MVA-BN Vaccine Effectiveness: A Systematic Review of Real-World Evidence in Outbreak Settings

Authors:
Lauren M.K. Mason Ph.D.a, Estefania Betancur MSc a, Margarita Riera-Montes MD MSc a, Florian Lienert Ph.D.b, Suzanne Scheele MS c

Affiliations:
a P95 Epidemiology and Pharmacovigilance, Leuven, Belgium.
b Bavarian Nordic Switzerland AG, Zug, Switzerland
c Bavarian Nordic, Inc., Morrisville, North Carolina, United States of America.

Corresponding author: Florian Lienert; Bavarian Nordic Switzerland AG, Zug, Switzerland; flili@bavarian-nordic.com

Abstract

Background: Mpox is a disease endemic to Central and West Africa. It caused outbreaks in non-endemic countries, mainly in 2022. The endemic Democratic Republic of Congo is currently experiencing its largest outbreak yet. The vaccine Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) is approved for active immunization against mpox and smallpox. Since the outbreak in 2022, real-world studies have assessed MVA-BN's vaccine effectiveness (VE) against mpox, and this systematic literature review aims to summarize the most current evidence.

Methods: Medline (via PubMed), Embase, and LILACS were searched, as well as grey literature sources and publications’ bibliographies to identify observational studies published between 1/Jan/2022 and 28/Feb/2024 that estimate the VE of MVA-BN against symptomatic mpox or provide risk measures that allow calculation of these VE estimates. Data were presented descriptively in tables and text; the methodological quality of included records was assessed using an informal qualitative approach.
Results: The literature search identified a total of 16 records that fit the inclusion criteria. The studies took place in high-income countries and were heterogenous in design, setting, and definition of at-risk populations. MVA-BN VE estimates against symptomatic mpox infection ≥14 days post-vaccination were assessed. Where the study population was exclusively or primarily those receiving pre-exposure prophylactic vaccination, the adjusted VE estimates ranged from 35% to 86% (n=8 studies) for one dose and from 66% to 90% (n=5) for two doses. Where only post-exposure prophylactic vaccination was assessed, adjusted VE estimates were reported for one dose only at 78% and 89% (n=2). Additionally, MVA-BN reduced the risk of mpox-related hospitalization in one study and the severity of mpox clinical manifestations in two studies.

Conclusions: Despite heterogeneity in study design, setting, and at-risk populations, the reported VE estimates against symptomatic mpox infection for one or two doses of MVA-BN support deployment of MVA-BN for mpox outbreak control.
Keywords
mpox; post-exposure prophylactic vaccination; pre-exposure prophylactic vaccination; real-world evidence; systematic literature review; vaccine effectiveness

Abbreviations
CDC: US Centers for Disease Control and Prevention; CDESS: The Communicable Disease Electronic Surveillance System; CHS: Clalit Health Services; CI: confidence interval; DE: data extraction; DRC: Democratic Republic of Congo; FT: full-text review; GBMSM: gay, bisexual, and other men who have sex with men; HIV: human immunodeficiency virus; HRR: hazard rate ratio; IC, immunocompromised; IRR: incidence rate ratio; MeSH: medical subject headings; MPVX: monkeypox virus; MSM: men who have sex with men; MVA-BN: Modified Vaccinia Ankara-Bavarian Nordic; NR: not reported; NYC: New York City; OCM: other clinical manifestations; OR: odds ratio; PDE5: phosphodiesterase 5; PEP: post-exposure prophylactic vaccination; PrEP: pre-exposure prophylactic vaccination; PICOS: patient, intervention, comparison, outcome, setting; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; RR: risk ratio; RWE: real-world evidence; SHC: sexual health clinic; SLR: systematic literature review; STI: sexually transmittable infection; SVI: social vulnerability index; VE: vaccine effectiveness.
Introduction

Mpox, formerly called monkeypox and first described in humans in the Democratic Republic of Congo (DRC) in 1970 [1], is an illness that was initially zoonotic and is caused by the monkeypox virus (MPXV). This DNA virus belongs to the Orthopoxvirus genus, which also includes the smallpox-causing variola virus [2]. The clinical presentation of mpox includes a distinctive, extensive rash, fever, headache, cough, asthenia, and lymphadenopathy. Additionally, complications such as coalescence of skin ulcers, bacterial skin infections, bronchopneumonia, and sepsis may occur [3]. MPXV is transmitted from animals to humans and between humans through contact with bodily fluids, lesions on the skin or mucosae, respiratory droplets, and contaminated objects [4]. A definitive animal reservoir host has not been identified [1].

Before the unprecedented global spread of the disease outside previously endemic countries in 2022, reports of mpox were almost exclusively limited to Central and West African countries [4]. An observed increase in cases in these countries before 2018 was hypothesized to be due to the cessation of routine smallpox vaccination leading to waning Orthopoxvirus immunity [1].

Starting in May 2022, a significant surge in mpox cases occurred in numerous non-endemic countries [5]. As of February 2024, over 94,000 confirmed mpox cases have been documented in 117 countries [6]. While previous occurrences of mpox in non-endemic regions were associated with international travel and importation of infected animals from West Africa [7], the 2022 outbreak was primarily characterized by human-to-human transmission of MPXV [8]. This outbreak mainly occurred among, but was not limited to, men who have sex with men (MSM) and in several high-income countries [9], which had not been reported previously. Other differences included a different clade type, lower mortality, and suggested novel epidemiological and clinical characteristics [9]. The outbreak response strategy consisted mainly of behavior change and vaccination of high-risk populations [2].

The DRC is currently experiencing its largest ever recorded mpox outbreak, with more than 12,000 suspected cases and 500 deaths reported since the start of 2023 [10]. The outbreak is spreading to almost all provinces, with different transmission patterns and affected populations. Some areas are seeing large-scale transmission involving a larger proportion of children, potentially due to contact with rodents. The province of Equateur, with a population of almost 6 million, is experiencing large, concomitant mpox and measles outbreaks, with a potential increase in the risk of complications and a
A larger reported mortality rate, as well as the risk of misdiagnosis of either disease. There is also a large outbreak of primarily sexually transmitted mpox infections among sex workers and adults in the mining city of Kamituga in South Kivu. The city's highly mobile population creates the risk for a multi-country outbreak as the area borders Rwanda, Burundi, and Tanzania [11]. Global outbreak response teams from multiple countries are active in the DRC, and mpox vaccination may soon become a tool in controlling the current crisis.

Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN; trade names Jynneos/Imvanex/Imvamune) is the smallpox and mpox vaccine that has most broadly been used in response to the global mpox outbreak. MVA-BN cannot replicate in human cells and, unlike replicating smallpox vaccines, has a favorable safety profile for individuals with atopic dermatitis and immunodeficiency [12].

