as most research examining genetic and environmental risk factors has been conducted in NLW 

populations, personalized medicine approaches applied to minoritized populations may not be 

generalizable and further exacerbate existing health disparities in AD outcomes [5]. 

 

Modifiable risk factors substantially contribute to AD risk, with up to 40% of AD cases 

attributable to 12 modifiable risk factors, including education, hearing loss, traumatic brain 

injury, hypertension, alcohol consumption, obesity, smoking, depression, social isolation, 

physical inactivity, air pollution, and diabetes [6,7]. The identification of modifiable risk factors 

for dementia has informed the development of dementia risk scores that are weighted 

composites of clinical and lifestyle risk factors that reflect the likelihood of developing dementia 

[4]. Dementia risk scores can be used for AD risk stratification, to facilitate communication of 

risk to patients, and to prioritize actionable interventions for modifiable risk factors [4].  

 

The Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) risk score is the most 

widely investigated dementia risk score and has been used for enrolling participants into multi-

domain intervention trials [4,8,9]. It was developed in a Finnish population-based cohort to 

estimate 20-year dementia risk based on an individual’s midlife risk factor profile, including age, 

sex, education, systolic blood pressure, body mass index, total cholesterol, and physical activity. 

The CAIDE risk score has good predictive accuracy for AD within the population in which it was 

developed (AUC = 0.75 - 0.78), with individuals in the highest risk profile having a 29-35% 

increased risk of developing dementia [12]. However, the prognostic utility of CAIDE in other 

populations has been more limited [9,11,12]. As such, CAIDE has recently been recalibrated 
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using a multi-ethnic cohort of community-dwelling older adults in the US to predict late-life 

dementia that reweights age and education to account for the older age group and higher 

educational attainment compared to the original development population [13]. The modified 

CAIDE (mCAIDE) demonstrated good discriminative performance between controls and all-

cause dementia (AUC = 0.8) [13].   

 

In addition to modifiable risk factors, the APOE*ε4 allele is the strongest genetic risk factor for 

late-onset AD, while the *ε2 allele is associated with a reduced risk of AD [14]. However, APOE 

exhibits ancestry-specific effects, with the *ε4 risk effect attenuated in participants of African 

and Amerindian ancestry [15,16]. This attenuation may be due to gene-environment 

interactions whereby genetic differences in disease risk are more influential in positive social 

environments, allowing the underlying genetic predisposition to emerge more distinctly [17,18]. 

To date, research investigating the moderating effect of dementia risk scores on the association 

between APOE and dementia or cognitive impairment has produced mixed results, with few 

studies evaluating the effect across racial/ethnic groups [19–24]. 

 

Due to the under-representation of minoritized populations in AD genetic and epidemiological 

studies, it is critical to determine the generalizability of dementia risk scores across populations 

and determine to what extent they moderate genetic liability for dementia. To address this 

knowledge gap, we evaluated the association of the CAIDE and mCAIDE risk scores with all-

cause dementia and to what extent they moderate the association of APOE with dementia 

across NLW, Black, Latinx, and Asian Americans.    

 

Methods 

 

Participants 

This cross-sectional case-control study uses data from two cohorts – the National Alzheimer’s 

Coordinating Center Uniform Dataset (NACC UDS) and the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI). The NACC UDS consists of over 45,000 participants from 30+ past and present 
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US-based Alzheimer’s Disease Core Centers and Alzheimer Disease Research Centers funded by 

the National Institute on Aging [25]. ADNI was launched in 2003 as a public-private partnership 

with the primary goal of testing whether serial magnetic resonance imaging (MRI), positron 

emission tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment (MCI) 

and early AD [26]. Participants provided informed consent, and institutional review board 

approval was locally obtained.  

Race and ethnicity were self-reported by study participants, with categories defined by the 

National Institutes of Health, including American Indian or Alaska Native, Asian, Black or African 

American, Native Hawaiian or Other Pacific Islander, and White. Ethnicity categories included 

Hispanic or Latino or not Hispanic or Latino. If individuals did not identify with these racial and 

ethnic categories, they could report “other.” We analyzed baseline visit data for non-Latinx 

White, Black, Latinx, and Asian participants who were at least age 55 at their initial visit or 

whose estimated age-of-onset of cognitive impairment was at least 55, had APOE genotyping 

data, were cognitively unimpaired or had a primary diagnosis of MCI or all-cause dementia. 

