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Abstract 38 

Structural and functional changes of the brain are assumed to contribute to excessive cocaine intake, 39 

craving, and relapse in cocaine use disorder (CUD). Epigenetic and transcriptional changes were 40 

hypothesized as a molecular basis for CUD-associated brain alterations. Here we performed a multi-41 

omics study of CUD by integrating epigenome-wide methylomic (N=42) and transcriptomic (N=25) data 42 

from the same individuals using postmortem brain tissue of Brodmann Area 9 (BA9). Of the N=1,057 43 

differentially expressed genes (p<0.05), one gene, ZFAND2A, was significantly upregulated in CUD at 44 

transcriptome-wide significance (q<0.05). Differential alternative splicing (AS) analysis revealed N=98 45 

alternatively spliced transcripts enriched in axon and dendrite extension pathways. Strong convergent 46 

overlap in CUD-associated expression deregulation was found between our BA9 cohort and 47 

independent replication datasets. Epigenomic, transcriptomic, and AS changes in BA9 converged at two 48 

genes, ZBTB4 and INPP5E. In pathway analyses, synaptic signaling, neuron morphogenesis, and fatty 49 

acid metabolism emerged as the most prominently deregulated biological processes. Drug repositioning 50 

analysis revealed glucocorticoid receptor targeting drugs as most potent in reversing the CUD 51 

expression profile. Our study highlights the value of multi-omics approaches for an in-depth molecular 52 

characterization and provides insights into the relationship between CUD-associated epigenomic and 53 

transcriptomic signatures in the human prefrontal cortex.  54 

 55 

Introduction  56 

Cocaine use disorder (CUD) is a globally prevalent substance use disorder (SUD) with around 4.2 million 57 

people worldwide being diagnosed with CUD1. Individuals suffering from CUD present with compulsive 58 

cocaine use patterns, strong cocaine craving, and high rates of relapse even after prolonged time of 59 

abstinence2. Currently, there is no FDA-approved pharmacotherapy for CUD and treatment is mainly 60 

focused on symptom reduction3. Neurobiological alterations in the brain are assumed to contribute to 61 

the observed clinical symptoms in CUD4. This is supported by neuroimaging studies that have shown 62 

profound structural and functional alterations in the brain in individuals with CUD5,6. In addition to striatal 63 

brain regions involved in reward processing7, frontal cortical areas that are neuroanatomically connected 64 

with limbic structures, are implicated in addiction due to their importance for inhibitory control5,6,8.  65 

 66 



Dynamic changes in epigenetics and gene expression were hypothesized as a molecular basis of CUD-67 

associated brain changes9,10. So far, the majority of studies investigating brain tissue focused on rodent 68 

models of cocaine addiction, identifying specific genomic loci to be differentially methylated in brain 69 

regions such as the prefrontal cortex (PFC)11 and nucleus accumbens (NAc)12. Gene expression levels 70 

are tightly regulated by epigenetic mechanisms and DNA methylation (DNAm) changes especially in 71 

gene promoter regions were shown to alter transcript abundance13. In line with this, differential gene 72 

expression in rodent models of cocaine addiction was reported in different brain regions where 73 

transcription factors of the immediate early gene (IEG) family such as Egr1, Nr4a1, and Fos were found 74 

to be differentially expressed14-17. At the transcriptome-wide scale, differentially expressed genes were 75 

consistently enriched in biological processes related to neurotransmission and ion channel activity, but 76 

also metabolic alterations related to lipid metabolism and ATP homeostasis were found14.  77 

 78 

Few studies have been performed investigating genome-wide DNAm or transcriptomic changes in CUD 79 

in human postmortem brain tissue. Two epigenome-wide studies using reduced representation bisulfite 80 

sequencing (RRBS) in a cohort of N=25 individuals with CUD and N=25 control individuals identified 81 

N=145 and N=173 CUD-associated differentially methylated regions (DMRs) in the nucleus accumbens 82 

(NAc)18 and in the caudate nucleus (CN)19, respectively. Investigating the same brain regions in a 83 

different cohort (N=25 CUD cases, N=20 controls), another study characterized transcriptome-wide 84 

gene expression changes and reported on the upregulation of synaptic transmembrane transporter 85 

genes while immune processes were downregulated20. The largest study in the human PFC 86 

investigating CUD-associated transcriptomic changes (N=19 CUD, N=17 controls) identified N=883 87 

nominally significant (p<0.05) differentially expressed genes (DEGs) in neuronal nuclei from the 88 

Brodmann Area 46 subregion21. CUD-associated co-expression networks were enriched for GTPase 89 

signaling and neurotransmitter secretion. Regarding epigenomic alterations in the PFC, we were 90 

previously able to identify 20 CUD-associated DMRs in Brodmann Area 9, a subregion of the PFC, and 91 

further detected that co-methylation networks in CUD were enriched for synaptic signaling processes22. 92 

Although epigenetics represents an important regulatory mechanism for transcription, the co-regulation 93 

of DNAm and gene expression in the same brain samples has not yet been investigated in CUD, limiting 94 

the comparability of results between epigenetic and gene expression studies. 95 

 96 



In addition to epigenetics and transcription, alterations of alternative splicing might contribute to the 97 

neurobiological changes in the CUD brain, as shown in other SUDs. Previous studies using postmortem 98 

human brain tissue from individuals with alcohol use disorder (AUD)23-25 and opioid use disorder (OUD)26 99 

detected differential alternative splicing in transcripts of genes implicated in neuropsychiatric disorders, 100 

such as BIN1, FLOT1, and ELOVL7 suggesting RNA splicing alterations to be a further molecular 101 

mechanism in the neurobiology of SUDs. While a recent study using a cocaine self-administration model 102 

in mice showed widespread changes in alternative splicing in multiple brain regions27, no systematic 103 

evaluation of splicing alterations in human CUD was performed so far.  104 

 105 

In the present study, we aimed to characterize the molecular underpinings of CUD in the human 106 

prefrontal cortex by applying a multi-omics analysis approach. We investigated differentially expressed 107 

genes in postmortem brain tissue from deceased CUD cases compared to well-matched controls and 108 

integrated them with the results of our epigenome-wide DNAm analysis18 from the same individuals of 109 

the BA9 subregion of the human PFC. Further, we characterized differential alternative splicing in BA9. 110 

We then performed replication analysis of CUD-associated DEGs in two other independent RNA-seq 111 

datasets of human dlPFC. Gene expression data, including alternative splicing results, and DNA 112 

methylation data were then integrated and put into a biological context. Finally, we addressed the urgent 113 

need for novel therapeutic approaches, by performing a drug repositioning analysis based on the CUD-114 

associated transcriptional profile in BA9.  115 

 116 

Collectively, our multi-omics study design represents an integrated analysis of DNAm and gene 117 

expression data together with alternative transcript splicing that highlights the role of synaptic and 118 

metabolic alterations in CUD and the glucocorticoid receptor as a pharmacological candidate target. 119 

 120 

Results  121 

Individuals with and without CUD do not differ in sociodemographic characteristics and cell type 122 

composition  123 

We first assessed the phenotypic similarities between CUD cases and controls. No significant 124 

differences were observed regarding the pH value of the brain, postmortem interval (PMI), RNA integrity 125 

number (RIN), and occurrence of comorbid depressive and alcohol use disorders (Supplementary Table 126 