The MVA-BN vaccine can be administered prophylactically either before or after exposure to confirmed mpox cases. Pre-exposure prophylactic vaccination (PrEP) aims at protecting those at risk of mpox infections prior to having had contact with a confirmed case. Currently, the US Centers for Disease Control and Prevention (CDC) recommends PrEP for the at-risk groups: those at risk of occupational exposure, gay, bisexual, and other MSM (GBMSM) who have been diagnosed with certain sexually transmitted diseases and have multiple sexual partners, individuals engaging in sexual activities in areas with a high prevalence of mpox, and those with sexual partners meeting these criteria, as well as people with human immunodeficiency virus (HIV) infection or other causes of immunosuppression who have had recent or anticipate potential mpox exposure [13]. Post-exposure prophylactic vaccination (PEP) aims to prevent mpox or reduce its severity in individuals who have had contact with confirmed cases and can be administered up to 14 days post-exposure [13].

The regulatory authorities in the US, Canada, UK, and the EU approved MVA-BN in a two-dose schedule ≥28 days apart for active immunization against smallpox and mpox based on pre-clinical efficacy data from animal studies and clinical immunogenicity and safety studies [14-17]. The efficacy of MVA-BN against mpox has not been demonstrated in randomized controlled clinical trials; however, since the 2022 outbreak started, several real-world effectiveness studies have been conducted. This systematic literature review (SLR) aims to identify and summarize the most current real-world evidence (RWE) on the MVA-BN vaccine effectiveness (VE) against symptomatic mpox infection, mpox-related hospitalization, and severity of clinical mpox manifestations.
Methods

Registration and protocol
This SLR was registered prospectively in PROSPERO (https://www.crd.york.ac.uk/prospero/; number CRD42023441204), where key features from the protocol can be retrieved. The literature search was initially performed in 2023 and updated on February 28, 2024, to include the latest relevant literature. The focus of this manuscript is on the summary of RWE of the VE of MVA-BN against mpox.

Search strategies and eligibility criteria
The databases Medline (via PubMed), Embase, and LILACS were searched using database-specific keywords and medical subject headings (MeSH terms) related to mpox and vaccine effectiveness/vaccination. The detailed search strategies are available in Supplementary Methods. We included peer-reviewed publications reporting on observational studies in humans on the VE of MVA-BN, published between January 1, 2022, and February 28, 2024 (date of last search) in English, Spanish, or French. We excluded publications that did not meet the inclusion criteria or where methods and sources for data collection and/or analysis were not clearly defined. Records reporting on in vitro studies, modeling studies, case reports/series, and (non-)randomized clinical trials were excluded. SLRs and meta-analyses (MAs) were retained through the search and first selection stage to allow screening through the bibliographies for identification of additional relevant publications, but SLRs and MAs were not retained for data extraction. The full list of eligibility criteria is available in Supplementary Methods.

To identify additional relevant publications, grey literature sources and pre-print databases were searched on March 5, 2024 (date of last search) using source-specific search terms and limits as detailed in Supplementary Methods.

Record selection
After deduplicating identified records, two independent researchers (EB, LM) screened the titles and abstracts of all records in duplicate. Results were compared and discrepancies were discussed; in
case of doubt, the record was included for full-text review. Records for which insufficient information was available in the title and abstract were also included for full-text review. All full texts were reviewed by one researcher (EB), and full texts for 10% of the records were screened in duplicate (EB, LM). The results were compared and discrepancies were discussed; any doubts outside the 10% were also discussed. When multiple articles reported on the same dataset and the same outcome, only the most recent and complete available version was included. To identify additional relevant publications, bibliographies of selected papers (e.g., key studies, SLRs, and MAs) were manually searched.

Data collection and synthesis

One reviewer (EB) extracted all relevant data for each retained record in a pre-defined template in Microsoft Excel. The main outcomes of interest were crude and/or adjusted VE estimates against symptomatic mpox infection, mpox-related hospitalization, and severity of mpox clinical manifestations with crude/adjusted confidence intervals (CIs). Data related to these VE estimates, such as VE calculation methods, subpopulations, stratification groups, incidence rates, cumulative hazard rates, risk association measures (odds ratios [ORs], risk ratios [RRs], hazard ratios [HRs], incidence rate ratios [IRR], hazard rate ratios [HRRs]), and confounders were also extracted. In case no crude or adjusted VE estimates were reported in the publication, we calculated the VE and 95% CIs from extracted risk association measures using the following formula:

\[VE = 1 - \frac{\text{Risk among vaccinated group}}{\text{Risk among unvaccinated group}} \times 100 \]

No other calculations or assumptions were made in case of other missing data. Variables related to study characteristics (e.g., study design, vaccination strategy), population characteristics (e.g., sample definitions, comorbidities), study methods (e.g., case and control definitions), additional information on statistical analyses (e.g., results of the sensitivity analysis), and data for assessment of the study’s methodological quality (e.g., strengths and limitations as mentioned by the authors) were also extracted.

Study characteristics and the collected VE estimates were presented descriptively in tables and text. VE estimates were reported stratified by type of vaccination strategy: PrEP or PEP. For the former, we reported studies including exclusively PrEP recipients together with studies designed primarily to
evaluate PrEP, but that may have inadvertently included some PEP subjects (designated ‘PrEP ±
PEP’). Due to the heterogeneity of the data, no statistical synthesis of the extracted data was
performed.

Risk of bias assessment

The methodological quality of all records included in the final review was assessed by three
researchers (EB, LM, MRM) using an informal qualitative approach based on the expertise of
reviewers and published commentaries, as well as the limitations described by the authors
themselves. Potential biases of the studies were identified and how these might impact the results
and conclusions of the studies was considered and discussed.

Results

Study selection and characteristics

The literature search identified 904 unique records from databases, of which 106 were retained for
full-text review and eight were included in the final review. Nine additional records were identified from
other sources, of which eight were included in the final review. Hence, a total of 16 records on 16
unique studies were identified that reported on the VE of MVA-BN against symptomatic mpox infection
or provided risk measures that allow calculation of VE estimates (Figure 1).

