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 Background:  Postoperative  ileus  (POI)  after  colorectal  surgery  leads  to  increased 
 morbidity,  costs,  and  hospital  stays.  Identifying  POI  risk  for  early  intervention  is 
 important  for  improving  surgical  outcomes  especially  given  the  increasing  trend 
 towards  early  discharge  after  surgery.  While  existing  studies  have  assessed  POI  risk  with 
 regression models, the role of deep learning's remains unexplored. 

 Methods:  We  assessed  the  performance  and  transferability  (brutal 
 force/instance/parameter  transfer)  of  Gated  Recurrent  Unit  with  Decay  (GRU-D),  a 
 longitudinal  deep  learning  architecture,  for  real-time  risk  assessment  of  POI  among 
 7,349  colorectal  surgeries  performed  across  three  hospital  sites  operated  by  Mayo  Clinic 
 with  two  electronic  health  records  (EHR)  systems.  The  results  were  compared  with 
 atemporal models on a panel of benchmark metrics. 

 Results:  GRU-D  exhibits  robust  transferability  across  different  EHR  systems  and 
 hospital  sites,  showing  enhanced  performance  by  integrating  new  measurements,  even 
 amid  the  extreme  sparsity  of  real-world  longitudinal  data.  On  average,  for  labs,  vitals, 
 and  assisted  living  status,  72.2%,  26.9%,  and  49.3%  respectively  lack  measurements 
 within  24  hours  after  surgery.  Over  the  follow-up  period  with  4-hour  intervals,  98.7%, 
 84%,  and  95.8%  of  data  points  are  missing,  respectively.  A  maximum  of  5%  decrease  in 
 AUROC  was  observed  in  brutal-force  transfer  between  different  EHR  systems  with 
 non-overlapping  surgery  date  frames.  Multi-source  instance  transfer  witnessed  the  best 
 performance,  with  a  maximum  of  2.6%  improvement  in  AUROC  over  local  learning.  The 
 significant  benefit,  however,  lies  in  the  reduction  of  variance  (a  maximum  of  86% 
 decrease).  The  GRU-D  model's  performance  mainly  depends  on  the  prediction  task's 
 difficulty,  especially  the  case  prevalence  rate.  Whereas  the  impact  of  training  data  and 
 transfer  strategy  is  less  crucial,  underscoring  the  challenge  of  effectively  leveraging 
 transfer  learning  for  rare  outcomes.  While  atemporal  Logit  models  show  notably 
 superior  performance  at  certain  pre-surgical  points,  their  performance  fluctuate 
 significantly and generally underperform GRU-D in post-surgical hours. 

 Conclusion:  GRU-D  demonstrated  robust  transferability  across  EHR  systems  and 
 hospital  sites  with  highly  sparse  real-world  EHR  data.  Further  research  on  built-in 
 explainability  for  meaningful  intervention  would  be  highly  valuable  for  its  integration 
 into clinical practice. 



 Background 
 Postoperative  ileus  (POI)  poses  a  common  challenge  following  colorectal  surgery, 
 contributing  to  heightened  morbidity,  increased  costs,  and  prolonged  hospital  stays  1  . 
 With  an  occurrence  rate  of  10%-30%  and  typically  manifesting  within  6-8  days 
 post-surgery  2  ,  addressing  POI  has  gained  significance  for  hospitals  due  to  various 
 reasons.  These  include  a  payment  reform  that  emphasizes  extended  care  episodes  and 
 Medicare  penalties  associated  with  readmissions  within  30  days,  an  increasing 
 preference  for  outpatient  surgery  to  conserve  limited  hospital  resources  amid  the 
 COVID-19  pandemic  3  ,  along  with  a  contentious  surge  in  interest  for  same-day  or 
 next-day  discharge  4  .  Efficiently  identifying  the  risk  of  POI  to  enable  early  intervention 
 stands  as  a  crucial  factor  in  enhancing  surgical  outcomes.  While  various  studies  have 
 discussed  the  prediction  of  POI  5  6  7  8  9  10  ,  predominantly  utilizing  multivariate  logistic 
 regression  techniques,  there  exists  a  notable  gap  in  research  concerning  deep 
 learning-based  approaches  in  POI  prediction.  This  is  particularly  intriguing  given  the 
 widespread  application  of  deep  learning  in  tackling  other  postoperative  complications  11 

 12  13  . 