Diagnostic criteria for NACC and ADNI have been previously described [25,26]. Participants with 

autosomal dominant AD or FTD mutations were excluded. 

 

CAIDE Risk Score 

The CAIDE and mCAIDE risk scores for each participant were calculated using the published 

equations using the following variables: age, sex, hypertension, obesity, and 

hypercholesteremia, (Supplementary Tables 1 & 2) [8,13]. Physical activity assessments were 

unavailable; however, CAIDE remains predictive of dementia when physical activity is not 

included [27].  The CAIDE score uses age and education cutoffs of <47, 47-53, >53 and ≥10, 7-9, 

<7 years, respectively. In contrast, the mCAIDE applies age cutoffs of <65, 56-72, >73 years, and 

education levels of ≥16, 12-16, and <12 years. In NACC and ADNI, we utilized self-reported data 

for age, sex, and educational attainment. Obesity was defined as a Body mass index (BMI) >30, 

and hypertension as a sitting systolic blood pressure >140mmHg. For NACC, hypercholesteremia 

was identified through self-reported medical history or clinician assessment. In ADNI, it was 
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determined by a fasting total cholesterol level exceeding 6.21 mmol/L. Missing data was 

imputed using a Random Forrest algorithm via the `MissForest` R package [28]. The CAIDE and 

mCAIDE scores were standardized to have a mean of 0 and standard deviation of 1 and 

categorized into tertiles representing low, intermediate, and high-risk profiles.  

 

APOE Genotyping 

APOE haplotypes for NACC were determined from the single-nucleotide variants rs7412 and 

rs42935848 and for ADNI from pyrosequencing of APOE codons 112 and 158 [29,30]. APOE 

haplotypes were combined into three groups: ε2+ (ε2/ε2, ε2/ε3), ε4+ (ε2/ε4, ε3/ε4, ε4/ε4) and 

ε3/ε3.    

 

Statistical analysis  

Baseline characteristics of the joint NACC and ADNI cohorts were summarized across 

racial/ethnic groups as percentages for categorical variables and mean and SD for continuous 

variables and racial/ethnic differences determined using ANOVA and Chi-square tests. 

Multivariate logistic regression models stratified by race/ethnicity were used to evaluate the 

association between APOE genotype and standardized CAIDE/mCAIDE risk scores with 

ADRD/MCI. To compare effect sizes across racial/ethnic groups, we used the z-score method, 

where the differences between group-specific beta coefficients were standardized by their 

combined standard errors, yielding z-scores (z = [β1 - β2]/sqrt[SE1
2 + SE2

2]) [31]. These z-scores 

were then used to calculate two-tailed p-values to assess the statistical significance of the 

differences observed. To determine if modifiable risk profiles moderated the association of 

APOE genotype with ADRD/MCI we first combined APOE and CAIDE/mCAIDE risk categories (9 

categories with intermediate risk profiles, APOE ε3/ε3 as the reference category). We then used 

logistic regression models to evaluate the association of the combined APOE CAIDE/mCAIDE risk 

categories with ADRD/MCI. In sensitivity analyses, we also examined the association of APOE, 

CAIDE/mCAIDE, and their combination with ADRD only, AD/MCI, and AD only. Additionally, we 

conducted sex-stratified sensitivity analyses to evaluate the intersectional effect of sex and race 

on the association of CAIDE/mCADIE risk scores (excluding sex) with risk of ADRD/MCI. P-values 
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were 2-sided with statistical significance set at less than 0.05. All analyses were performed using 

R version 4.2.2.  

 

Results 

Participant Characteristics 

A total of 20,755 older adults were included in this analysis (aged 73 ± 8 years; 56% Female; 

82% NLW, 11% Black, 4.6% Latinx, and 2.8% Asian). Heterogeneity with respect to age, 

education, gender, hypertension, hypercholesteremia, BMI, clinical diagnosis, and APOE 

genotype were present between racial/ethnic groups (Table 1; Supplementary Tables 3 & 4).  