S1). We further investigated the variance partition of potential covariates in the RNA-seq dataset 127 



(Supplementary Fig. S1a) and found age, PMI, brain pH, and RIN to be associated with gene expression 128 

levels, and hence included them as covariates in further analyses. To explore whether major cell type 129 

composition could affect analysis results, we performed a cell type deconvolution analysis using 130 

CIBERSORT based on human PFC major cell type marker gene signatures (Supplementary Fig. S1b, 131 

Supplementary Table S2a). No significant differences in the distribution of major cell types such as 132 

astrocytes, oligodentrocytes, microglia, neurons and others were detected between samples from 133 

individuals with and without CUD as all 95% high-density intervals from the Bayesian estimation 134 

contained 0 (Supplementary Table S2b).  135 

 136 

Transcriptome-wide differential gene expression patterns in CUD are related to synaptic 137 

signaling, ion transport, and inflammatory processes 138 

The transcriptome-wide analysis of differential expression in BA9 revealed a total of N=1,057 DEGs 139 

associated with CUD (p<0.05). Of these, N=378 were upregulated and N=679 were downregulated (Fig. 140 

1a, Supplementary Table S3). After adjustment for multiple testing, ZFAND2A (Zinc Finger AN1-Type 141 

Containing 2A, log2FC=0.43, p=1.98e-06, q=0.04), remained significantly upregulated in individuals with 142 

CUD (5% FDR). We observed a genomic inflation factor of l=1.29 (Supplementary Fig. S1c) and results 143 

were stable in a sensitivity analysis without individuals with AUD or MDD (Supplementary Fig. S1d). To 144 

evaluate whether BA9 DEGs are significantly enriched within cell-type specific genes of the human PFC, 145 

we performed an overlap analysis, using the same set of major brain cell type marker genes as in the 146 

cell type composition analysis. Upregulated DEGs were significantly enriched for neuron marker genes 147 

exclusively, whereas downregulated DEGs were significantly enriched in markers of non-neuronal cell 148 

types such as astrocytes, endothelial cells, and oligodendrocytes (Fig. 1b).  149 

 150 

Next, we were interested in the biological functions related to the identified CUD-associated DEGs. After 151 

adjusting for multiple testing, we detected N=276 statistically significant GO terms for positive GSEA 152 

normalized enrichment scores (NES, Supplementary Table S4) and N=782 significant GO terms for 153 

negative NES (Supplementary Table S5). Among significantly enriched pathways, the largest positive 154 

NES was detected for “vesicle-mediated transport in synapse” (NES=2.63, q=5.31e-15), whereas 155 

“superoxide metabolic process” (NES=-2.43, q=2.08e-06) was the top finding with negative NES. To 156 

identify functional modules of pathways consisting of multiple GO terms related to similar biological 157 

functions, we created an enrichment map (emap) visualization based on the significant findings from 158 



GSEA. For GO terms with negative NES, we detected one large cluster related to inflammatory and 159 

immune signaling and several smaller clusters consisting of pathways involved in angiogenesis, 160 

extracellular matrix (ECM) organization, and gliogenesis (Fig. 1c). Two major clusters emerged for 161 

pathways with positive NES. The first was related to neurotransmission and synaptic signaling whereas 162 

the second cluster consisted of GO terms involved in transmembrane transporter activity (Fig. 1d).   163 

 164 
Fig. 1 – Differential expression analysis in CUD suggests synaptic signaling and immunological alterations in Brodmann 165 
Area 9  166 
a Volcano plot of the differential expression (DE) analysis showing the N=378 upregulated (red) and N=679 downregulated genes 167 
(blue) at nominal significance (p<0.05). Solid black line indicates nominal significance (p<0.05), dashed gray line indicates 168 
transcriptome-wide significance (FDR q<0.05). b Results of the overlap analysis for upregulated (up) and downregulated (down) 169 



DEGs among cell-type specific marker genes. Green color depicts the odds ratio (OR) of overlap, p-values inside the panels 170 
indicates significance of overlap based on Fisher-Test. Gene-set enrichment analysis (GSEA) was performed for the DEGs in 171 
BA9 ranked by the Wald test statistic from DESeq2. Statistically significant results (q<0.05) from GSEA separated by c negative 172 
and d positive normalized enrichment scores (NES) are shown in an enrichment map visualization. N.S. = not significant, OPC = 173 
oligodendrocyte progenitor cell.  174 

 175 

Network analysis highlights fatty-acid metabolism and morphogenesis processes in CUD 176 

We next performed weighted gene co-expression network analysis (WGCNA) to investigate gene co-177 

expression patterns in CUD and detected a total of N=27 co-expression modules (Supplementary Fig. 178 

S2a+2b). Co-expression module yellow was significantly correlated with CUD (r=-0.47, p=0.02) while 179 

no significant association with other known covariates was observed (Supplementary Fig. S2a). Module 180 

yellow consisted of N=2,517 genes and module membership was highly correlated with gene 181 

significance for CUD (r=0.61, p<1e-200, Supplementary Fig. S2c, Table S6). GO enrichment analysis 182 

for module yellow genes revealed N=519 statistically significant GO terms after multiple testing 183 

correction (Supplementary Table S7). Strongest associations were detected for “small molecule 184 

catabolic process” (q=2.22e-11), and more specifically, “carboxylic acid catabolic process” (q=1.59e-09, 185 

Supplementary Fig. S2d). After clustering the significant terms, a prominent GO term cluster related to 186 

fatty acid metabolism was detected, while another cluster was related to organ developmental and 187 

morphogenesis processes. To further characterize WGCNA expression module yellow, we generated a 188 

protein-protein interaction (PPI) network based on module hub genes and identified APOE (N=9 edges), 189 

ERBB2 (N=8 edges), ALDH7A1 (N=7 edges), PPARA (N=7 edges), and TLR4 (N=7 edges) as the most 190 

strongly connected nodes in the PPI network (Supplementary Fig. S3, Supplementary Table S6).  191 

 192 

Genes with alternative splicing events in CUD are involved in cell junction formation and the 193 

morphogenesis of axons and dendrites 194 

To investigate alternative splicing in CUD and its potential relevance for contributing to altered 195 

neurobiological functions in the brain, we performed a differential alternative splicing analysis using 196 

LeafCutter28. After multiple testing correction, we identified a total of N=108 differentially spliced intron 197 

clusters in BA9 (FDR<0.05, Fig. 2a, Supplementary Tables S8-S10). These clusters were distributed 198 

among N=98 genes that we further denote as alternatively spliced (AS) genes. One of the top findings 199 

in our AS analysis of CUD was BIN1 (Bridging Integrator 1, q=7.8e-04, Fig. 2b) previously identified as 200 

a conserved AS genes in other substance use disorders. We next investigated the biological pathways 201 



enriched for alternative splicing events based on our list of AS genes. Statistically significant enrichment 202 

after multiple testing correction was detected for N=15 GO terms (Supplementary Table S10). Strongest 203 

enrichment was found for GO terms “cell junction assembly” and “neuron projection extension” (both 204 

q=3.62e-03). In the emap visualization of enriched GO terms with a more lenient threshold of 25% FDR 205 