 We  previously  benchmarked  the  Gated  Recurrent  Unit  with  Decay  (GRU-D),  a  RNN 
 based  architecture  proposed  by  Che  et  al  14  ,  in  making  real-time  risk  assessment  of 
 post-surgical  complications  including  superficial  infection,  wound  infection,  organ 
 space  infection,  and  bleeding  12  .  GRU-D  exhibited  advantageous  attributes  including 
 automated  missing  imputation,  the  flexibility  to  tailor  sampling  intervals,  and  the 
 capacity  to  update  and  enhance  risk  assessment  by  incorporating  newly  received 
 measurements.  These  features  position  GRU-D  as  an  ideal  candidate  for  risk  modeling 
 associated  with  longitudinal  clinical  data,  a  domain  often  characterized  by  substantial 
 missings in data, asynchronous updates, and the need for prompt risk assessment. 

 The  considerable  practical  values  that  GRU-D  holds  underscores  the  importance  of 
 examining  its  applicability  across  a  variety  of  real-world  contexts.  Here  we  aim  to  assess 
 the  feasibility,  performance,  and  transferability  of  GRU-D  in  risk  modeling  of  POI 
 across  two  electronic  health  record  (EHR)  systems  in  three  separate  hospital  sites 
 affiliated  with  Mayo  Clinic.  The  results  are  compared  with  atemporal  logistic  regression 
 and  random  forest  models  on  both  pre-surgical  and  post-surgical  periods  to  evaluate  the 
 strengths  and  limitations  of  GRU-D  based  strategy  in  POI  risk  assessment.  This 
 evaluation  takes  place  against  the  backdrop  of  the  increasing  significance  of  time  series 
 data,  a  prevalent  format  in  clinical  settings  used  to  chronicle  patient  longitudinal 
 information,  within  the  realm  of  transferability  research.  Notably,  prior  research  on 
 transferability  involving  time  series  data  has  primarily  centered  around  neurology  and 
 cardiology  15  16  .  There  exists  a  substantial  dearth  of  research  concerning  the  transfer 
 learning  of  time  series  data  related  to  surgical  contexts,  with  only  a  limited  number  of 
 studies being documented  17  18  . 
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 Materials and Methods 
 CRC surgery samples 
 The  study  consists  of  7349  colorectal  surgery  records  from  7103  patients  with  colorectal 
 surgeries  performed  at  Mayo  Clinic  Rochester  (MR),  Arizona  (MA),  Florida  (MF) 
 hospital  sites  between  2006  and  2022  as  part  of  the  National  Surgical  Quality 
 Improvement  Program  (NSQIP)  cohort  19  .  Specifically,  due  to  a  transition  from 
 Centricity  to  EPIC  system  in  2018,  data  from  MR  is  split  into  two  parts  as  MR  centricity 
 (  MR  cc  )  and  MR  EPIC  (  MR  ep  ).  Whereas  data  from  both  MA  and  MF  are  after  2018  with 
 the  EPIC  system.  The  distribution  of  surgery  time  by  sites  and  EHR  systems  are 
 illustrated  in  Fig  1.  The  baseline  characteristics  of  the  patients  are  shown  in  Table  1.  The 
 study  was  approved  by  the  Mayo  Clinic  institutional  review  board  (IRB  number: 
 15-000105).  All  patients  included  in  this  study  had  consent  for  their  data  to  be  used  for 
 research. 