 

Higher CAIDE scores are associated with increased risk of MCI/ADRD in NLW, LatinX, and Asian 

participants, but not among Black participants 

Among all participants, a one standard deviation increase in CAIDE was significantly associated 

with 15% higher odds of ADRD/MCI (OR [95%CI] = 1.15 [1.12, 1.18], p = 1.1e-21). In 

race/ethnicity-stratified analyses, CAIDE was associated with 45%, 22%, and 16% higher odds of 

ADRD/MCI in Asian, Latinx, and NLW participants, respectively, with no significant association 

observed in Black participants (Figure 2, Supplementary Tables 5 & 6). The magnitude of 

association in Asian participants was significantly higher than that of NLW, Hispanic, and Black 

participants. Similarly, the magnitude of association was higher in NLW and Latinx participants 

than in Black participants. Similar findings were observed in sensitivity analyses examining the 

association of CAIDE with ADRD only, AD/MCI, and AD only (Supplementary Tables 5 & 6). In 

sex-stratified analyses, higher CAIDE scores were associated with increased odds of MCI/ADRD 

in female NLW, Asian, and Latinx participants, but were non-significant in female Black 

participants or males in any racial/ethnic group (Figure 2; Supplementary Tables 7 & 8).  

  

Higher mCAIDE scores are associated with increased risk of MCI/ADRD in all populations  

To assess whether using a dementia risk score developed in a US population is associated with 

increased odds of ADRD/MCI, we evaluated the association of mCAIDE with dementia. Among 

all participants, a one standard deviation increase in mCAIDE was significantly associated with 
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29% higher odds of dementia (OR [95%CI] = 1.29 [1.26, 1.33], p = 2.1e-67). In race/ethnicity 

stratified analysis, a one-standard deviation increase in mCAIDE was significantly associated 

with increased odds of ADRD/MCI in all populations with a step-wise reduction in the 

magnitude of association in Asian, Latinx, NLW, and Black participants (Figure 2, Supplementary 

Tables 9 & 10). Similar to CAIDE, the association was significantly stronger in Asian participants 

compared to NLW, Latinx, and Black participants; and also stronger in Latinx and NLW 

participants when compared to Black participants. These patterns remained consistent in 

sensitivity analyses examining the association of the CAIDE risk score with ADRD only, AD/MCI, 

and AD only (Supplementary Tables 9 & 10). In sex-stratified analyses, mCAIDE was associated 

with increased odds of MCI/ADRD across NLW, Asian, Black, and Latinx females, while in Males, 

higher mCAIDE scores were significantly associated with increased risk in NLW and Asian 

participants and trended towards significance in Latinx participants (Figure 2; Supplementary 

Tables 11 & 12). 

 

Unfavorable modifiable risk profiles exacerbate the risk of APOE*ε4 and attenuate the 

protective effect of APOE*ε2  

In race/ethnicity stratified analyses, the APOE*ε4 status was associated with greater odds of 

ADRD/MCI in each population, while the APOE*ε2 status was significantly associated with 

reduced risk in NLW and Blacks only (Figure 1; Supplementary Table 5 & 9). When APOE alleles 

and CAIDE risk profiles were combined, unfavorable risk profiles exacerbated the risk effect of 

APOE*ε4 and attenuated the protective effect of APOE*ε2, predominantly in NHW participants 

(Figure 3; Supplementary Table 5). In NLW APOE*ε4 carriers, a favorable CAIDE profile was 

associated with 71% higher odds of ADRD/MCI (OR [95%CI] = 1.71 [1.5, 1.95], p = 1.6e-15), 

while an unfavorable risk profile was associated with nearly three times higher odds of 

dementia (OR [95%CI] = 2.97 [2.58, 3.41], p = 5.7e-53). Conversely, in NLW APOE*ε2 carriers, a 

favorable CAIDE profile was associated with nearly two times lower odds of ADRD/MCI (OR 

[95%CI] = 0.49 [0.38, 0.63], p = 3.2e-08), while an unfavorable risk profile mitigated the 

protective effect of APOE*ε2 (OR [95%CI] = 1.26 [0.94, 1.7], p = 0.12). In Black participants, 
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CAIDE risk profiles did not moderate the association of APOE genotype with ADRD/MCI, while in 

Latinx and Asian participants, there was a less distinct pattern of effect moderation.  