The main characteristics of the included studies are summarized in Table 1. The studies took place in
six countries, with the majority conducted in the United States (n=7) [20-26], followed by Canada
(n=3) [27-29], Spain (n=2) [30, 31], the United Kingdom (n=2) [32, 33], and one each in Israel [34] and
the Netherlands [35]. The studies used various designs to assess effectiveness of MVA-BN, with a
retrospective cohort design being used most frequently (n=6) [23, 24, 26, 27, 30, 34], followed by a
case-coverage design (n=4) [22, 32, 33, 35], a case-control design (n=4; incl. one test-negative case-
control design [28]) [20, 21, 25, 28], and a prospective cohort design (n=2) [29, 31]. The studies used
linked data from public health surveillance systems [20, 22-30, 32, 33], from public health institutions
[23, 31, 35], and/or from healthcare systems [21, 34]. The number of mpox cases included for
calculation of the VE against symptomatic mpox infection ranged from 137 to 11,320. Control groups
were defined in various ways across study designs and included MSM, incident HIV cases, males
with sexually transmitted infections (STIs), symptomatic individuals who tested negative for mpox, and
individuals in contact with mpox cases. The study period covered (part of) 2022 in 11 studies [21-25,
28, 30-32, 34, 35], (part of) 2022 and part of 2023 in four studies [20, 26, 27, 29], and the whole of 2023 in one study [33]. Fourteen studies focused on the use of MVA-BN as PrEP, of which six included PrEP recipients only [21, 28-30, 32, 33] and eight may have included a proportion of PEP recipients due to the available data not allowing exclusion of all PEP recipients (PrEP ± PEP) [20, 22, 23, 25-27, 34, 35]; the remaining two studies focused on the use of MVA-BN as PEP [24, 31]. The effectiveness of MVA-BN against mpox was evaluated using ORs (n=10) [20, 21, 24-28, 32, 33, 35], HRs (n=4) [23, 29, 31, 34], RRs (n=1) [30], or IRRs (n=1) [22] (Table 1).

Risk of bias

The risk of bias assessment found sources of (residual) confounding in several studies, with the most important ones resulting from the overall population setting and/or the selection of controls/comparator groups [21, 23-28, 31-34]. Sources of bias inherent to study design were also identified, including misclassification bias for studies using data from registries and databases [24, 25, 33], recall bias and non-response bias for studies using surveys and self-reported data [20, 24, 27, 28, 32], and an inability to control for confounders in case-coverage studies [22, 32, 33, 35]. Additionally, one study was found to be at risk of immortal time bias [31].

Study results

Vaccine effectiveness estimates against symptomatic mpox infection for PrEP with MVA-BN

Twelve studies reported that PrEP with MVA-BN reduced the risk of symptomatic mpox infection at ≥14 days after vaccination. Half of the studies reported data for PrEP recipients only, while the other half may have included a proportion of PEP recipients (PrEP ± PEP). Five studies reported data for one dose of MVA-BN only, one study reported data for two doses only, and six studies reported data for both one and two doses (Table 2).

For one dose of MVA-BN administered as PrEP, adjusted VE estimates between 35% and 86% were reported across eight studies. Seven studies reported crude VE estimates, which fell within the same range (33%–84%). The studies conducted by Brousseau et al. [28] and Deputy et al. [21] reported adjusted VE estimates for one dose of MVA-BN of 35% and 36%, respectively, which were notably lower than the adjusted VE estimates reported in the other studies (≥59%) (Table 2).

For two doses of MVA-BN administered as PrEP, five studies reported adjusted VE estimates ranging from 66% to 90%. The reported crude VE estimates ranged from 57% to 87% in five studies (Table...
The study by Charles et al. [33] was the only study to use data collected in the year 2023 (Jan 2023 until Dec 2023) only, and found crude VE estimates of 84% for one dose and 80% for two doses of MVA-BN (adjusted VE estimates were not reported) (Table 2).

Vaccine effectiveness estimates against symptomatic mpox infection for PEP with MVA-BN

Two studies reported on the effectiveness of one dose of PEP with MVA-BN against symptomatic mpox infection at ≥14 days after vaccination; no data were reported for two doses of PEP (Table 3).

The two studies found adjusted VE estimates of 78% and 89% when ‘classic statistical methods’ (multivariate logistic regression and survival analysis, respectively) were used. Rosen et al. [24] also calculated VE estimates using target trial emulation to account for immortal time bias, which were -7% for PEP administered ≤14 days after first exposure and 19% for PEP administered ≤14 days after last exposure; these VE estimates were associated with wide CIs due to small sample sizes (Table 3).

Vaccine effectiveness estimates of MVA-BN against mpox-related hospitalization and severity of mpox clinical manifestations

The study by Schildhauer et al. [26] reported a lower risk of mpox-related hospitalization among those who had been vaccinated with MVA-BN compared to those who had not been vaccinated. Based on ORs provided by Schildhauer et al., we calculated crude VE estimates against hospitalization of 73% and 80% for a vaccination schedule consisting of one or two MVA-BN doses, respectively, and 58% for one dose of MVA-BN administered as PEP <14 days before the episode date (Table 4).

Two papers reported a decreased severity of mpox clinical manifestations in cases who had received one dose of MVA-BN. Allard et al. [27] found adjusted VE estimates at day 1 of infection of 60% against the number of skin lesions, 76% against the number of body sites affected by skin lesions, and 59% against other clinical manifestations (incl. fever, muscle pain, and headache). Montero Morales et al. [31] reported adjusted VE estimates of one dose of MVA-BN administered as PEP of 72% against general symptoms (fever, asthenia, odynophagia, muscle pain, headache, or other symptoms) and 86% against polysymptomatic disease (i.e., occurrence of four or more general symptoms) (Table 4).
Vaccine effectiveness estimates of MVA-BN against symptomatic mpox infection by route of administration

Two studies reported data stratified by route of administration; one reported VE estimates while the other study only reported the number of mpox cases in vaccinated and unvaccinated groups (Supplementary Table 1). When adjusted VE estimates against symptomatic mpox infection were reported, these were in similar ranges for two doses of MVA-BN regardless of the route of administration: 80% (95% CI 23–95) for intradermal administration, 89% (95% CI 56–97) for subcutaneous administration, and 87% (95% CI 69–95) when administered via a combination of both routes (Supplementary Table 1).

Vaccine effectiveness estimates of MVA-BN against symptomatic mpox infection <14 days after vaccination

Four studies reported VE estimates stratified by time after vaccination, and as such demonstrated the risk of breakthrough infections before the onset of vaccine-induced immunity (Supplementary Table 2). Within the first 13 days post-vaccination, reported VE estimates for MVA-BN PrEP or ‘PrEP ± PEP’ did not exceed -4% (95% CI -50–29) (Supplementary Table 2).

