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ABSTRACT2

Electroconvulsive therapy (ECT) remains a critical intervention for treatment-resistant3
depression (MDD), yet its neurobiological underpinnings are not fully understood. This pilot study4
utilizes high-resolution magnetoencephalography (MEG) in nine depressed patients receiving right5
unilateral ECT, to investigate the changes in loudness dependence of auditory evoked potentials6
(LDAEP), a proposed biomarker of serotonergic activity, following ECT. We hypothesized that7
ECT would reduce the LDAEP slope, reflecting enhanced serotonergic neurotransmission.8
Contrary to this, our findings indicated a significant increase in LDAEP post-ECT (t8 = 3.17,9
p = .013). The increase in LDAEP was not associated with changes in depression severity or10
cognitive performance, as assessed by the Hamilton Depression Rating Scale (HAMD-24) and11
Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). We discussed12
potential mechanisms for the observed increase, including ECT’s impact on serotonergic,13
dopaminergic, glutamatergic, and GABAergic receptor activity, neuroplasticity involving brain-14
derived neurotrophic factor (BDNF), and inflammation modulators such as TNF-alpha. Our results15
suggest a complex interaction between ECT and these neurobiological systems, rather than a16
direct reflection of serotonergic neurotransmission.17

Keywords: Electroconvulsive therapy, Loudness depedence of auditory evoked potentials, major depressive disorder,18
magnetoencephalography, serotonin19
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1 INTRODUCTION

Major depressive disorder (MDD) remains a pervasive global health challenge, affecting millions worldwide20
and ranking among the leading causes of disability. MDD leads to substantial healthcare costs and21
contributing heavily to the overall disease burden (1). Despite the widespread use of antidepressant22
medications, many patients do not achieve sustained relief. As an alternative, neuromodulation therapies23
such as electroconvulsive therapy (ECT) play a vital role. ECT is a well-established intervention that24
demonstrates exceptional efficacy in multiple psychiatric disorders, including MDD. It involves the25
administration of electrical currents, either unilateral or bilateral electrode placements on the patient’s26
head, to induce a brief, controlled seizure. Ultimately, this process is thought to elicit reorganization of27
key cortical networks involved with mood and cognition. However, ECT can cause significant adverse28
effects, such as memory loss and confusion, rendering ECT to be reserved for severely treatment resistant29
patients (2, 3). entifying the specific neurophysiological changes induced by ECT could lead to the30
development of safer and more effective treatments. While the optimal stimulation methods and parameters31
are still being investigated, ECT remains essential for managing treatment-resistant depression.32

More than eight decades have passed since its introduction as a clinical intervention, the precise33
neurobiological mechanisms underpinning ECT’s therapeutic effect remain elusive. Current research34
suggests that ECT’s benefits are likely achieved through multiple mechanisms. These include, but are35
not limited to, changes in neurotransmitter transmission, enhancement of neurotrophic and neuroplastic36
activities, modulation of cortical networks, reduction of neuroinflammation, and regulation of the endocrine37
system. (3, 4, 5, 6, 7, 8, 9, 10). Given the historical precedence of the monoaminergic theory of depression,38
a plethora of studies in both animals and humans have sought out to determine whether ECT’s efficacy39
is related to changes in serotonergic activity (11, 12). While the evidence remains inconclusive, ECT40
appears to have some notable effect on serotonergic neurotransmission (3). A significant challenge in this41
area is that peripheral biomarker measurements do not reliably reflect neurotransmitter levels in the brain.42
Advanced neuroimaging techniques can be employed to gather insight into the effect of treatments such as43
ECT on neurotransmitter activity.44

Loudness dependence of auditory evoked potentials (LDAEP) is a method used to measure the response of45
cortical potentials to variations in the intensity (i.e., loudness) of auditory stimuli. The relationship between46
stimuli loudness and evoked potential amplitudes in the primary auditory cortex has been suggested as47
an indicator of serotonergic neurotransmission (13). Initial studies in animal models reported that higher48
serotonin activity was correlated with less dependence on stimulus intensity (i.e., similar amplitudes in49
cortical evoked potentials regardless of loudness). Conversely, lower serotonin activity was correlated50
with loudness-dependent changes in evoked potential amplitudes (13, 14). Furthermore, LDAEP has been51
proposed to be a protective mechanism in auditory processing, which helps prevent overstimulation and52
excitotoxicity (15). Within the primary auditory cortex, the neurobiological mechanisms of a reduced53
LDAEP being associated with high serotonin activity is proposed to rely on serotonergic modulation54
of cortical excitability. This modulation occurs indirectly via GABA-ergic interneurons, which express55
excitatory 5-HT2A receptors, and directly via pyramidal cells, which express both excitatory 5-HT2A and56
inhibitory 5-HT1A receptors (13, 14, 16, 17).57