 Ileus status ascertainment 
 The  identification  of  ileus  was  followed  by  the  application  of  a  standardized  NLP 
 pipeline  through  the  OHNLP  infrastructure.  Additional  details  about  the  NLP 
 methodology  can  be  found  in  our  previous  studies  20  21  .  Briefly,  the  development  of  the 
 ileus  algorithm  followed  an  integrative  process,  which  included  corpus  annotation, 
 symbolic  ruleset  prototyping,  ruleset  refinement,  and  final  evaluation.  The  validated 
 ileus  rulesets  were  then  integrated  into  the  OHNLP  Backbone  and  MedTaggerIE  NLP 
 pipeline, which includes a built-in context classifier (e.g., status, subject, and certainty). 

 Training data and held-out data selection 
 For  surgery  records  of  each  site,  30%  were  randomly  selected  as  held-out,  and  the 
 remaining  70%  were  randomly  splitted  into  six  equal-sized  training  chunks  (Table  2). 
 The  randomization  was  performed  100  times  to  select  the  one  that  minimizes  the 
 difference  between  chunk-level  and  site-level  characteristics  on  ileus  complication  rate, 
 surgery duration, gender, and race. 

 Transfer learning naming rules and transfer schemes 
 Throughout  the  paper  we  adhere  to  the  following  naming  rules  for  clarity.  For  each 
 dataset,  subscripted  MR  cc  ,  MR  ep  ,  MF  ep  ,  MA  ep  represent  the  dataset  originated  from  Mayo 
 Clinic  Rochester  Centricity,  Rochester  EPIC,  Florida  EPIC,  and  Arizona  EPIC  system, 
 respectively.  Source  training  (  )  and  source  held-out  (  )  represent  data  from  the 
 training  and  held-out  chunks  of  source  site-system(s),  respectively.  Target  training  ( 
 )  and  target  held-out  (  )  represent  data  from  the  training  and  held-out  chunks  of  the 

 target  site-system(s),  respectively.  E.g.,  represents  source  training  dataset  from 
 Mayo  Clinic  Rochester  Centricity  system.  We  use  function  to  represent  deep 
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 learning  model  to  make  a  distinction  from  the  corresponding  dataset  it  was  trained 

 upon. E.g.  represent models trained from  dataset. 

 For  each  site-system,  the  six  chunks  of  training  data  were  used  to  train  six  independent 
 models  by  iteratively  leaving  one  chunk  out.  The  models  were  named,  take  MR  cc  for 

 example,  as  (an  ensemble  of  six  models).  We  consider  five  model  training 

 scenarios  (Take  MR  ep  for  example)  including  local  learning  (i.e.  training  on  and 

 predict  )  and  four  scenarios  of  transfer  learning  (transfer  from  for 
 example) detailed below, according to solution based categorization  22  . 

 Brutal-force transfer:  Directly apply  to  . 
 Single-source  instance  transfer:  Combine  training  data  records  from  MR  cc  and 

 MR  ep  and apply  to  . 

 Parameter  transfer:  Continuous  training  of  on  MR  ep  .  The  models  were 

 named  , which were then applied to  . 

 Multi-source  instance  transfer:  Train  brand  new  models  by  combining 

 training data from all sites and then applied to  . 

 GRU-D model architectures 
 The  basic  architecture  of  the  GRU-D  model  was  described  by  23  ,  here  we  recapitulate  the 
 equations for handling missing values. 

 where  is  the  missing  value  indicator  for  feature  at  timestep  .  takes  value  1 

 when  is  observed,  or  0  otherwise,  in  which  case  the  function  resorts  to  weighted  sum 

 of  the  last  observed  value  and  empirical  mean  calculated  from  the  training  data 

 for the  th feature. Furthermore, the weighting factor  is determined by 

 where  is  a  trainable  weights  matrix  and  is  the  time  interval  from  the  last 
 observation  to  the  current  timestep.  When  is  large  (i.e.  the  last  observation  is  far 
 away  from  current  timestep),  is  small,  results  in  smaller  weights  on  the  last  observed 