Discussion

This SLR identified 16 records on real-world studies assessing the VE of one or two doses of MVA-BN against symptomatic mpox infection, mpox-related hospitalization, and severity of mpox clinical manifestations. When MVA-BN was administered as PrEP, the adjusted VE estimates against symptomatic mpox infection ≥14 days post-vaccination were ≥35% (n=8 studies) for one dose and ≥66% (n=5) for two doses. The lower limit of the VE range for one dose of MVA-BN administered as PrEP was lower than that of other ranges because two studies reported VE estimates that were notably lower than other estimates [21, 28]. Outside of these data points, the adjusted VE estimates for PrEP with one dose of MVA-BN were ≥59%. Adjusted VE estimates against symptomatic mpox infection for MVA-BN administered as PEP were only reported for one dose and were ≥78% (n=2 studies). The VE estimates for two doses of MVA-BN fell in a similar range as VE estimates historically reported for replicating vaccinia-based smallpox vaccines [36]. Furthermore, MVA-BN vaccination reduced the risk of mpox-related hospitalization and the severity of mpox clinical manifestations.
In most studies, controls or unvaccinated comparator groups were selected based on characteristics such as MSM or transgender status, recent diagnosis of HIV or other STIs, and/or use of HIV pre-exposure prophylaxis. However, there was notable heterogeneity across studies in the definition of the at-risk population, which might have influenced the VE estimates. In the case-control study by Deputy et al. [21] for example, which found an adjusted VE estimate against symptomatic mpox infection of 36% for one dose of MVA-BN administered as PrEP and was one of the notably low VE estimates, controls were identified from a large secondary database that may not have had as granular information on risk proxies as studies using individual patient-level data. The control population was not restricted to MSM, resulting in a broader at-risk population than in other studies, which may have led to the inclusion of a higher proportion of subjects who were not vaccine-eligible in the control group and to the underestimation of the VE. This concern was also highlighted in a letter to the editor related to this article [37, 38]. The authors of this letter to the editor highlighted that the vaccine uptake of one dose of MVA-BN among controls reported by Deputy et al. (14.5%) was lower than vaccine uptake data reported by e.g., the CDC. When they recalculated VE estimates against symptomatic mpox infection using a vaccine uptake of 45.5% (i.e., uptake reported by CDC for the period until October 1, 2022 [22]), the crude VE estimate increased to fall within a similar range as VE estimates reported by other studies [22, 32, 34]. A very different approach regarding the included at-risk population was taken in the case-control study by Rosenberg et al. [25], where controls were restricted to MSM who had rectal gonorrhea or primary syphilis diagnosed within the same time frame as the mpox cases. This approach was assumed to lead to a control population that exhibited risk behavior similar to the cases within the same time period. A sensitivity analysis within that study included secondary syphilis cases in the control group and found a VE estimate for one or two MVA-BN doses against symptomatic mpox infection that trended lower than the main VE estimate, albeit with overlapping CIs (64.8% [95% CI 26.7–83.1] and 75.7% [95% CI 48.5–88.5], respectively). This difference may reflect the inclusion of control patients with more remote risk behaviors or different clinical presentations [25]. As a last example, the test-negative case-control study by Brousseau et al. [28] found a VE estimate against symptomatic mpox infection for one MVA-BN dose of 35% based on data in administrative databases only, with adjustment for surrogate indicators of exposure risk available in these databases. However, when the authors adjusted for self-reported risk factors, which were higher in number and more detailed than those available in the administrative databases, the VE
estimate increased to 65% (with a wide CI) [28]. Though the sample size in this study was small, particularly for the sub-analysis (n=199 cases), the study design highlights the potential impact of confounding based on differential risk exposure by vaccination status.

Licensure of MVA-BN for protection against mpox was based on the efficacy of two MVA-BN doses against mpox observed in animal studies [39] and clinical safety and immunogenicity data. The latter includes the demonstration of non-inferior immunogenicity compared to the replicating-vaccinia vaccine ACAM2000 together with a more favorable safety profile for MVA-BN compared to ACAM2000 as demonstrated in a pivotal phase 3 randomized clinical trial [40]. While one dose of MVA-BN was previously shown to induce low titers of vaccinia-specific and MPVX-specific neutralizing antibody titers [41-43], our SLR found VE estimates against symptomatic infections for one dose of MVA-BN suggestive of high effectiveness. This challenges the view that neutralizing antibody levels correlate with protection against Orthopoxvirus infection. Indeed, previous experiments showed that MVA vaccination fully protected B cell-deficient mice in Orthopoxvirus challenge models, indicating that antibodies are not the sole correlate of protection [44]. Furthermore, a study including a small number of MVA-BN vaccinated individuals revealed that the protective immunogenicity of MVA-BN might be mostly mediated by T cells [45]. While a correlate of immunity for MVA-BN has not been established yet, these findings suggest that cellular immunity could be relevant. However, a pre-clinical animal study for an mRNA mpox vaccine candidate found that protection was primarily conferred by inducing a focused humoral immune response [46], which suggests that the correlate of immunity might depend on the vaccine platform.

This SLR employed a thorough process searching three literature databases combined with grey literature sources including preprints and a search through bibliographies of selected papers. Nevertheless, the presented data need to be interpreted in light of the high heterogeneity across included studies in terms of study design, characteristics of study populations, and study settings, among others, which limits comparisons. Because we considered that this heterogeneity across studies would hamper the interpretation of VE point estimates originating from MAs, we chose not to perform such analysis. This SLR also highlighted gaps in data. Most participants included in the identified studies were adult MSM, and data on females and children are lacking. The use of very specific at-risk groups reduced the generalizability of some studies. All identified studies took place in high-income countries, while no data from mpox-endemic countries were identified. Furthermore,
several research groups initiated prospective studies in high-income countries in the early phases of
the mpox outbreak, but these have not (yet) been finalized and/or published, primarily because of a
waning number of cases. Most of these studies have now been suspended due to a lack of cases.
Lastly, while we identified studies that demonstrated the risk of breakthrough infections within 14 days
of vaccination, data on VE durability in real-world settings was limited. Only the study by Charles et al.
from the UK provided some insight by reporting crude VE estimates against symptomatic infections of
84% and 80% for one and two doses of MVA-BN, respectively, based on confirmed and highly
probable mpox diagnoses reported until December 2023, while most vaccines had been administered
by March 2023 [33]. It should, however, be noted that follow-up time might impact VE estimates as a
large proportion of those vaccinated will receive the vaccine during the early stages of its availability
during an outbreak. Also, a larger proportion of those at greatest risk of infection are also likely to be
infected earlier in the outbreak when awareness and vaccination coverage are lower. Therefore, a
longer duration of follow-up may bias toward vaccine effect as overall case rates decline over time.