(q<0.25), we detected a well-connected cluster containing GO terms related to cellular growth and cell-206 

cell junction development, while also more brain-specific processes such as myelination and the 207 

extension of axons and dendrites were found (Fig. 2c). While differential alternative splicing itself 208 

contributes to altered biological functions by inducing different abundances of transcript isoforms, this 209 

effect might be potentiated by differential gene expression. We thus investigated the overlap of AS and 210 

DEGs in CUD and identified 8 genes that were differentially spliced and differentially expressed in BA9: 211 

ITPKB, CPLX1, HLA-F, INPP5E, GALNT8, IGFBP6, ZBTB4, and BCAT2 (Fig. 2d).   212 

 213 



 214 

Fig. 2 – Differential alternatively spliced genes in CUD are related to neuron morphogenetic processes 215 
a Volcano plot of the differential alternative splicing (AS) results in Brodmann Area 9 (BA9). Statistically significant intron clusters 216 
(N=108) identified by LeafCutter (q<0.05) were annotated by gene name while dots represent individual introns of an intron cluster. 217 
Introns highlighted in red (dPSI>0) are more abundant in CUD while introns highlighted in blue (dPSI<0) are less abundant in 218 
CUD. b Results of the differential AS analysis at the cluster and gene level for one of the top findings, an intron cluster (clu_14172_-219 
) in the Bridging Integrator 1 (BIN1) gene. Upper panel: visualization of BIN1 exons and introns with percent spliced in (PSI) 220 
measures related to the significant cluster clu_14172_-. The table indicates delta percent spliced in (dPSI) values from the CUD 221 
vs. Ctrl comparison. Lower panel: gene-level summary of all intron clusters detected in BIN1. FDR q-values are shown below 222 
cluster names. c GO enrichment analysis for the N=98 AS genes harboring differentially statistically significant (q<0.05) intron 223 
clusters in CUD. d Overlap of findings from differential expression (DE) analysis (N=1057 DEGs at p<0.05) and differential AS 224 
analysis.  225 



Replication analysis in independent cohorts reveals FKBP4 and HSPA6 as conserved DEGs in 226 

CUD 227 

To evaluate the potential replication of CUD-associated DEGs in other RNA-seq datasets of human 228 

PFC, we performed an overlap analysis of nominally significant DEGs (p<0.05) across studies. CUD-229 

associated differential expression testing was performed in two independent replication datasets, the 230 

first originating from BA9 (BA9 replication, bulk RNA-seq) and the second from BA46 (BA46 replication, 231 

neuron-specific RNA-seq). Two genes, HSPA6 and FKBP4, were shared upregulated DEGs at nominal 232 

significance and showed comparable effect sizes (log2FC) in CUD across all three PFC datasets (Fig. 233 

3a+c). As HSPA6 is a spliceosome-associated gene with conserved differential expression across 234 

datasets, we performed a look-up of genes related to the KEGG Spliceosome pathway (hsa03040) in 235 

DE results from our discovery cohort (Fig. 3b). Here, we aimed to address the hypothesis of 236 

spliceosomal differential gene expression as a potential mechanism for splicing alterations in CUD29. 237 

HSPA6 was the spliceosome-associated gene showing strongest CUD-associated expression changes 238 

in BA9 (log2FC=2.59, p=0.002). We detected six additional spliceosome-associated genes that were 239 

among nominally significant DEGs: HSPA1A (log2FC=0.71, p=0.034), CRNKL1 (log2FC=-0.19, 240 

p=0.011), LSM6 (log2FC=-0.24, p=0.014), SRSF4 (log2FC=-0.14, p=0.022), SNRPG (log2FC=-0.20, 241 

p=0.037), and TRA2A (log2FC=-0.14, p=0.036).  242 

 243 

Using rank-rank hypergeometric overlap (RRHO) visualization for a more unbiased evaluation of 244 

convergent and divergent gene expression patterns across studies, we found strong convergent overlap 245 

between the BA9 discovery and BA9 replication datasets indicating similar patterns of CUD-associated 246 

expression deregulation (Fig. 3d). In the comparison with neuron-specific expression data from BA46, 247 

we found prominent divergent gene expression patterns between datasets, while convergent expression 248 

patterns were enriched in the shared upregulated genes across studies (Fig. 3e).  249 



Fig. 3 – Replication analysis of CUD associated transcriptomic alterations in independent datasets 250 
a Overlap of nominally significant (p<0.05) differentially expressed genes across datasets reveals two shared DEGs, HSPA6 and 251 
FKBP4. The replication datasets were based on N=21 BA9 samples from the National PTSD Brain Bank (NPBB) and neuronal-252 
specific transcriptomic data of N=36 BA46 samples available under GEO accession number GSE99349 (BA46 replication). b 253 
HSPA6 is the strongest spliceosome-associated DEG in BA9. c Results of the look-up analysis for shared DEGs HSPA6 and 254 
FKBP4 - log2-fold change and p-value: association p-value from the DESeq2-based differential expression results. Significant 255 
associations are highlighted in bold. Rank-rank hypergeometric overlap (RRHO) visualization for d the BA9 replication dataset 256 
and e the neuronal-specific BA46 dataset indicating convergent and divergent expression patterns across studies using full 257 



differential expression statistics as the input datasets. Color scale represents -log10(p) of the hypergeometric testing procedure in 258 
RRHO. Convergent expression across datasets: up-up and down-down, divergent: up-down and down-up.   259 
 260 

Drug repositioning analysis highlights glucocorticoid receptor targeting drugs to reverse the 261 

CUD gene expression profile 262 

To evaluate the potential use of small molecule drugs to revert the gene expression pattern of CUD, we 263 

performed drug repositioning analysis based on the L1000 assay as implemented in CMap 264 

(Supplementary Fig. S4a), using the top 150 up- and downregulated genes as input (Supplementary 265 

Table S11). Among the results with negative normalized connectivity score (NCS), i.e. perturbagens 266 

that revert the DE profile in CUD, the most significant finding for small molecule drugs after multiple 267 

testing correction was the glucocorticoid receptor agonist medrysone (NCS=-1.78, q=2.2e-16, 268 

Supplementary Fig. S4b). Glucocorticoid receptor agonists were the only FDR-significant perturbagen 269 

class overrepresented among CMap GSEA results (Supplementary Fig. S4c). When we further 270 

investigated connectivity scores for all glucocorticoid receptor targeting drugs including agonists and 271 

antagonists in CMap, we found exclusively significant negative connectivity scores (Supplementary Fig. 272 

S4d) suggesting glucocorticoid receptor targeting molecules as potential pharmacological drugs to 273 

revert the CUD expression changes in BA9. In line with this finding, the biological pathway “response to 274 

glucocorticoid” (NES=-1.54, q=0.019, Supplementary Table S5) was among the FDR-significant 275 

pathways with negative NES in the GSEA analysis of DEGs from BA9.  276 

 277 

Findings of the integrated analysis of DNA methylation and gene expression data converge at 278 

the gene and pathway levels 279 

As DNA methylation data was available and previously analyzed for the same cohort in BA9, we next 280 

aimed to integrate findings from the epigenome-wide and transcriptome-wide studies on the gene-level, 281 

applied multi-omics factor analysis, and performed an integrative functional GO-term enrichment 282 

analysis across all –omics layers. 283 

 284 

Gene-level integration of epigenomic, transcriptomic and splicing alterations highlights ZBTB4 and 285 