An abundance of literature now exists exploring the relationship between the LDAEP and other58
neurotransmitter systems and biomarkers (18, 19). While evidence for the LDAEP’s relationship with59
serotonin is controversial, it is clear serotonergic activity serves a critical role in the functioning of the60
primary auditory cortex (18, 20, 21, 22, 23, 24). Numerous studies provide robust support for the influence61
of serotonergic activity on neuronal functioning across auditory processing pathways (25, 26, 27, 28).62
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Notably, a recent positron emission tomography (PET) study on the molecular mechanisms underlying63
the LDAEP reported that this biomarker is strongly and positively correlated with 5-HT1A binding in the64
temporal cortex, specifically in the location of the primary auditory cortex (29).65

Additionally, studies have demonstrated that serotonin plays a crucial role at the intersection of psychiatric66
disorders and auditory conditions, including tinnitus and hearing loss (25, 26). In particular, MDD has67
been reported to be associated with impaired auditory processing. Studies indicate that deviations in68
serotonergic activity are evident in the auditory cortices of individuals with depression compared to69
controls (23, 30, 31, 32, 33). For example, increased 5-HT1A binding and decreased 5-HT2A binding70
specifically within the primary auditory cortex in depressed patients has been reported (23). Moreover,71
treatments for depression, including ECT, have been shown to have a significant effect on auditory72
processing, demonstrated via increased activity, excitability, and intrinsic connectivity within the auditory73
cortices (30, 31, 34, 35, 36). Additionally, ECT has shown a pronounced impact on auditory evoked74
potentials, further underscoring the complex interplay between serotonergic modulation and auditory75
functions in psychiatric contexts (37, 38).76

Given the efficacy of serotonergic agents such as selective serotonin reuptake inhibitors, and more recently77
psychedelics like psilocybin, in the treatment of depression, it is likely regulation of this monoamine78
system serves a pivotal role in ECT’s efficacy (39). Studies show mixed results regarding ECT’s impact79
on serotonergic receptors. For instance, some reports indicate that electroconvulsive stimuli result in80
decreased binding and activity of both 5-HT1A and 5-HT2A receptors (12, 40, 41, 42). However, other81
studies reveal no change in 5-HT1A activity, an increase in 5-HT2 activity, and enhanced serotonin82
transporter (SERT) receptor levels following ECT (43, 44, 45, 46). Despite these discrepancies, there83
is broad consensus that ECT has a robust impact on serotonergic receptors in the treatment of multiple84
psychiatric disorders (8, 12, 47, 48).85

This study utilizes high-resolution magnetoencephalography (MEG) to measure cortical activity and86
determine the LDAEP in individuals before and after ECT. The primary aim is to explore the changes in87
the central serotonergic neurotransmission attributable to ECT, by analyzing variations in LDAEP. We88
hypothesize that ECT will decrease LDAEP, indicative of enhanced serotonergic neurotransmission. This89
approach not only promises to deepen our understanding of the neurochemical environment in patients90
undergoing ECT but also sheds light on the neurobiological mechanisms that underpin ECT’s effectiveness.91

2 METHODS

Study participants and ECT treatment Ethical approval was obtained from the Human Research Protections92
Office at the University of New Mexico (UNM) before study initiation. The research was conducted in full93
compliance with the ethical standards outlined in the Declaration of Helsinki. Patients were recruited from94
the UNM Mental Health Center’s inpatient and outpatient services. All patients either had the decisional95
capacity to consent or, where necessary, provided assent with a surrogate decision-maker giving formal96
consent. Prior to receiving treatment, the average score on the 24-item Hamilton Depression Rating Scale97
(HAMD-24) for these patients was 37.2 (12.8). Additionally, the mean score on the total Repeatable Battery98
for the Assessment of Neuropsychological Status (RBANS) was 82.9 (19.4). All patients completed a99
full course of electroconvulsive therapy (ECT) using the ultra-brief pulse width, right unilateral electrode100
placement as previously described (49). During the initial session, the seizure threshold was determined101
using a dose titration method, which then guided the dosage for subsequent treatments. Specifically, the102
stimulus dosage was set at six times the threshold. Treatments were administered thrice weekly, and103
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continued until an adequate clinical response was achieved or a decision was made to cease treatment due104
to non-response.105