 

When combining APOE alleles with mCAIDE risk profiles, a similar pattern of unfavorable risk 

profiles exacerbating APOE*ε4 risk and attenuating APOE*ε2 protection was observed in NLW 

participants, with a less distinct pattern of effect moderation in Latinx and Asian participants 

(Figure 3; Supplementary Table 9). However, in contrast to CAIDE, increasingly unfavorable 

mCAIDE profiles exacerbated the risk effect of APOE*ε4 in Black participants. In sensitivity 

analyses, unfavorable risk profiles were similarly observed to moderate the association of APOE 

with ADRD only, AD/MCI, and AD only, though the magnitude of the effect was attenuated in 

AD.   

 

Discussion 

In this study, we found that a higher dementia risk burden assessed using the CAIDE risk score 

was associated with higher odds of ADRD/MCI; however, there was significant heterogeneity in 

the magnitude of association across racial/ethnic groups. CAIDE was associated with higher 

odds of ADRD/MCI in Asians followed by Latinx and NLW, with no significant association in 

Blacks. However, using a modified CAIDE risk score developed to predict the risk of AD in a 

community-dwelling older adults in the US, a higher dementia risk burden was also associated 

with increased risk in Blacks, though the magnitude of association was smaller than that of 

NLW, Asians, and Latinx. Finally, unfavorable risk profiles were observed to moderate the 

association of APOE with ADRD/MCI, such that the risk effect of APOE*ε4 was exacerbated, 

while the protective effect of APOE*ε2 was attenuated. However, this pattern of association was 

only observed in NLWs and Blacks when using the mCAIDE.   

 

Our results extend a limited, but growing body of literature evaluating the generalizability of 

dementia risk scores across diverse populations. When used to predict 3-5 year incident 

dementia in 11,143 dementia-free individuals aged over 65 from China, Cuba, the Dominican 

Republic, Mexico, Peru, Puerto Rico, and Venezuela, CAIDE (excluding APOE) exhibited poor 
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discriminative ability (c-statistic = 0.52 – 0.63) [11].  In a population-based multi-ethnic US 

cohort (41% NLW, 11% Chinese American, 26% African American, 21% Latinx) of 4,392 middle-

aged and older adults, baseline CAIDE risk scores (including APOE) were associated with worse 

global cognition, processing speed, and working memory 10 years later [12]. Compared to NLW, 

the magnitude of association between CAIDE and global cognition was greater in Latinx and 

African Americans, but not in Chinese Americans. In a rural community-dwelling cohort of NLW 

and Latinx middle and older-aged adults, CAIDE (including and excluding APOE) was associated 

with worse global cognition and the strength of association differing by racial/ethnic group [32]. 

These results, and those reported here, highlight that the CAIDE risk score exhibits racial/ethnic-

specific associations.  

 

The racial/ethnic differences in the association of CAIDE with dementia and cognitive 

performance likely reflect differences in sample and methodological characteristics between the 

original development study and subsequent cohorts. In particular, CAIDE was developed in a 

highly homogenous sample to predict the mid-life risk of dementia, making it less generalizable 

to more diverse samples. The lack of generalizability across populations may reflect underlying 

differences in the risk factors associated with dementia pathogenesis [10]. This highlights the 

need to optimize the best combination of predictors for constructing dementia risk scores. 

Alternatively, where the specific combination of predictors is appropriate across populations, 

the weighting assigned to each risk factor may need to be recalibrated when applied to different 

populations.  

 

We used the mCAIDE to determine if reweighting of risk factors used in the calculation of CAIDE 

would modify the association with dementia [13]. While we still observed racial/ethnic 

differences in the magnitude of association between mCAIDE and dementia, in comparison to 

CAIDE, mCAIDE was significantly associated with an increased risk of dementia in Black 

participants. These findings are consistent with previous studies comparing the predictive ability 

of different dementia risk scores. In cohorts from LMIC, dementia risk scores including the 

Australian National University Alzheimer’s Disease Risk Index (ANU-ADRI; c = 0.66–0.78); the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2024. ; https://doi.org/10.1101/2024.04.27.24306486doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.27.24306486
http://creativecommons.org/licenses/by-nc-nd/4.0/


Brief Dementia Screening Indicator (BDSI; c = 0.62–0.78); and the Rotterdam Study Basic 

Dementia Risk Model (BDRM; c = 0.66–0.78) showed similar levels of discriminative ability to 

that of the original development cohort, and where higher than that of CAIDE [11]. 