INPP5E in CUD 286 

Of the overlapping genes between the differential methylation, expression, and alternative splicing 287 

analyses, two genes were consistently altered across all the investigated molecular views in BA9: 288 

ZBTB4 (Zinc Finger And BTB Domain Containing 4) and INPP5E (Inositol polyphosphate-5-289 



phosphatase E) (Fig. 4a, Supplementary Table S12). Both genes were characterized by a 290 

hypomethylated CpG site and increased transcript levels in CUD (Fig. 4b). For ZBTB4, the strongest 291 

association for a CpG site was found for cg03443505 (chr17:7387573, ,b=-0.84, p=1.01e-05). ZBTB4 292 

was upregulated with a log2FC of 0.08 (p=0.015) and it contained the differentially spliced intron cluster 293 

chr17:clu_10246_- (q=0.028). The strongest association for CpG differential methylation in the INPP5E 294 

gene was found for cg18558462 (chr9:139334381, b=-0.93, p=8.55e-03). It was differentially expressed 295 

with log2FC of 0.17 (p=0.025) and intron cluster chr9:clu_25078_- was differentially alternatively spliced 296 

(q=0.015). In the replication datasets, we detected conserved transcript upregulation of ZBTB4 (BA9 297 

replication, log2FC=0.12, pval=0.21; BA46, log2FC=0.12, pval=0.09) and INPP5E (BA9 replication, 298 

log2FC=0.11, pval=0.47; BA46, log2FC=0.08, pval=0.49), however not statistically significant. To 299 

deeper characterize the ZBTB4 and INPP5E gene loci in BA9 and specifically in the context of CUD, we 300 

performed an integrative gene locus visualization approach by combining GWAS, EWAS, alternative 301 

splicing, and RNA-seq results for CUD with ENCODE ChIP-seq reference data from human dorsolateral 302 

prefrontal cortex. ChIP-seq data confirmed the presence of activating chromatin marks at promoter 303 

(H3K4me4, H3K27ac) and gene body regions (H3K36me3) at ZBTB4 and INPP5E gene loci in the 304 

human dlPFC. In addition, for ZBTB4, multiple nominally significant associations for SNPs and CpG 305 

sites were detected that were most prominent within intronic and intergenic regions, while no SNP but 306 

CUD-associated CpG sites were identified in the INPP5E gene locus (Fig. 4c). In line with this, when 307 

we quantified the association of genetic variants with CUD at the gene level using a gene-based 308 

association analysis in MAGMA, we detected stronger association for ZBTB4 with CUD (Z=1.74; p=0.04) 309 

compared to INPP5E (Z=-1.14; p=0.87).  310 



 311 

Fig. 4 – Convergence of DNA methylation, alternative splicing, and gene expression alterations in CUD at the ZBTB4 and 312 
INPP5E gene loci 313 
a Overlap of differential expression (DE), differential DNA methylation (DiffMeth), and differential alternative splicing analyses 314 
suggest two genes, ZBTB4 and INPP5E, where alterations are consistently associated with CUD. b Relationship between DE and 315 
DiffMeth genes in Brodmann Area 9 based on log2FC (y-axis) from DE analysis and effect size b from linear regression in the 316 
EWAS of CUD (x-axis). For both genes, ZBTB4 and INPP5E (highlighted in red), hypomethylation of the strongest significant 317 



CUD-associated CpG site and increased transcript levels are observed. c Integrated visualization of functional genomic datasets 318 
for ZBTB4 and INPP5E gene loci. CUD-associated genomic variants (SNPs p<0.05 from30), CUD-associated CpG sites (p<0.05 319 
from22), RNA-seq data and intron clusters (q<0.05) from the present study were visualized together with ENCODE ChIP-seq data 320 
for different chromatin marks in human dorsolateral prefrontal cortex.  321 

 322 

Multi-Omics Factor Analysis confirms cell junction, synaptic signaling, and neurogenesis as important 323 

biological processes in CUD 324 

The integration of DNA methylation and gene expression data as described above is based on results 325 

of the EWAS, DE, and AS analyses which is one possible way of integrating multiple omics datasets. In 326 

addition, multi-omics analysis tools such as MOFA enable an integrated analysis of omics datasets in a 327 

single statistical framework. Using MOFA on our DNA methylation and gene expression data from BA9, 328 

we identified one factor representation of the multi-omics dataset (factor 9) that was significantly 329 

correlated with CUD (r=-0.48, p=0.02) and age (r=0.47, p=0.02, Supplementary Fig. S5a+S5b). Factor 330 

9 displayed significantly smaller factor values in CUD cases compared to individuals without CUD in a 331 

Wilcoxon test (p=0.02, Supplementary Fig. S5c). When we extracted the CpG sites with the strongest 332 

weights on factor 9, cg23859635 annotated to MTA3 was the CpG site with the strongest positive weight 333 

on factor 9 (w=0.31), while cg24621354 in the gene TES displayed the strongest negative weight (w=-334 

0.33, Supplementary Fig. S5d, Supplementary Table S13). In the gene expression dataset, the small 335 

GTPase RAB6A had the strongest positive weight (w=0.07), while HIVEP2 had the strongest negative 336 

weight (w=-0.05) on factor 9 (Supplementary Fig. S5e, Table S13). Results of a GSEA on negative 337 

expression weights on factor 9 revealed FDR-significant (q<0.05) enrichment for synaptic signaling, cell 338 

junction organization, and neurogenesis pathways, confirming the results from the previous analyses. 339 

In contrast, GSEA on positive expression weights revealed enrichment for cellular respiration and small 340 

molecule metabolic processes (Supplementary Fig. S5f, Supplementary Table S14). When we used 341 

missMethyl to investigate the biological pathways for DNA methylation features with strong weights on 342 

factor 9, we detected enrichment for similar biological pathways as in the analysis of expression 343 

features. While none of the enrichment results remained FDR-significant after multiple testing correction, 344 

strongest enrichment for CpG sites with negative weights on factor 9 was detected for intracellular 345 

calcium concentration regulation and synaptic vesicle related processes (Supplementary Fig. S5g, 346 

Supplementary Table S15). The pathways showing the strongest enrichment for the positive weight 347 

CpG sites were related to monocarboxylic acid and specifically, lactate transmembrane transporter 348 

activity, and ER stress pathways (Supplementary Fig. S5h, Supplementary Table S15). 349 



Integrative functional analysis reveals functional modules related to neurotransmission, cell 350 

differentiation, cell junction organization, and fatty acid metabolism 351 

In an integrative functional analysis approach, we used all available information from our study on DNA 352 

methylation, gene expression, and alternative splicing alterations in CUD to identify potential 353 

convergence of association results at the pathway level in BA9. We thus performed a GO enrichment 354 

analysis based on 10 curated lists with CUD-associated genes derived from EWAS, DE analysis, 355 

alternative splicing analysis, WGCNA modules based on DNA methylation and expression data, and 356 

MOFA (Supplementary Table S16). In the enrichment map for GO terms, we identified several functional 357 

modules where the same biological pathway was detected for multiple gene lists at FDR-adjusted 358 

statistical significance (q<0.05) indicating convergence of the results from different analysis approaches 359 