The included studies themselves also had limitations. A common limitation was that, due to the timing
of the vaccination program within the mpox outbreak, limited numbers of cases were available for
inclusion, especially after deployment of the second MVA-BN dose. This limited the studies in terms of
power and the types of analyses that they could perform. However, all of the included studies were
adequately powered for primary VE analyses. Furthermore, the studies were inconsistent in how they
defined the use of MVA-BN as PEP and whether studies that focused on PrEP included or excluded
PEP use in their analyses. The inclusion of a proportion of PEP recipients was unavoidable in some
studies because of the data used for the analyses. In Germany, only 7% of all MVA-BN
administrations from June 2022 to January 2024 were PEP [47]. Because the studies included in our
SLR used mpox vaccination recommendations similar to those in place in Germany, it is likely that the
majority of vaccine recipients included in ‘PrEP ± PEP’ studies received MVA-BN as PrEP. Lastly, all
studies were found to be at risk of some (residual) confounding and other sources of bias. Many
studies relied on data from databases, and exposure risk was defined based on proxies such as MSM
or transgender status, recent diagnosis of HIV or other STIs, and/or use of HIV pre-exposure
prophylaxis because individual-level behavior data were not available; however, this limited the
researchers’ ability to account for confounding. Health-seeking behavior, HIV status, geographic
location, socioeconomic status, race and gender identity are examples of other confounders which
were not considered or accounted for by some studies. Studies that actively recruited participants could obtain more detailed data on exposure risk but were also subject to bias based on factors related to willingness to participate as well as recall bias. A test-negative case-control design, which might help reduce selection bias and avoid confounding associated with health-seeking behavior because cases and controls arise from the same source population, was employed in only one study [28]. Concern was raised in a letter to the editor that immortal time bias and confounding might have overestimated the adjusted VE of one dose of MVA-BN administered as PEP estimated by Montero Morales et al. (89% [95% CI 76–95]) [31, 48]. In their response letter, Montero Morales et al. performed an intent-to-treat analysis and found a VE of 75% (95% CI 55–86). Additionally, they performed a landmark approach analysis to try and account for immortal time bias by including vaccination as a time-varying exposure, which resulted in an estimated VE of 83% (95% CI 61–92) [49]. The importance of being mindful of immortal time bias was also demonstrated by the target trial emulation conducted by Rosen et al. [24], which lowered their adjusted VE estimates against symptomatic infections for PEP administered ≤14 days after last exposure from 78% (95% CI 50–91) to 19% (95% CI -54–57). Regardless of these limitations and the heterogeneity in study design and methods across the included studies, the VE estimates of MVA-BN against symptomatic mpox infection were generally high and in similar ranges. Taken together, the available real-world VE data support the use of MVA-BN in managing active outbreaks.

Future VE studies may be conducted if new outbreaks continue to expand. Ideally, investigators would prioritize maximizing comparability in risk of exposure/infection over time in the vaccinated and unvaccinated and in cases and controls in order to generate a more precise estimate of the true effectiveness of MVA-BN against mpox.

Conclusions

Despite heterogeneity in study design, study settings, and at-risk populations across the 16 included studies, this SLR demonstrated the effectiveness of one or two doses of MVA-BN against symptomatic mpox infection in outbreak settings. As such, the presented data support the deployment of MVA-BN for mpox outbreak control. The identified methodological limitations and biases underscore the need for improved study designs to allow more accurate evaluation and more precise estimation of the true effectiveness of MVA-BN against mpox.
Acknowledgments

The authors thank Lotte Mathé (P95) for medical writing support.

Author contributions

FL: Conceptualization; Writing – review and editing
SS: Conceptualization; Writing – review and editing
EB: Investigation; Writing – original draft; Writing – review and editing
LM: Investigation; Writing – original draft; Writing – review and editing
MRM: Conceptualization; Supervision; Writing – review and editing

Availability of data

Other: All data used in this study originated from published sources.

Conflicts of interest

FL and SS are employees of Bavarian Nordic. The study-related activities of P95 employees EB, LM, and MRM were funded by Bavarian Nordic. All authors attest that they meet the ICMJE criteria for authorship.

Funding source

The research presented in this manuscript and manuscript development were funded by Bavarian Nordic Inc.
References