2.1 MRI106

All MRI scans were conducted using the 3-Tesla Siemens Trio scanner at the Mind Research Network107
(MRN). High-resolution T1-weighted structural images were acquired using a 5-echo MPRAGE sequence108
with the following parameters: echo times (TE) of 1.64, 3.5, 5.36, 7.22, and 9.08ms; repetition time (TR)109
of 2.53 s; inversion time (TI) of 1.2 s; a flip angle of 7◦; a single excitation; a slice thickness of 1mm; a110
field of view of 256mm; and a resolution of 256× 256. Structural MRI preprocessing and the delineation111
of structural images were conducted using FreeSurfer 4.5.0 software (https://surfer.nmr.mgh.112
harvard.edu) (50).113

Figure 1. Workflow of MEG acquistion and data processing, detailing the steps from signal acquisition
to data analysis. It shows the MEG setup, signal preprocessing, auditory stimulus presentation, data
normalization, brain activity source localization, and the quantification of auditory evoked potentials
(AEPs) across different sound intensity levels.

2.2 MEG acquisition and data processing114

Prior to and following the ECT course, patients underwent MEG scans (see Figure 1). MEG recordings115
were captured using the Elektra Neuromag VectorView 306 system, which is equipped with 102116
magnetometers and 204 planar gradiometers. To ensure accurate alignment, the MRIs were coregistered117
with scalp fiducial markers. While seated inside the MEG helmet, patients were exposed to a series of118
auditory tones at five different intensity levels: 55, 65, 75, 85, and 95 dB. The tones were emitted through119
biauricular earbuds at a frequency of 2 kHz, lasting 50ms each. The tones were presented in a random120
sequence, with each intensity block comprising 22 tones, resulting in a total of 110 trials per intensity level.121

Data analysis was performed with Brainstorm 3 (51), which is documented and freely available122
for download online under the GNU general public license (http://neuroimage.usc.edu/123
brainstorm). The MEG data was filtered using a 1–100Hz bandpass filter and a 60Hz notch filter to124
eliminate electrical line noise. Malfunctioning channels were identified and excluded. Artifacts arising125
from cardiac activity and eye blinks were removed via signal-space projection, and independent component126
analysis was used to eliminate other non-brain artifacts. Auditory events were defined for a time window127
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from −100 to 500ms around the tone’s presentation. The data was normalized using the Z-transformation128
relative to the 100ms pre-stimulus baseline.129

Cortical structures were derived from each subject’s MRI scans using FreeSurfer, and aligned with130
a standard brain atlas for cortical reconstruction. The head model for the forward model utilized the131
symmetric boundary element method (BEM) implemented in OpenMEEG, provided by the INRIA institute.132
This model established a computational link between the neuronal activity in the source space and the133
recorded MEG data in the sensor space, considering the conductive properties of head tissues. The inverse134
model, which infers neural activity from the MEG data, was computed using a data covariance matrix135
through the linearly constrained minimum variance (LCMV) beamforming technique, focusing on auditory136
evoked potentials. Trial-averaged, source-level event-related fields (ERFs) were extracted from the bilateral137
primary auditory cortices. Finally, the LDAEP was calculated by evaluating the change in normalized138
ERF amplitude between the N100 and P200 components from the trial-averaged epochs. The LDAEP is139
represented by the slope of the linear regression line fitted to these data points.140

2.3 Statistical analysis141

We evaluated the distribution of our data for normality using the Shapiro-Wilk test. The tests indicated142
normality in the changes in the LDAEP slope (p = 0.098), HAMD scores (p = 0.263), and total143
RBANS scores (p = 0.105). To investigate longitudinal differences in LDAEP slopes, depression scores,144
and cognitive functioning scores, we employed paired t-tests. Additionally, we explored correlations145
among the pre-treatment and post-treatment LDAEP slopes, the degree of their changes, and the baseline,146
post-treatment, and changes in HAMD-24 and RBANS scores.147

3 RESULTS

3.1 Demographics and clinical outcomes148

Six of nine patients responded (> 50% reduction in HAMD-24 from baseline) to ECT with an average149
post-ECT HAMD-24 score of 9.1 ± 7.6 (t8 = 5.60, p < .001). We collected seven of the nine patients’150
RBANS data, and found, on average, their cognitive functioning did not change with ECT (t6 = 0.358,151
p = .73). Demographics and clinical measures before and after ECT treatment are summarized in Table 1.