(Supplementary Fig. S6). The two largest functional modules (FM) contained pathways involved in 360 

neurotransmission and synaptic signaling (FM1), while FM2 was enriched for neuron and glial cell 361 

differentiation, growth, and morphogenesis processes. Two further prominent modules were related to 362 

synapse and cell junction organization (FM3) and fatty acid metabolism (FM4).  363 

 364 

Discussion  365 

By applying a multi-omics data integration approach on DNA methylation and gene expression data 366 

from postmortem human brain tissue we aimed for a deeper understanding of the neurobiology of CUD 367 

in the human prefrontal cortex. At the gene level, our differential expression analysis suggests two 368 

candidates, FKBP4 and HSPA6, which were replicated as nominally significancant findings in two 369 

independent cohorts. In addition, our multi-omics analyses highlight ZBTB4 and INPP5E, that were 370 

consistently altered across omics analyses in BA9 and displayed consistent upregulation patterns in 371 

independent replication datasets. At the pathway level, we found converging evidence for CUD-372 

associated DNAm and transcriptional alterations that were related to neurotransmission, fatty-acid 373 

metabolism, and changes in neuronal morphology.  374 

 375 

Analysis of the transcriptome in BA9 revealed ZFAND2A as the DEG showing the strongest association 376 

with CUD. ZFAND2A is a canonical heat shock gene in humans encoding a zinc-finger containing 377 

protein that is involved in the regulation of proteasomal protein degradation31,32. It was further identified 378 

as a DEG in a study on transcriptomic signatures of Alzheimer´s disease (AD)33. Another AD-related 379 

finding emerged in co-expression network analysis. APOE showed the strongest connectivity in the PPI 380 



network for module yellow genes and has been intensively characterized due to its association with age 381 

of onset in AD34. While SUDs and neurodegenerative disorders such as AD depict different 382 

neuropsychiatric disorders based on the current understanding of disease mechanisms, CUD and AD 383 

share brain atrophic changes as a clinical symptom35 and our results suggest that there might be shared 384 

molecular mechanisms involved.  385 

 386 

Previous studies have identified differential alternative splicing in alcohol use disorder25 and opioid use 387 

disorder (OUD)26 in the human brain, however, RNA splicing alterations have not been characterized in 388 

human CUD so far. In the differential alternative splicing analysis, we found N=98 statistically significant 389 

genes containing AS intron clusters. Interestingly, among our top findings, we found Bridging Integrator 390 

1 (BIN1) for which differential alternative splicing in the brain has been described in OUD. BIN1 was the 391 

only differential AS gene in OUD that was conserved across all investigated brain regions; dlPFC, NAc, 392 

and midbrain26. Further, AS events in Bin1 were identified in the mouse brain in a study on splicing 393 

alterations associated with cocaine self-administration27. As dendrite and axon morphogenesis 394 

processes were among the enrichment results for AS genes in BA9, we hypothesize that AS is directly 395 

related to neuroplastic changes in the CUD brain. Mechanistically, AS processes change the abundance 396 

of transcript isoforms with different biological functions that might contribute to the neuroadaptations in 397 

CUD. We explored the mechanism of spliceosomal gene expression alterations as a potential 398 

contributor to differential AS events in CUD. Exposure to cocaine was previously hypothesized to alter 399 

spliceosomal gene expression29 and our results suggest spliceosomal genes such as HSPA6 and 400 

HSP1A1 as DEGs in BA9. As spliceosomal gene alterations were also detected in the replication 401 

analysis with HSPA6 as a shared upregulated DE gene across studies, AS events might be an important 402 

mechanism in CUD contributing to neurobiological changes in the PFC.  403 

 404 

In the last step of the RNA-sequencing analysis, we aimed to address the urgent need for novel 405 

pharmacotherapeutic approaches for the treatment of CUD by performing a drug repositioning analysis. 406 

We detected glucocorticoid receptor-targeting drugs having consistently negative connections with the 407 

CUD expression profile in BA9. In addition, FKBP4, an important regulator of glucocorticoid receptor 408 

signaling was identified as a conserved upregulated DEG in CUD based on three independent dlPFC 409 

datasets. FKBP4 has a key role in the nuclear translocation of the glucocorticoid receptor, as it replaces 410 

FKBP5 upon cortisol binding to the receptor complex leading to its nuclear translocation36. 411 



Pharmacological targeting of glucocorticoid receptor signaling was tested in rodent models of cocaine 412 

addiction 37-39. Reduced behavioral response to cocaine was observed when glucocorticoid receptor 413 

antagonists such as mifepristone were applied37. In contrast, corticosterone was shown to promote 414 

cocaine intake in rats38,39. In the drug repositioning analysis, results for glucocorticoid receptor agonists 415 

were more prominent compared to antagonists which appears to be in conflict with previous literature. 416 

However, glucocorticoid receptor antagonists such as mifepristone also displayed significant negative 417 

connectivity scores with the BA9 expression signature supporting previous findings. Further, synthetic 418 

glucocorticoid receptor agonists such as dexamethasone were shown to impair cocaine self-419 

administration in rats38 indicating a more complex relationship between the endogenous glucocorticoid 420 

system and exogenously applied glucocorticoid receptor targeting drugs. We thus suggest that 421 

glucocorticoid receptor targeting drugs should be further investigated for their potential use as a 422 

pharmacotherapy in CUD.  423 

 424 

Using multi-omics data integration, we identified two genes, ZBTB4 and INPP5E, for which CUD-425 

associated alterations were consistently detected across DNAm, gene expression, and alternative 426 

splicing analyses. Both genes contained a hypomethylated CpG site, stronger transcript expression was 427 

found in individuals with CUD, and significant differentially spliced intron clusters were identified. Despite 428 

being strongly expressed in the brain and most prominently in neurons40, the role of ZBTB4 in 429 

neuropsychiatric disorders remains poorly understood. However, due to the DNA binding capacity and 430 

its role as a transcriptional repressor, ZBTB4 deregulation in CUD could lead to downstream expression 431 

changes of its target genes. Further, protein-protein interaction data suggests interaction of ZBTB4 with 432 

the transcription factor PRDM5 as well as with the AP2M1 and AP2A1 subunits of the adapter protein 2 433 

(AP-2) complex that is involved in endocytosis of neurotransmitter receptors in neurons41,42. The second 434 

finding at the gene level, INPP5E, encodes a phosphatidylinositol-phosphatase specific to cilia and 435 

INPP5E mutations were found in Joubert syndrome which is characterized by cerebellar and cerebral 436 

malformation43. A possible link to CUD provide neuronal primary cilia, known as key signaling hubs on 437 

somata enriched for G-protein-coupled receptors (GPCRs)44. As INPP5E is required for proper 438 

trafficking of GPCRs along ciliary microtubules45, deregulation of INPP5E might lead to aberrant ciliary 439 

signaling that has recently gained attention in the addiction field: cell type-specific ablation of neuronal 440 

primary cilia in mice was shown to affect body weight as well as locomotor response to psychostimulants 441 



such as cocaine46 and amphetamine47. In humans, further studies on INPP5E are required to evaluate 442 

its role in SUDs.   443 

 444 

Evaluating the convergence of results at the pathway level revealed widespread molecular alterations 445 

in synaptic signaling represented by functional module FM1 in the GO enrichment analysis. Our findings 446 

are well in line with previous literature that reported on cocaine-associated DNAm and expression 447 

changes in genes involved in neurotransmission14-16,18,48. The observed overrepresentation of neuronal 448 

marker genes in the upregulated DEGs together with the non-neuronal marker gene enrichment in the 449 

downregulated DEGs further suggests a particular importance of CUD-associated expression changes 450 

in altering neurotransmission. In a study on CUD-associated gene expression changes in neuronal 451 

nuclei of the human dlPFC21, the authors found a WGCNA co-expression module that was significantly 452 

associated with CUD and was enriched for GTPase signaling and neurotransmitter transport that well 453 

matches our results in BA9. Neuronal function thus appears to be strongly influenced by altered 454 

epigenetic and transcriptional programs in the CUD brain.  455 

 456 

Functional modules FM2 and FM3 were related to pathways involved in neuron, synapse, and axon 457 

morphogenetic processes. This is supported by literature from animal models of CUD, where alterations 458 

in dendritic branches and spine density were observed in the PFC of cocaine self-administering rats49. 459 