https://doi.org/10.1093/ofid/ofad528

https://doi.org/10.1016/j.vaccine.2023.12.066

https://doi.org/10.15585/mmwr.mm7220a4

https://doi.org/10.15585/mmwr.mm7236a4

https://doi.org/10.1016/j.jiph.2024.02.015

https://doi.org/10.1093/cid/ciad584

https://doi.org/10.1101/2023.10.04.23296566

https://doi.org/10.1093/cid/ciad645

https://doi.org/10.2807/1560-7917.ES.2023.28.24.2200883

<table>
<thead>
<tr>
<th>Author, date, Country</th>
<th>Study design</th>
<th>Study population</th>
<th>Sample size, n<sup>a</sup></th>
<th>Vaccination strategy<sup>b</sup></th>
<th>VE analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allard, 2024 [27] Canada</td>
<td>Retrospective</td>
<td>Individuals with mpox</td>
<td>403</td>
<td>PrEP ± PEP</td>
<td>VE calculated as: 1 - odds of clinical outcomes among persons with mpox who were vaccinated compared with those who were unvaccinated</td>
</tr>
<tr>
<td></td>
<td>cohort study</td>
<td>Public health surveillance from Montreal Public Health; supplemented with self-reported sociodemographic and clinical data from questionnaires; vaccination data from provincial immunization registry</td>
<td></td>
<td></td>
<td>• By time after vaccination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• By clinical manifestations<sup>d</sup></td>
</tr>
<tr>
<td>Bertran, 2023 [32] United Kingdom</td>
<td>Case-coverage</td>
<td>Mpox cases; vaccine coverage estimated in at-risk GBMSM population</td>
<td>Cases: 363</td>
<td>PrEP</td>
<td>VE calculated as: 1 - odds of vaccination in cases/odds of vaccination in the population</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cases: public health surveillance data from across England, with self-reported vaccination data from questionnaires; coverage population in England estimated by public health agency (no individual patient-level data)</td>
<td>Population used for coverage estimate: 89,240</td>
<td></td>
<td>• By time after vaccination; all ages</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• By time after vaccination; cases younger than 50 years</td>
</tr>
<tr>
<td>Brousseau, 2023 [28] Canada</td>
<td>Test-negative</td>
<td>Individuals with a specimen submitted for mpox testing</td>
<td>Cases: 231</td>
<td>PrEP</td>
<td>VE calculated as: 1 - odds of vaccination in cases/odds of vaccination in the population</td>
</tr>
<tr>
<td></td>
<td>case-control</td>
<td>Public health surveillance data from the province of Quebec, linked to administrative data and supplemented with self-reported sociodemographic and exposure data from questionnaires</td>
<td>Controls: 301</td>
<td></td>
<td>• For entire sample</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subset with questionnaire data: 199</td>
<td></td>
<td>• For subset with questionnaire data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• For subset with questionnaire data, adjusting for questionnaire variables</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Study Design</td>
<td>Timeframe</td>
<td>Study Population</td>
<td>Study Details</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| Charles, 2024 [33] United Kingdom | United Kingdom | Case-coverage | 01 Jan 2023 to 31 Dec 2023 | Confirmed positive or highly probable mpox case; vaccine coverage estimated in at-risk GBMSM population in England | Cases: 137 | PrEP | VE calculated as: 1 - odds of vaccination in cases/odds of vaccination in the population
 - By dose (one or two) | | |
| Dalton, 2023 [20] United States | United States | Case-control | 19 Aug 2022 to 31 Mar 2023 | Mpox cases; controls were MSM/transgender adults visiting sexual health/HIV care/HIV pre-exposure prophylaxis clinics | Cases: 309 | PrEP ± PEP* | VE calculated as: 1 - odds of vaccination among cases/odds of vaccination among controls
 - By dose (one or two)
 - By route of administration
 - By IC status | | |
| Deputy, 2023 [21] United States | United States | Case-control | 15 Aug 2022 to 19 Nov 2022 | Mpxo cases; Controls with incident HIV infection or taking HIV pre-exposure prophylaxis | Cases: 2,193 | PrEP | VE calculated as: 1 - odds of vaccination among cases/odds of vaccination among controls
 - By dose (one or two)
 - By route of administration
 - Non-IC only
 - Male only
 - Without previous smallpox vaccination | | |
 - By time since vaccination; all ages
 - By time since vaccination; among individuals under 50 years | | |
<table>
<thead>
<tr>
<th>Country</th>
<th>Study Title</th>
<th>Description</th>
<th>Cases: 162</th>
<th>Population for coverage calculation: 39,657</th>
<th>VE calculated as 1 - odds of vaccination in cases/odds of vaccination in the population</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Netherlands</td>
<td>Haverkate, 2023 [35]</td>
<td>Mpox cases; vaccine coverage calculated in population invited for vaccination (GBMSM/transgender persons using/on the waiting list for HIV pre-exposure prophylaxis or at high risk for mpox)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>Montero Morales, 2023 [31]</td>
<td>Close contacts of laboratory-confirmed mpox cases</td>
<td>484</td>
<td></td>
<td>VE calculated as 1 - hazard rate among vaccinated group/hazard rate among unvaccinated group</td>
</tr>
<tr>
<td>Canada</td>
<td>Navarro, 2023 [29]</td>
<td>Individuals with at least one syphilis test in the previous year, a new diagnosis of one or more bacterial STIs in the previous year or who filled a prescription for HIV pre-exposure prophylaxis in the previous year</td>
<td>6,408 (3,204 vaccinated individuals matched with 3,204 unvaccinated individuals)</td>
<td></td>
<td>VE calculated as 1 - hazard rate among vaccinated group/hazard rate among unvaccinated group</td>
</tr>
</tbody>
</table>

Public health institutions across the Netherlands

Public health institutions serving the Madrid region; confirmed by vaccination registries

Public health surveillance data from Ontario

PrEP ± PEP

Ve calculated as 1 - odds of vaccination in cases/odds of vaccination in the population

Montero Morales, 2023 [31]

Spain

Navarro, 2023 [29]

Canada

All rights reserved. No reuse allowed without permission.
<table>
<thead>
<tr>
<th>Study</th>
<th>Study Design</th>
<th>Population</th>
<th>Study Period</th>
<th>Data Source</th>
<th>Vaccine Coverage</th>
<th>Incidence Rate Ratio</th>
<th>VE Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payne, 2022 [22]</td>
<td>Case-coverage</td>
<td>Mpox cases; vaccine coverage estimated in MSM with HIV or eligible for HIV pre-exposure prophylaxis</td>
<td>31 Jul 2022 to 01 Oct 2022</td>
<td>Cases: Public health surveillance data from 43 jurisdictions across the US; coverage population of MSM/HIV pre-exposure prophylaxis recipients estimated (no individual patient-level data)</td>
<td>Cases: 9,544 Population used for coverage estimate: NR</td>
<td>PrEP ± PEP</td>
<td>Incidence rate ratio was calculated comparing that of unvaccinated individuals to vaccinated individuals with one or two doses</td>
</tr>
<tr>
<td>Ramchandani, 2023 [23]</td>
<td>Retrospective cohort</td>
<td>MSM attending sexual health clinics</td>
<td>01 May 2022 to 31 Dec 2022</td>
<td>Public health institutions, vaccination registries and surveillance data from Seattle and King County, Washington</td>
<td>204 mpox cases 4,230 MSM attended the clinic</td>
<td>PrEP ± PEP</td>
<td>VE calculated as 1 - hazard rate among vaccinated group/hazard rate among unvaccinated group • By dose (one or two)</td>
</tr>
<tr>
<td>Rosen, 2024 [24]</td>
<td>Retrospective cohort study</td>
<td>Individuals exposed to persons with confirmed mpox</td>
<td>22 May 2022 to 24 Aug 2022</td>
<td>Public health surveillance data from the New York City Department of Health and Mental Hygiene</td>
<td>PEP: 594 PEP: 471</td>
<td>PEP</td>
<td>VE calculated as 1 - adjusted odds among vaccinated group/odds among unvaccinated group • By time from first and last exposure to vaccination • By method; target trial emulation or conventional</td>
</tr>
<tr>
<td>Rosenberg, 2023 [25]</td>
<td>Case-control</td>
<td>Mpox cases; controls were males with rectal gonorrhea or primary syphilis diagnosed within the same time frame as the mpox cases, and with presumptive sexual contact with a male or transgender person</td>
<td>02 Jun 2022 to 31 Dec 2022</td>
<td>Public health surveillance data covering New York State (excluding NYC); CDESS</td>
<td>Cases:252 Controls: 255</td>
<td>PrEP ± PEP</td>
<td>VE calculated as: 1 - odds of vaccination among cases/odds of vaccination among controls • By dose (one, two or both) • By time intervals after receipt of one or two doses</td>
</tr>
<tr>
<td>Study</td>
<td>Study Design</td>
<td>Location</td>
<td>Population</td>
<td>Procedure</td>
<td>Analysis</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
</tbody>
</table>
| Schildhauer, 2023 [26] | Retrospective cohort | United States | California residents diagnosed with mpox | 250 mpox-associated hospitalizations | PrEP ± PEP | Odds of hospitalization among persons with mpox who were vaccinated compared with those who were unvaccinated were calculated:
- By dose (one or two)
- By strategy (PEP or PrEP)
- By HIV status
- By dose and HIV status
- By strategy and HIV status |
| Wolff Sagy, 2023 [34] | Retrospective cohort | Israel | Males aged 18–42 years who were (a) dispensed HIV pre-exposure prophylaxis at least for 1 month since 1 January 2022, or (b) diagnosed with HIV and also were diagnosed with one or more STIs since 1 January 2022 HER database from a large healthcare system operating across Israel (52% of population covered); CHS | 2,054 | PrEP ± PEP | VE calculated as 1 - hazard rate among vaccinated group/hazard rate among unvaccinated group |
CDESS: The Communicable Disease Electronic Surveillance System; CHS: Clalit Health Services; GBMSM: gay, bisexual, and other men who have sex with men; HIV: human immunodeficiency virus; IC: immunocompromised; MSM: men who have sex with men; NHS: National Health Service; NYC: New York City; PEP: post-exposure prophylactic vaccination; PEP: post-exposure prophylactic vaccination; PrEP: pre-exposure prophylactic vaccination; STI: sexually transmitted infection; US: United States; VE: vaccine effectiveness.