Table 1. Demographics and clinical measures before and after ECT treatment
Measure Pre-ECT (Mean ± SD) Post-ECT (Mean ± SD) t p-value
N (no. female) 9 (6) - -
Age, years 68.1± 10.7 - -
LDAEP 0.41± 0.64 0.75± 0.74 3.17 .013
HAMD-24 37.2± 12.8 9.1± 7.6 5.60 < 0.001
RBANS Scores

Total 82.9± 19.4 84.4± 18.0 0.36 .73
Immediate memory 78.0± 25.4 83.1± 24.2 0.84 .44
Visuospatial/Constructional 84.7± 26.1 90.7± 17.7 0.79 .46
Language 92.6± 8.9 89.7± 8.0 0.79 .46
Attention 92.4± 14.7 89.6± 17.9 1.05 .34
Delayed memory 85.3± 22.1 85.7± 22.2 0.08 .94

152
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3.2 Change in LDAEP153

Figure 2 shows the auditory evoked potentials before and after ECT treatment, with responses at varying154
stimulus loudness levels. The LDAEP slope significantly increased following ECT treatment from 0.41±155
0.64 to 0.75± 0.74) (Cohen’s d = 0.49, t8 = 3.17, p = .013) (Figure 3).

Figure 2. Auditory evoked potentials (A) before and (B) after ECT treatment, with responses at sound
pressure levels of 55–95 dB. The change in normalized AEP amplitude between the N100 and P200
(N1/P2) components of the trial-averaged epochs was calculated. The LDAEP is calculated as the slope of
linear regression line that best fits the N1/P2 amplitudes at each sound pressure level.

156

3.3 Correlations between LDAEP and depression and cognition scores157

The change in the LDAEP slope was not significantly correlated with baseline (r = −0.079, p = .84),158
post-treatment (r = 0.066, p = .87), or changes in HAMD-24 scores (r = 0.101, p = .80). The pre-ECT159
LDAEP slope was not significantly correlated with baseline (r = −0.194, p = .62) nor changes in160
HAMD-24 scores (r = 0.339, p = .37).161

We focused on assessing correlations with RBANS total scores. The change in LDAEP slope was not162
significantly correlated with the baseline (r = 0.208, p = .66), post-treatment (r = 0.403, p = .37), or163
changes (r = 0.276, p = .55) in the RBANS total score. The pre-ECT LDAEP slope was significantly164
correlated with the baseline RBANS total score (r = 0.855, p = .014), but not correlated with changes in165
the RBANS total score (r = −0.352, p = .44).166

4 DISCUSSION

In this study, we used LDAEP as a cortical activity biomarker to monitor changes in neurotransmitter167
activity induced by ECT. Our initial hypothesis posited that ECT would mitigate symptoms of depression168
by boosting serotonergic neurotransmission, which would manifest as a reduced LDAEP, reflected by169
weakening of the response amplitude as a function of sound intensity levels. However, our findings revealed170
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Figure 3. Individual changes in the pre- and post-ECT LDAEP slope measure. There was a significant
increase post-ECT compared to baseline (Cohen’s d = 0.49, t8 = 3.17, p = .013).

a significant increase in LDAEP post-ECT. Interestingly, the alterations in LDAEP did not correlate with171
changes in depression severity or cognitive performance.172

The neurochemical underpinnings of LDAEP suggest that ECT should lead to a reduction in serotonergic173
tone within the primary auditory cortex, but this assumption is subject to debate. Studies on the relationship174
between LDAEP and serotonergic activity have harbored conflicting evidence and perspectives (19, 24,175
52, 53). While numerous studies have found that the LDAEP is sensitive to acute changes in serotonergic176
activity, such as following administration of serotonergic-reuptake inhibitors, other studies have presented177
contrasting findings (54, 55, 56, 57, 58, 59, 60). A recent narrative review by Kangas et. al stated that178
LDAEP studies have generally yielded no consistent difference between depressed and non-depressed179
controls, though there appears to be a relationship with depression-subtypes (18). Given this context, a180
possible explanation for our results not supporting the original hypothesis could be that the LDAEP does181
not precisely mirror serotonergic tone in the primary auditory cortex.182