Even a single cocaine exposure was sufficient to reduce dendritic spine density in neurons50. In 460 

summary, brain morphological changes depict an interesting link between molecular and behavioral 461 

aspects of addiction as neuroplastic changes are the basis of neurocircuit alterations in the SUD brain 462 

that are related to compulsive drug-seeking and relapse51.  463 

 464 

Another converging finding were metabolic changes related to fatty acid metabolism (FM4). This finding 465 

was especially prominent in the CUD-associated WGCNA module yellow where we found a functional 466 

module of pathways related to fatty acid metabolism. Further, results from MOFA suggested gene 467 

expression changes related to the electron transport chain as another key metabolic pathway alteration. 468 

This is supported by findings from animal models of cocaine addiction where a downregulation of 469 

glycolysis and oxidative phosphorylation were observed in the brain52 while fatty acid metabolism genes 470 

were upregulated53. It has to be noted that metabolic changes in CUD are most likely not brain-spercific 471 

but also appear on a systemic level as individuals with CUD were found to have reduced body fat in 472 



comparison to a healthy control group54. To follow up on this finding, future studies should evaluate if 473 

interfering with fatty acid metabolism could depict a therapeutic strategy in CUD as a ketogenic diet has 474 

been shown to alter the behavioral response to cocaine in rats55.  475 

 476 

There are some limitations that apply to our multi-omics study of CUD. First, depicting an inherent 477 

limitation of analyses in human postmortem brain tissue, our cross-sectional analysis design can only 478 

reflect the endpoint of CUD limiting the identification of dynamic changes in DNAm and gene expression 479 

during the disease course. Second, considering the sample size and the few DEGs at transcriptome-480 

wide significance, it remains unclear whether the findings are generalizable to the general population 481 

highlighting the need for studies in larger and more diverse cohorts. Third, while the homogeneity of our 482 

sample consisting of only males from EA ancestry is a strength in statistical analysis, sex-specific and 483 

ancestry-related molecular signatures of CUD remain an open question. At least in the analysis of the 484 

more diverse replication cohorts we were able to show comparable CUD-associatied gene expression 485 

patterns when compared to our discovery cohort. 486 

 487 

In summary, our study identifies novel associations with CUD at the gene level, confirms these on the 488 

multi-omics level, and suggests differential alterative splicing as an important molecular hallmark of CUD 489 

in the human prefrontal cortex. At the same time, our study supports previous findings of synaptic 490 

signaling alterations that have been robustly detected when investigating the neurobiological effects of 491 

cocaine. We highlight drugs targeting glucocorticoid receptor signaling to be further tested as a 492 

treatment for CUD.   493 
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Methods  536 

Postmortem human brain tissue  537 

The sample of human postmortem brain tissue of BA9 was obtained from the Douglas Bell Canada 538 

Brain Bank (DBCBB). Inclusion criteria were age > 18 and a diagnosis of cocaine dependence based 539 

on DSM-IV. Throughout this study, we will nevertheless use the more recent terminology from DSM-5 540 

i.e., cocaine use disorder. Individuals were excluded from the study if they were diagnosed with severe 541 

neurodevelopmental or psychiatric disorders other than depressive disorders or had received additional 542 

diagnoses of substance use disorders other than alcohol use disorder. All included subjects were male 543 

and of European American descent. Demographic information for the cohort of N=42 BA9 tissue donors 544 

is described in22 and for the subset of N=25 individuals with RNA-seq data in Table S1.  545 

 546 

DNA methylation data generation 547 

DNA extraction was performed as described in22. In brief, DNA was extracted from the full set of N=42 548 

BA9 samples using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany). The epigenome-wide 549 

DNAm profile was determined using the Illumina MethylationEPIC BeadChip v1 (850k) (Illumina, San 550 

Diego, CA, USA). During sample processing and analysis of DNAm levels, randomization was applied 551 

based on CUD status and known comorbidities such as AUD and depressive disorders.  552 

 553 

Generation of gene expression data 554 

Using the miRNAeasy Mini extraction Kit (Qiagen, Hilden, Germany), total RNA was extracted from the 555 

N=42 BA9 samples using ~5mg of frozen tissue from each individual. The RNA integrity number (RIN) 556 

was measured using a TapeStation 4200 (Agilent, Santa Clara, CA, USA) resulting in a total of N=25 557 

samples remaining for RNA sequencing (RIN > 5.5). Following ribosomal RNA (rRNA) depletion, 558 

libraries were prepared using the NEBNext Ultra II Directional RNA Library Prep Kit (New England 559 

Biolabs, Ipswich, MA, USA) followed by sequencing with an average of 60 million read pairs (2x100bp) 560 

per sample. RNA sequencing was performed using an Illumina NovaSeq 6000 device.  561 

 562 

Statistical analyses 563 

All statistical analyses in the R programming environment were performed using R version 4.2.1. If not 564 

otherwise stated, adjustment for multiple testing was performed using the Benjamini-Hochberg (FDR) 565 



procedure57. An analysis workflow for the multi-omics study of DNA methylation and gene expression in 566 

CUD is shown in Supplementary Fig. S7.  567 

 568 

DNA methylation analysis  569 

Methylation data was analyzed as part of the Poisel, et al. 22 study where a detailed description of the 570 

analysis pipeline can be found in the methods section. In brief, DNA methylation levels were 571 

preprocessed using an in-house quality control (QC) pipeline based on CPACOR58. The neuronal cell 572 

fraction was estimated based on the Houseman algorithm59 using a dlPFC reference dataset60. Quantile-573 

normalized beta values were derived from raw-intensities, followed by logit-transformation to M values 574 

of methylation. An epigenome-wide association study (EWAS) was performed using a linear regression 575 

model while adjusting for covariates that have a known effect on DNA methylation such as age, 576 

postmortem interval (PMI), pH of the brain tissue, neuronal cell fraction, comorbid depressive and/or 577 

alcohol use disorder, and technical factors. Downstream analyses based on the results of the EWAS 578 

included the identification of differentially methylated regions (DMRs), a gene ontology enrichment 579 

analysis using CUD-associated CpG sites (passoc<0.001), and a network analysis in WGCNA to evaluate 580 

CUD-associated co-methylation modules.  581 

 582 

Gene expression analysis 583 

Sequencing quality metrics were inspected using FastQC v.0.12.1 confirming all 25 fastq files to be used 584 

in further analysis. Reads were mapped to the GRCh38 genome primary assembly using STAR 585 

v.2.7.10b61. Quantification of features was performed using the featureCounts implementation in the R 586 

package Rsubread v.2.12.362 with the genome annotation gtf-file v.43 from GENCODE 587 