Furthermore, the magnitude of the association of CAIDE with global cognition was smaller than 

that of the Washington Heights-Inwood Columbia Aging Project (WHICAP) dementia risk score, 

which includes ethnicity in its calculation [32]. The strength of WHICAP with global cognition 

also did not differ between groups. 

 

As the strongest genetic risk factor for late-onset AD, APOE displays ancestry-specific effects 

that may be due to gene-environment interactions [17,18]. In the Cardiovascular Risk Factors, 

Aging, and Incidence of Dementia (CAIDE) study of middle-aged Finnish individuals (n = 1,449), 

unfavorable risk profiles (physical activity, diet, smoking, alcohol intake) were associated with 

increased risk of incident dementia in APOE*ε4 carriers only [19]. In contrast, in older adults 

from the Rotterdam study (n = 6,352), unfavorable risk profiles (smoking, depression, diabetes, 

physical activity, social isolation, and diet) were associated with increased incident dementia in 

APOE*ε4 non-carriers only [24]. In the multi-ethnic Washington Heights-Inwood Columbia Aging 

Project (WHICAP, n = 1,987, 28% NLW, 29% Black, 40% Latinx), using Life’s Simple 7 (LS7) – a risk 

score composed of physical activity, smoking, BMI, diet, cholesterol, blood glucose, and blood 

pressure used to improve cardiovascular health and reduce the risk of heart disease – better 

cardiovascular health was associated with reduced incidence of dementia in elderly APOE*ε4 

non-carriers only [23]. However, in the Atherosclerosis Risk in Communities Study (ARIC, n = 

13,715, 75% NLW, 25% Black), better cardiovascular health as measured using LS7 was 

associated with lower incidence rates of dementia in ε4 non-carriers compared to ε4 carriers 

[22]. In sex- and race-stratified analyses, a significant interaction was observed in women such 

that there was a stronger association between cardiovascular health and dementia in APOE*ε4 

non-carriers. No interactions were observed in the whole cohort or other subpopulations. 

Finally, in the Chicago Health and Aging Project (CHAP, n = 3,886, 60% Black, 40% White), 

adherence to a healthy lifestyle (diet, cognitively stimulating activities, non-smoker, physical 

activity, light-moderate alcohol intake), was associated with slower cognitive decline in both 
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APOE*ε4 carriers and non-carriers [20]. In race-stratified analyses, the protective effect of a 

healthy lifestyle was stronger in NLW participants than in Blacks [21].  

 

Together, these previous studies, in addition to our results, highlight that unfavorable risk factor 

profiles moderate the effect of APOE on dementia and cognitive impairment. However, the 

sample and methodological characteristics of each study introduce uncertainty on whether 

these effects are observed in APOE*ε4 carriers, non-carriers, or both. In particular, the 

composition and weighting of the risk scores used, whether the risk factors are measured in 

mid-life or older age, sex- and race/ethnic-specific effects, and neuropathological heterogeneity 

in clinical AD diagnosis may affect the observed associations. As such, if dementia risk scores are 

to be used in precision medicine approaches for risk prediction and stratification, it is crucial to 

evaluate their generalizability across diverse populations. 

 

Our study has several limitations. First, our findings are limited by the disproportionate sample 

sizes: NLW participants outnumber Blacks tenfold and Latinx and Asians twentyfold, impacting 

statistical power and the feasibility of longitudinal modeling. Second, the cross-sectional design 

precludes examining the association of CAIDE/mCAIDE risk scores with incident dementia. Third, 

the use of broad US Census racial/ethnic categories may overlook within-group heterogeneity, 

especially among Asian and Latinx populations. Fourth, the clinical nature of NACC and ADNI 

may affect the generalizability of our results to the general population. Fifth, the lack of 

comprehensive data on lifestyle factors and social determinants of health in these datasets 

precludes using more comprehensive dementia risk scores. Finally, while APOE genotype is the 