Our findings did reveal a significant modulation of the LDAEP after ECT treatment. Intriguingly, the183
observed increase in LDAEP may indicate that ECT prompted a reduction in serotonergic receptor activity184
within the primary auditory cortex, particularly 5-HT1A and 5-HT2 receptors. This algins with multiple185
studies demonstrating a reduction in 5-HT2 and 5-HT1A receptors in humans and non-human primates186
following ECT (40, 41, 42, 61, 62). The initial LDAEP studies in animal models bolster the plausibility of187
ECT-induced reduction in serotonergic receptors, in that a 5-HT1A agonist decreased the LDAEP and a188
5-HT2A antagonist increased the LDAEP, suggesting that decreased serotonin receptor activity results in a189
strengthened LDAEP (13, 63). However, pre-clinical studies have largely found an upregulation of 5-HT1A190
and 5-HT2A receptors after electroconvulsive stimuli in animal models (44, 46, 64). This discrepancy191
underscores the need for further research to understand ECT’s impact on serotonergic receptor activity in192
humans more comprehensively.193
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Several alternative explanations as to why the LDAEP increased following ECT may be plausible. The194
LDAEP has been shown to covary with symptom severity in disorders such as ADHD, schizophrenia, and195
Parkinson’s disease, all of which are strongly linked to dopaminergic dysregulation (65, 66, 67). Given196
that ECT has been found to significantly alter dopaminergic neurotransmission (44, 68, 69, 70, 71), one197
possible explanation for the heightened LDAEP could be ECT’s direct influence on dopamine receptor198
and transporter activities. Furthermore, considering that the LDAEP results from both excitatory and199
inhibitory post-synaptic potentials within the primary auditory cortex, the altered LDAEP could reflect200
changes in glutamatergic and GABAergic functions. Indeed, ECT has been shown to increase GABA201
concentration, normalize glutamate deficits, and alter excitation/inhibition ratios (26, 72, 73, 74, 75). For202
instance, the administration of a glutamatergic NMDA antagonist has been reported to blunt LDAEP,203
suggesting that increased glutamatergic activity correlates with a heightened LDAEP (76). On the other204
hand, a study reported that the LDAEP is not associated with GABA levels (77). Further exploration of the205
relationships between ECT, auditory cortical activity, and excitatory and inhibitory neurotransmitters could206
yield valualbe insights.207

Beyond neurotransmitter effects, there is a consistent body of evidence indicating that ECT is associated208
with increased gray matter volume in the temporal lobes, including the superior temporal gyrus (5, 78, 79,209
80), where the primary auditory cortex is situated. It is possible that neurotrophic effects are related to210
the increased LDAEP following ECT in this study. A recent meta-analysis concluded that ECT directly211
increases concentrations of brain-derived neurotrophic factor (BDNF) (81). Similarly, the LDAEP has been212
found to be significantly positively correlated with serum BDNF levels (82). One possibility is that ECT’s213
robust neuroplastic effects within the temporal lobe are related to the modulation of the LDAEP. Moreover,214
systematic reviews found that ECT has consistently been reported to decrease levels of inflammatory215
biomarkers, tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) (83, 84). Notably, one study216
demonstrated that the LDAEP was negatively correlated with TNF-α (85). This could suggest that a217
reduction in TNF-α might contribute to the LDAEP increase seen after ECT. Given these multifaceted218
biological interactions, further research is indeed warranted to unravel the complexities of ECT’s impact219
on the LDAEP and underlying neurobiological mechanisms.220

In terms of cognitive performance, our study found that the pre-ECT LDAEP correlated with baseline221
RBANS total scores. However, change in LDAEP was not associated with changes in cognitive performance222
post-ECT. While the reasons for these findings warrant further investigation, our preliminary data does223
suggest a link between LDAEP and cognitive performance metrics.224

Finally, it is crucial to acknowledge the limitations inherent in this pilot study. The small sample size of225
nine participants may not fully represent the broader patient population; these findings must be regarded226
as exploratory. The impact of the patients’ ongoing psychotropic medication on the LDAEP results also227
cannot be overlooked. Unlike conventional LDAEP studies that employ EEG, this study utilized MEG,228
which might affect comparability with existing literature. Despite these limitations, this study provides229
meaningful insights into the changes in LDAEP following ECT and signals the importance of conducting230
larger-scale, more controlled research to elucidate these preliminary observations.231

5 CONCLUSION

Contrary to our initial hypothesis, ECT paradoxically led to an increase in LDAEP, implying a reduction232
in serotonergic activity. Given the complex roles ECT plays in the brain’s neurochemistry and the multi-233
faceted nature of LDAEP as a biological marker, our results might not signal a straightforward suppression234
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of serotonin. They could reflect compensatory adjustments in serotonergic receptor activity or broader235
changes encompassing other neurotransmitter systems, neuroplasticity, and neuro-immune interactions.236
This unexpected outcome opens avenues for multiple lines of inquiry: the intricate interplay between ECT237
and LDAEP, and how they might influence 1) the activity of serotonergic, dopaminergic, glutamatergic,238
and GABAergic receptors and transporters; 2) neuroplasticity and BDNF levels in the temporal cortex; and239
3) levels of the pro-inflammatory cytokine TNF-α.L ooking forward, further investigation is needed to240
validate the LDAEP as a biomarker of serotonergic neurotransmission and to elucidate ECT’s effect on241
serotonergic activity in the human brain.242
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