(https://www.gencodegenes.org). The raw count matrix was imported in DESeq2 v.1.38.363 and 588 

differential expression (DE) testing was performed while adjusting for the covariates age, PMI, brain pH 589 

and RIN in the DESeq2 experimental design formula. The distribution of resulting p-values was 590 

assessed in a quantile-quantile plot to evaluate potential genomic inflation (Fig. S1A). Fold-change cut-591 

offs for DEGs were an absolute log2 fold change of larger than 0.07, corresponding to a 5% change in 592 

transcript abundance. Statistical significance cut-offs were p<0.05 for nominal significance and q<0.05 593 

for a 5% FDR-adjusted significant association with CUD. All covariates included in the DESeq2 model 594 

are known to influence the gene expression profile and were confirmed in a variance partition analysis 595 

in our dataset using the R package variancePartition v.1.28.7 (Supplementary Fig. S1a). As comorbid 596 



MDD and AUD explained only minimal variance in the expression data and only 25 of the 42 samples 597 

were available in the expression analysis, MDD and AUD were not included as covariates in the 598 

statistical model. A sensitivity analysis was performed including MDD and AUD as covariates 599 

(Supplementary Fig. S1b) confirming a strong correlation between the log2 fold-changes of the 600 

nominally significant results.  601 

 602 

Cell-type deconvolution analysis 603 

Based on reference signatures of gene expression derived from single-cell studies, the distribution of 604 

cell types in bulk expression data can be inferred using cell-type deconvolution algorithms such as 605 

CIBERSORT64. We used a curated set of cell type-specific marker genes of the human prefrontal cortex 606 

based on a study from Yu and He 65 where a gene was required to have a 10-fold stronger expression 607 

in a specific cell type compared to all other cell types to be considered a marker gene. DESeq2-608 

normalized counts of the BA9 expression dataset were used and cell type deconvolution was performed 609 

using the CIBERSORT R script v1.04. To test for significant differences in cell type distribution in 610 

samples from individuals with and without CUD, we performed a Bayesian estimation of the difference 611 

in means and evaluated the 95% high-density interval. The Bayesian testing was based on BEST66 as 612 

implemented in the R package BayesianFirstAid v.0.1. Further, an overlap analysis of DEGs in cell type 613 

markers was performed in GeneOverlap v.1.34.067 using the 10-fold marker gene list from65 in a Fisher 614 

test.  615 

 616 

Functional enrichment analysis 617 

To characterize altered biological functions related to the observed gene expression differences, we 618 

performed a gene set enrichment analysis (GSEA) for Gene Ontology (GO) terms using the gseGO 619 

function from the R package clusterProfiler v.4.6.268. The DESeq2 Wald statistic defined as the log2FC 620 

divided by its standard error was used for ranking of the results. A significance threshold of q<0.05 (5% 621 

FDR) was considered statistically significant. Results of the GSEA were visualized using the emapplot 622 

function in enrichplot v.1.18.3.  623 

 624 

Weighted gene co-expression network analysis (WGCNA) 625 

To identify CUD-associated co-expression patterns, we constructed co-expression modules using 626 

network analysis in WGCNA (R package v.1.72.1)69 and related them to CUD and other phenotypic 627 



variables available in the DBCBB cohort. Using the input matrix of normalized and variance stabilization 628 

transformed (vst) gene counts from DESeq2, a soft power threshold of 9 was estimated to achieve the 629 

criterion of scale free topology (R2>0.85). For the construction of networks, we used the parameters 630 

minModuleSize=10, mergeCutHeight=0.25, and maxBlockSize=36,000. The Pearson correlation of the 631 

module eigengene derived from each of the resulting n=27 co-expression modules with the phenotypes 632 

of interest including CUD was calculated to identify significant associations of the modules with 633 

phenotypes (Fig. S3A). Downstream analyses of modules significantly associated with CUD included a 634 

GO enrichment analysis using the genes assigned to the modules using the full genome as the 635 

background. Next, module genes were ranked by the product of gene significance*module membership 636 

to identify hub genes. The top 10% of module hub genes were further investigated by constructing 637 

protein-protein interaction (PPI) networks. For this, Cytoscape v.3.9.170 with stringApp v.1.7.071 was 638 

used. A detailed description of the PPI visualization settings in Cytoscape is found in22.  639 

 640 

Replication analysis of differential expression results 641 

Replication analysis of CUD-associated DEGs was performed in two independent datasets where RNA-642 

seq data from postmortem human brain tissue of the prefrontal cortex from individuals with and without 643 

CUD was available. As the first replication dataset, BA9 bulk RNA-sequencing data from N=7 individuals 644 

with CUD and N=14 control individuals originating from the National PTSD Brain Bank (NPBB)72 was 645 

used. Phenotypic information for the BA9 replication cohort is shown in Table S17. RNA-seq data 646 

sequenced and pre-processed as described in 73 was analyzed for CUD-associated differential gene 647 

expression in DESeq2 using donor age, sex, PMI, and RIN as covariates. The second replication cohort 648 

was based on a neuronal-specific RNA-sequencing dataset (GEO accession number: GSE99349) as 649 

described in 21. In this study, neuronal nuclei were isolated from postmortem human brain tissue of the 650 

Brodmann Area 46 subregion of the dlPFC that is laterally adjacent to BA9. Here, bulk RNA-seq data 651 

was generated from N=19 individuals with CUD and N=17 without CUD from a male mixed ancestry 652 

cohort originating from the University of Miami Brain Bank (MBB). Raw sequencing data from the 653 

replication cohort was downloaded from GEO and processed using the same analysis pipeline as in the 654 

BA9 discovery sample: 1) mapping using STAR, 2) quantification using featureCounts, and 3) DE 655 

analysis in DESeq2. For the replication analysis in MBB data, we used the same statistical model as in 656 

the discovery analysis with differential expression testing for CUD while adjusting for donor age, RIN, 657 

pH, and PMI. To explore the results, we first performed an overlap analysis of nominally significant CUD-658 



associated DEGs (p<0.05) identified in the three datasets. Second, a targeted look-up of effect sizes 659 

(log2FC) and association p-values was performed for overlapping DEGs across datasets and for the top 660 

findings from the BA9 discovery sample, ZBTB4 and INPP5E. As an additional replication approach, we 661 

performed rank-rank hypergeometric overlap (RRHO) using the R package RRHO2 v.1.074 to evaluate 662 

convergent and divergent expression patterns at the transcriptome-wide scale between studies. RRHO 663 

scores were generated based on full differential expression statistics from discovery and replication 664 

datasets followed by the evaluation of overlapping signatures between studies using the hypergeometric 665 

testing procedure as implemented in RRHO2.   666 

 667 

Signature-based drug repositioning analysis 668 

With the top 150 upregulated and downregulated genes ranked by the DESeq2 test statistic from the 669 

differential expression analysis, the maximum input size in the Connectivity Map (CMap) query tool 670 

(https://clue.io/query, software version 1.1.1.43) was used to evaluate the connectivity of expression 671 

signatures (Table S8). CMap query uses the L1000 assay from the NIH LINCS project 672 