a Sample size as used in the main VE analysis; b The studies focused either on PrEP or on PEP. In the former case, studies may have inadvertently included some PEP recipients and these studies are designated as ‘PrEP ± PEP’; c The mpox outbreak in Montreal, Canada, during 2022; d The number of lesions, sites affected by lesions, and other clinical manifestations (OCM); e Number of participants receiving MVA-BN as PEP limited by exclusion of those receiving the vaccine ≤13 days before their index date. VE for PEP was not estimated due to small sample sizes; f General symptoms: exanthema, lymphadenopathy, proctitis, mouth ulcers, ocular involvement, bacterial superinfection of lesions, bronchopneumonia, and general symptoms such as fever, asthenia, odynophagia, muscle pain, headache, other; g Polysymptomatic disease: Four or more symptoms described in ‘general symptoms’. h Analyses of VE were conducted separately for MVA-BN vaccine administered as PEP ≤14 days after the last exposure (PEP_L) and for PEP administered ≤14 days after the first exposure (PEP_F).
Table 2. Vaccine effectiveness estimates against symptomatic mpox disease ≥14 days after vaccination for MVA-BN administered exclusively or primarily as pre-exposure prophylactic vaccination

<table>
<thead>
<tr>
<th>Author, date</th>
<th>Study design</th>
<th>Study population</th>
<th>Sample size, n</th>
<th>Crude VE (95% CI)</th>
<th>Adjusted VE (95% CI)</th>
<th>Statistical methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bertran, 2023 [32]</td>
<td>Case-coverage</td>
<td>Mpx cases; vaccine coverage estimated in at-risk GBMSM population</td>
<td></td>
<td>78% (54–89)</td>
<td>NR</td>
<td>Basic rate comparison without adjustment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cases: 330 Population used for coverage estimate: 89,240</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brousseau, 2023 [28]</td>
<td>Test-negative case-control</td>
<td>Individuals with a specimen submitted for mpox testing</td>
<td></td>
<td>33% (2–54)</td>
<td>NR</td>
<td>Logistic regression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cases: 231 Controls: 301</td>
<td></td>
<td></td>
<td></td>
<td>Adjustment for age, calendar time, STI tests and diagnosis, HIV status</td>
</tr>
<tr>
<td>Charles, 2024 [33]</td>
<td></td>
<td>Confirmed positive or highly probable mpox case; vaccine</td>
<td></td>
<td>84% (74–91)</td>
<td>80% (69–83)</td>
<td>Basic rate comparison without adjustment</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Population</td>
<td>Case-control Mpox cases; Controls</td>
<td>One dose</td>
<td>Two doses</td>
<td>Conditional logistic regression</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>----------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Deputy, 2023 [21]</td>
<td>Mpx cases; Controls with incident HIV infection or taking HIV pre-exposure prophylaxis</td>
<td>Cases: 2,168 Controls: 7,984</td>
<td>52% (42–60)</td>
<td>77% (65–85)</td>
<td>36% (22–47)</td>
<td>66% (47–78)</td>
</tr>
<tr>
<td>Navarro, 2023 [29]</td>
<td>Individuals with at least one syphilis test in the previous year, a new diagnosis of one or more bacterial STIs in the previous year or who filled a prescription for HIV pre-exposure prophylaxis in the previous year</td>
<td>Exposed: 3,204 Unexposed: 3,204</td>
<td>NR</td>
<td>NR</td>
<td>59% (31–76)</td>
<td>NR</td>
</tr>
<tr>
<td>Dalton, 2023 [20]</td>
<td>Mpx cases; controls were MSM/transgender adults visiting sexual health/HIV care/HIV pre-exposure prophylaxis clinics</td>
<td>One dose: Cases: 281 Controls: 430</td>
<td>76% (65–83)</td>
<td>87% (79–93)</td>
<td>75% (61–84)</td>
<td>86% (74–92)</td>
</tr>
<tr>
<td>Haverkate, 2023</td>
<td>Mpx cases; vaccine coverage calculated</td>
<td>Cases: 162 Population for</td>
<td>NR</td>
<td>68% (4–90)</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Notes:
- **Case-coverage** coverage estimated in at-risk GBMSM population in England estimate: 89,240
- **Deputy, 2023** [21] estimate: 89,240
- **Fontán-Vela, 2023** [30] estimate: 89,240
- **Navarro, 2023** [29] estimate: 89,240
- **Dalton, 2023** [20] estimate: 89,240
- **Haverkate, 2023** estimate: 89,240
- **PrEP ± PEP** estimate: 89,240