strongest genetic risk factor for late-onset AD, a further 80+ loci are associated with AD [33]. As 

such, further work is needed to evaluate how lifestyle risk factors moderate the genetic liability 

for AD using cross-ancestry polygenic risk scores. Despite these limitations, our work addresses 

a significant gap in the literature by evaluating the influence of race/ethnicity on the effect of 

dementia risk scores and APOE on dementia risk.  
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In summary, using a large multi-ethnic cohort, we found that the CAIDE risk score, which was 

developed in a homogeneous population, exhibited race/ethnic-specific associations with 

dementia and notably was not associated with dementia risk among Black Americans. In 

contrast, a modified CAIDE risk score that was recalibrated based on a multi-ethnic cohort, was 

associated with increased dementia risk in Asian, Black, Latinx, and NLW Americans. 

Furthermore, unfavorable risk profiles were observed to exacerbate the risk effect of APOE*ε4 

and attenuate the protective effect of APOE*ε2 in NLW and Blacks. These findings underscore 

the necessity of evaluating the validity of dementia risk scores in diverse populations for their 

effective integration into precision medicine strategies to promote brain health. 
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Tables 

Table 1: Cohort description  

 NLW 

N = 16,962 

Asian 

N = 573 

Black 

N = 2,259 

Latinx 

N = 961 

P 

Cohort     - 

    NACC 14,992 (88%) 520 (91%) 2,107 (93%) 868 (90%)  

    ADNI 1,970 (12%) 53 (9.2%) 152 (6.7%) 93 (9.7%)  

Female 9,076 (54%) 324 (57%) 1,647 (73%) 614 (64%) 4.7e-71 

Age 73 (8) 72 (8) 73 (8) 72 (8) 1e-05 

Education 15.96 (2.82) 16.01 (3.56) 14.36 (3.26) 12.80 (4.96) <1e-100 

BMI 26.6 (4.7) 24.1 (3.5) 29.3 (5.9) 27.6 (4.8) <1e-100 

Hypertension 7,510 (44%) 287 (50%) 1,616 (72%) 528 (55%)  

Hypercholesterolemia 7,652 (45%) 281 (49%) 1,114 (49%) 499 (52%)  

CAIDE  6.49 (1.79) 6.39 (1.71) 7.10 (1.90) 7.36 (2.31) 9e-85 

    High (10-14) 2,644 (16%) 69 (12%) 462 (20%) 282 (29%)  

    Mid (5-9) 11,392 (67%) 399 (70%) 1,526 (68%) 553 (58%)  

    Low (0-4) 2,926 (17%) 105 (18%) 271 (12%) 126 (13%)  

mCAIDE 4.44 (2.06) 4.18 (2.01) 5.12 (2.13) 5.10 (2.28) 2.4e-64 

    High (7-11) 2,875 (17%) 77 (13%) 609 (27%) 272 (28%)  

    Mid (3-6) 10,987 (65%) 369 (64%) 1,393 (62%) 566 (59%)  

    Low (0-2) 3,100 (18%) 127 (22%) 257 (11%) 123 (13%)  

APOE     4.8e-32 

    ε2+ 1,526 (9.0%) 66 (12%) 284 (13%) 49 (5.1%)  

    ε3/e3 8,385 (49%) 345 (60%) 916 (41%) 562 (58%)  

    ε4+ 7,051 (42%) 162 (28%) 1,059 (47%) 350 (36%)  

Diagnosis     1.3e-27 

    CU 8,189 (48%) 293 (51%) 1,377 (61%) 446 (46%)  

    MCI 3,296 (19%) 125 (22%) 333 (15%) 206 (21%)  

    ADRD 5,477 (32%) 155 (27%) 549 (24%) 309 (32%)  
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Figures 

 

 

Figure 1: Association of APOE genotype, CAIDE, and mCAIDE with ADRD/MCI across 

race/ethnicity.  
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Figure 2: Association of CAIDE and mCAIDE risk scores with MCI/ADRD stratified by gender 

and race/ethnicity.  

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2024. ; https://doi.org/10.1101/2024.04.27.24306486doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.27.24306486
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 3: Risk of ADRD/MCI according to genetic and modifiable risk factor burden.  
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