(https://lincsproject.org/) as a drug-gene expression relationship database. In L1000, expression 673 

changes for a representative set of 978 landmark transcripts are measured in response to treatment 674 

with a perturbagen such as a pharmaceutical drug75. In addition to the connectivity scores for individual 675 

perturbagens, CMap also provides information on perturbagen classes and a GSEA output for pathways 676 

and drug targets. Normalized connectivity scores and FDR-adjusted p-values for perturbagens and 677 

GSEA results were obtained from the CMap query tool and visualized as waterfall plots in R using 678 

ggplot2 v.3.4.2.  679 

 680 

Differential splicing analysis 681 

Alternative splicing was evaluated using the annotation-free quantification approach of RNA splicing in 682 

LeafCutter v.0.2.928. First, raw sequencing data were aligned to the GRCh38 reference genome using 683 

STAR with an adapted 2-pass mapping procedure. For this, the first mapping step was performed using 684 

a regular gtf-file derived genome index. The resulting splice junctions (SJ_out.tab-files) from the N=25 685 

samples were combined and filtered so that non-canonical junctions, junctions that were supported by 686 

less or equal than 2 uniquely mapping reads, annotated junctions already covered by the gtf-file, and 687 

duplicated junctions were removed. Using the filtered splice junction output, a modified genome index 688 

was derived using STAR in genomeGenerate mode. This extended genome index containing 689 



information on gene annotation and splice junctions was used in the second mapping step resulting in 690 

the final bam-file output after mapping. Generation of junc-files, intron clustering, and differential intron 691 

excision analysis was performed as outlined by the authors of leafCutter 692 

(https://davidaknowles.github.io/leafcutter/) while including age, PMI, pH, and RIN as covariates into the 693 

Dirichlet-Multinomial generalized linear model. Default settings were used in the leafcutter_ds.R script 694 

i.e. maximum cluster size =10, minimum samples per intron = 5, minimum samples per group = 3, and 695 

a minimum coverage of 20 reads. The differential intron excision analysis results in an estimate for the 696 

change in the percent spliced in measure (ΔPSI) for each intron in a cluster and an FDR-adjusted p-697 

value for the cluster in which the differential splicing events were detected. Differential splicing events 698 

in clusters with |dPSI| > 0.025 and an FDR-adjusted q-value<0.05 were considered statistically 699 

significant26. Visualizations for the differentially spliced clusters and genes were created using the leafviz 700 

extension in leafCutter. GO enrichment analysis for genes containing differentially alternatively spliced 701 

intron clusters was performed using the enrichGO function with GO “BP” ontology terms in 702 

clusterProfiler.  703 

 704 

Integrative gene locus analysis 705 

Integrated visualization of functional genomics data was performed using SparK v.2.6.276. Summary 706 

statistics from a meta-analysis GWAS of cocaine dependence (CD) in an EA population (N=6,378)30 707 

was used to cover SNPs that are associated with CD. The EWAS summary statistics from 22 were used 708 

as the DNAm dataset. To prioritize the association results for visualization, SNPs and CpG sites with 709 

nominal significant association p-value (p<0.05) were filtered from the GWAS and EWAS results. ChIP-710 

seq datasets for different activating and repressing chromatin marks were downloaded from ENCODE77 711 

as deposited in the Human Reference Epigenome Matrix for dorsolateral PFC in males: ENCFF241REN 712 

(H3K4me1), ENCFF752EVS (H3K4me3), ENCFF866IWY (H3K27ac), ENCFF149DDW (H3K36me3), 713 

ENCFF784SSN (H3K9me3), ENCFF167ASN (H3K27me3). BigWig files were converted to BedGraph 714 

using the UCSC bigWigToBedGraph tool. Bam-files from the RNA-seq analysis were indexed using 715 

samtools v.1.578 and then converted to BedGraph using the bamCoverage function from deeptools 716 

v.3.5.379. For the genetic dataset, we performed an additional gene-based association analysis using 717 

Multi-marker Analysis of GenoMic Annotation (MAGMA)80. Here, we aimed to quantify the combined 718 

association of all SNPs annotated to a gene of interest with CUD as the phenotype.  719 

 720 



Multi-omics factor analysis  721 

Multi-omics factor analysis (MOFA)81 was used to jointly analyze the DNAm and gene expression 722 

datasets in BA9 aiming for the identification of CUD-associated factors. The factor analysis framework 723 

enables an improved characterization of gene and pathway alterations across different omics datasets 724 

by investigating the contribution of each omics view such as DNAm or gene expression to a learned 725 

factor. Downstream analyses such as GSEA enable the analysis of biological functions that are 726 

associated with a factor based on the factor loading of features such as genes that contribute to the 727 

biological pathway. As the DNAm input dataset for MOFA (R package v.1.3.1), we used methylation M-728 

values from the 20,000 most variant promoter CpG sites (TSS200 and TSS1500 annotations) under the 729 

assumption of their prominent role in regulating transcription levels of nearby genes. Methylation data 730 

was extracted for the individuals that also had expression data available (N=25). For the expression 731 

dataset, we used normalized and variance stabilization transformed counts from the 20,000 most variant 732 

genes to obtain an equal number of features in each view. The MOFA model was trained on the matched 733 

DNAm and expression data from N=25 individuals using default model options with a total of 10 factors 734 

and the training options convergence_mode = “slow”, seed = 42, and maxiter=10,000. Association of 735 

factors with phenotypes was evaluated using the correlate_factors_with_covariates function. GSEA was 736 

performed on negative and positive weights individually using the run_enrichment function based on the 737 

c5.go.bp.v2023.1.Hs.symbols.gmt gene set reference file from MSigDB82. Functional characterization 738 

of DNAm weights was performed by subsetting the top 2.5% of CpG sites from both sides of the weight 739 

distribution on factor 9 resulting in N=500 CpG sites with strongest positive and negative weights on 740 

factor 9, respectively. Next, GO enrichment analysis was performed in missMethyl v.1.33.1 using the 741 

full set of N=20,000 CpG sites as background.  742 

 743 

GO enrichment analysis of CUD-associated gene sets 744 

Convergence of CUD association signals at the pathway level was evaluated by pathway enrichment 745 

analysis for GO terms using the enrichGO function on the GO “BP” ontology in the compareCluster 746 

functionality of clusterProfiler. A total of 10 gene lists were included in the input dataset: 1) CUD-747 

associated CpG sites (N=394, p>0.001) from the EWAS of CUD22, genes in the CUD-associated 748 

WGCNA methylation modules 2) blue (N=9,201), 3) steelblue (N=390), 4) brown (N=5,268), 5) brown4 749 

(N=205), 6) nominally significant DEGs (N=1,057,p<0.05), 7) genes in the CUD-associated WGCNA 750 

expression module yellow (N=2,517), 8) AS genes (N=98, q<0.05), 9) MOFA methylation weights factor 751 



9 (N=983 genes based on the 2.5 and 97.5 percentiles of the weight distribution for CpG sites), and 10) 752 

MOFA methylation weights factor 9 (N=1,000 genes based on the 2.5 and 97.5 percentiles of the weight 753 

distribution for genes). Pathways remaining statistically significant after FDR correction (q < 0.05) were 754 

displayed in an enrichment map with a pie plot visualization scheme for GO terms that were repeatedly 755 

identified for the different gene lists.  756 

 757 
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