Methodology Notes:
- **Conditional logistic regression** with adjustment for age, race or ethnic group, SVI score, and the presence or absence of IC conditions.
- **Basic rate comparison without adjustment**
- **Cox proportional hazards model** with adjustment for age, geographic region, proxies for sexual exposures (number of bacterial STIs in the previous three years, HIV status), and history of receipt of any non-MVA-BN vaccine in the previous year.
<table>
<thead>
<tr>
<th>Study</th>
<th>Case-control/Object</th>
<th>Population</th>
<th>Vaccination Coverage Calculation</th>
<th>Population Vaccinated as an Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>[35]</td>
<td>Case-coverage</td>
<td>in population invited for vaccination (GBMSM/transgender persons using/on the waiting list for HIV pre-exposure prophylaxis or at high risk for mpox)</td>
<td>coverage calculation: 39,657</td>
<td>population vaccinated as an offset</td>
</tr>
<tr>
<td>Payne, 2022 [22]</td>
<td>Case-coverage</td>
<td>Mpox cases; vaccine coverage estimated in MSM with HIV or eligible for HIV pre-exposure prophylaxis</td>
<td>One dose: Cases: 8,712 Population used for coverage estimate: NR</td>
<td>IRR: negative binomial regression, controlling for week</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Two doses: Cases: 48 Population used for coverage estimate: NR</td>
<td></td>
</tr>
<tr>
<td>Ramchandani, 2023 [23]</td>
<td>Retrospective cohort</td>
<td>MSM attending sexual health clinics</td>
<td>Exposed: 1837 Nonexposed: 2,393</td>
<td></td>
</tr>
<tr>
<td>Rosenberg, 2023 [25]</td>
<td>Case-control</td>
<td>Mpox cases; controls were males with rectal gonorrhea or primary syphilis diagnosed within the same time frame as the mpox cases, and with presumptive sexual contact with a male or transgender person</td>
<td>One dose: Cases: 240 Controls: 227</td>
<td>Conditional logistic regression</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Two doses: Cases:232 Controls: 223</td>
<td>Adjustment for age, race/ethnicity; and region within New York outside NYC</td>
</tr>
<tr>
<td>Wolff Sagy, 2023 [34]</td>
<td>Individuals considered at high risk for infection and eligible for the vaccine</td>
<td>Exposed: 1,037 NR</td>
<td>Unexposed: 1,017 NR</td>
<td>86% (59–95) NR</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Retrospective cohort</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CI: confidence interval; GBMSM: gay, bisexual, and other men who have sex with men; HIV: human immunodeficiency virus; IC: immunocompromised; MSM: men who have sex with men; NR: not reported; NYC: New York City; PDE5: phosphodiesterase 5; SHC: sexual health clinic; STI: sexually transmitted infection; SVI: social vulnerability index; VE: vaccine effectiveness.

a Includes one individual who reported having received three doses; *b* Studies that focused on PrEP but may have inadvertently included some PEP recipients; *c* Calculated by the authors of this systematic literature review; *d* ≥0 days after the second dose; *e* Also includes cases <14 days after vaccination.
Table 3. Vaccine effectiveness estimates against symptomatic mpox disease ≥14 days after second dose for MVA-BN administered as post-exposure prophylactic vaccination

<table>
<thead>
<tr>
<th>Author, date</th>
<th>Study design</th>
<th>Study population</th>
<th>Sample size, n</th>
<th>Crude VE % (95% CI)</th>
<th>Adjusted VE (95% CI)</th>
<th>Statistical methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>One dose</td>
<td>Two doses</td>
<td>One dose</td>
<td>Two doses</td>
</tr>
<tr>
<td>Montero Morales, 2023 [31]</td>
<td>Prospective cohort study</td>
<td>Close contacts of laboratory-confirmed mpox cases</td>
<td>Exposed: 230</td>
<td>84% (66–92)</td>
<td>NR</td>
<td>89% (76–95)<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unexposed: 254</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unexposed: 261</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PEP<sub>F</sub>: Exposed: 183</td>
<td></td>
<td></td>
<td>Target trial PEP<sub>F</sub>: 19% (-54–57)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unexposed: 288</td>
<td></td>
<td></td>
<td>PEP<sub>F</sub>: -7% (-144–53)</td>
</tr>
</tbody>
</table>

CI: confidence interval; HIV: human immunodeficiency virus; NR: not reported; PEP: post-exposure prophylaxis; VE: vaccine effectiveness.

^a Also includes cases <14 days after vaccination; ^b Analyses of VE were conducted separately for MVA-BN vaccine administered as PEP ≤14 days after the last exposure (PEP_L) and for PEP administered ≤14 days after the first exposure (PEP_F).
<table>
<thead>
<tr>
<th>Author, date</th>
<th>Study design</th>
<th>Study population</th>
<th>Sample size, n</th>
<th>Crude VE (95% CI)</th>
<th>Adjusted VE (95% CI)</th>
<th>Statistical methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schildhauer, 2023 [26]</td>
<td>Retrospective cohort</td>
<td>One dose of MVA-BN, ≥14 days after vaccination</td>
<td>California residents diagnosed with mpox</td>
<td>Exposed: 230 Unexposed: 3,845</td>
<td>73% (35–92)(^a) NR</td>
<td>Binomial logistic regression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Two doses of MVA-BN, ≥14 days after 2nd dose</td>
<td>California residents diagnosed with mpox</td>
<td>Exposed: 79 Unexposed: 3,845</td>
<td>80% (10–99)(^a) NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>One dose of MVA-BN after a known or suspected exposure, <14 days after vaccination</td>
<td>California residents diagnosed with mpox</td>
<td>Exposed: 457 Unexposed: 3,845</td>
<td>58% (28–78)(^a) NR</td>
<td></td>
</tr>
<tr>
<td>Allard, 2024 [27]</td>
<td>Retrospective cohort</td>
<td>Numbers of skin lesions at day 1 (one dose)(^b)</td>
<td>Individuals with mpox</td>
<td>Exposed: 59 Unexposed: 344</td>
<td>NR 60% (21–80)</td>
<td>Multivariate logistic regression Adjustment for each other clinical manifestation and age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Body sites affected at day 1 (one dose)(^b)</td>
<td>Individuals with mpox</td>
<td>Exposed: 59 Unexposed: 344</td>
<td>NR 76% (54–87)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCM (^b) (one dose)(^b)</td>
<td>Individuals with mpox</td>
<td>Exposed: 59 Unexposed: 344</td>
<td>NR 59% (26–77)</td>
<td></td>
</tr>
<tr>
<td>Montero Morales, 2023 [31]</td>
<td>Prospective cohort</td>
<td>General symptoms (^c) (one dose PEP)</td>
<td>Close contacts of laboratory-confirmed mpox cases</td>
<td>Exposed: 230 Unexposed: 254</td>
<td>68.8% (-1.5–90.4) 71.6% (18.1–90.2)</td>
<td>Survival analysis Adjustment for age, sex, type of close contact, HIV pre-exposure prophylaxis user and HIV infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polysymptomatic disease (^c) (one dose PEP)</td>
<td>Close contacts of laboratory-confirmed mpox cases</td>
<td>Exposed: 230 Unexposed: 254</td>
<td>87.5% (6.2–98.3) 85.5% (26.7–91.1)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) NR indicates not reported.
CI: confidence interval; HIV: human immunodeficiency virus; NR: not reported; PEP: post-exposure prophylactic vaccination; VE: vaccine effectiveness.

- Calculated by the authors of this systematic literature review; Vaccine administered ≥14 days before the onset of symptoms; Other clinical manifestations (OCM): fever, adenopathy, fatigue, muscle pains, headaches, backaches, sweating, rectal pain, nausea and vomiting, sore throat etc. General symptoms: fever, asthenia, odynophagia, muscle pain, headache, other; Polysymptomatic disease: four or more symptoms described in ‘general symptoms’.
Figure captions

Figure 1. PRISMA flowchart

DE: data extraction; FT: full-text review