 value  , and higher weights on the empirical mean  (i.e. decay to mean). 
 For  each  timestep  of  each  patient,  sigmoid  activation  function  is  applied  to  the  hidden 
 output  to  generate  a  predicted  probability  (0~1)  of  developing  ileus  within  30  days 
 after  surgery.  is  evaluated  against  the  true  class  label  (  ),  i.e.,  whether  or  not  the 
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 patient  actually  developed  ileus  within  30  days  of  surgery.  Specifically,  the  loss  function 
 is as follow 

 where  is  the  number  of  training  samples  in  a  batch.  is  the  weights  for  sample 
 (minor  group  inverse  weighted).  is  the  maximum  allowed  timesteps  (i.e.  the 
 timesteps  before  ileus  onset,  if  any)  for  sample  .  is  the  observed  outcome.  is  the 
 predicted probability for sample  at timestep  . 

 Competing models 
 The  performance  of  GRU-D  model  was  compared  with  atemporal  logistic  regression 
 with  lasso  regularization  (Logit)  (R  package  glmnet  )  and  atemporal  random  forest  (RF) 
 (R  package  randomForestSRC  ).  For  both  models,  we  implemented  unlimited  time  last 
 value  carry  forward  to  fill  in  the  missing  values.  The  remaining  missing  values  were 
 imputed  with  RF  adaptive  tree  imputation  24  with  three  iterations.  Specifically,  the 
 imputation  for  training  and  held-out  data  from  different  sites  were  implemented 
 separately.  Separate  models  were  trained  at  integer  days  (i.e.,  -4,  -3  …  13,  14)  and  used 
 to  make  predictions  at  corresponding  time  points.  Features  with  missing  proportions 
 greater  than  0.2  were  removed  from  analysis.  For  the  Logit  model,  the  default 
 configurations  (alpha=1,  nlambda=100)  were  adopted.  For  the  RF  model,  the  number  of 
 trees were set to 100 with a minimum of 10 terminal nodes. 

 Input features and feature selection 
 We  included  features  that  appeared  in  all  four  site-systems  (Table  S1).  Notably,  for  the 
 GRU-D  model  no  exclusion  of  features  by  missing  proportion  was  performed,  to  respect 
 real world scenarios where data availability may vary across sites. 

 We  meticulously  reviewed  each  feature  to  classify  it  as  continuous  or  categorical.  To 
 support  transfer  learning,  we  manually  established  a  biologically  meaningful  mapping 
 from  Centricity  to  EPIC  categories  for  each  categorical  feature,  resulting  in  a 
 semi-homogeneous  transfer  learning  setup.  For  example,  we  mapped  the  29 
 fine-grained  "Diet"  categories  in  the  Centricity  system  to  the  3  corresponding  categories 
 ("Nothing by mouth," "Diet 50," and "Diet 100") in the EPIC system. 

 Categorical  features  underwent  one  hot  encoding  based  on  categories  presented  across 
 all  four  site-systems,  while  continuous  features  were  z-score  normalized  using  mean  and 
 standard  deviation  values  calculated  from  the  source  training  data.  During  parameter 
 transfer  learning,  we  updated  the  mean  and  standard  deviation  values  with 
 corresponding  values  from  the  target  training  data,  if  available.  To  avoid  extreme  values, 
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 the  z-score  values  were  hard  clamped  to  between  -5  and  5  before  being  fed  into  the 
 machine learning models. 

 Sampling scheme of dynamic and static features 
 Dynamic  features  were  sampled  at  a  4-hour  interval  from  4  days  before  surgery  to  14 
 days  after  surgery,  using  the  last  measurement  in  the  past  4  hours,  or  marked  as  missing 
 if  no  value  was  spotted.  This  generates  109  timesteps  for  each  feature  of  each  patient. 
 Static  features  were  replicated  across  time.  Age  is  converted  to  within  range  0~1  by 
 dividing  by  100.  Surgery  time  duration  is  hourly  based.  Surgery  subtypes  are  one  hot 
 encoded into 14 categories. 

 Evaluation metrics 
 We  benchmarked  the  models’  performance  with  established  metrics  such  as  area  under 
 the  receiver  operating  characteristic  (AUROC),  average  precision,  the  optimal  cutoff 
 threshold  (which  maximizes  the  geometric  mean  of  sensitivity  and  specificity),  and  the 
 F-score  (at  the  optimal  threshold).  Furthermore,  we  also  experimented  with  a  panel  of 
 customized  metrics  focused  on  clinical  utility.  These  include  setting  up  a  monitoring 
 ward  specifically  for  the  highest  risk  quartile  (i.e.,  the  fourth  quartile)  and  record  the 
 number  of  unique  ileus  cases  identified  in  each  time  step  (referred  to  as  Q4-cases),  the 
 cumulative  number  of  unique  Q4-cases  over  the  entire  follow-up  period  (Q4-cases 
 accum),  and  the  percentage  of  accumulated  cases  among  all  monitored  patients  (Accum 
 Case  %,  i.e.  accumulated  precision).  We  also  presented  for  each  model  the  flag  rate  (i.e. 
 the  proportion  of  patients  that  need  to  be  monitored)  and  positive  predictive  value 
 (PPV)  in  order  to  achieve  60%  sensitivity  throughout  each  time  point  of  the  follow-up. 
 To  ensure  comparability  between  GRU-D  and  atemporal  models,  the  clinical  utility 
 related  metrics  were  evaluated  exclusively  on  integer  days  (-96h,  -72h,  ...,  24h,  48h...). 
 To  ensure  the  accuracy  of  our  evaluation  metrics,  we  removed  patients  who  had  already 
 developed  ileus  complications  before  the  specific  timestep  of  interest,  thus  eliminating 
 confounding effects from prior occurrences of the complication  . 

 We  examined  two  approaches  for  assessing  metrics  in  our  study.  Taking  AUROC  as  an 
 example,  the  first  approach,  termed  timestep-specific  analysis  (AUROC  t  ),  involves 
 evaluating  the  predicted  probability  at  a  particular  timestep  t  against  ileus  outcome, 
 while  excluding  patients  with  ileus  diagnosed  prior  to  that  timestep.  The  second 
 approach,  termed  last-timestep  analysis  (AUROC  last  ),  evaluates  the  predicted  probability 
 at  the  final  timestep  before  ileus  onset  (or  the  109th  timestep  if  no  ileus)  against  ileus 
 outcome.  This  second  approach  is  specifically  designed  to  assess  the  transferability  of 
 GRU-D  models  using  all  available  information.  In  our  study,  we  evaluated  AUROC, 
 average  precision,  and  F-score  using  both  strategies,  whereas  the  remaining  metrics 
 were only evaluated using the first strategy. 



 Permutation feature importance 
 The  permutation  feature  importance  test  is  performed  by  randomly  rearranging  the 
 sample  IDs  of  a  given  feature  in  the  target  dataset.  For  each  of  the  six  models  (obtained 
 from  the  six-fold  cross-validation)  five  permutations  were  executed,  resulting  in  a  total 
 of  30  permutations  for  each  feature  at  every  timestep.  The  AUROC  t  was  assessed  both 
 before  and  after  the  permutation.  The  mean  discrepancy  in  AUROC  t  across  all  timesteps 
 (calculated  as  before  permutation  minus  after  permutation)  was  used  to  gauge  the 
 model's reliance on the specific feature. 



 Results 
 Feature sparsity of real-world data 
 To  demonstrate  the  level  of  feature  sparsity  derived  from  real-world  EHR  data,  we 
 visualized  the  missing  proportion  of  selected  features  (Labs,  Vitals,  ADL  (Assisted 
 Living  Status))  in  Fig  2,  and  CCS  codes  in  Fig  S3.  The  EHR  data  from  the  studied 
 hospital  sites  is  predominantly  sparse  across  multiple  modalities  throughout  the 
 duration  of  follow-up.  From  surgery  completion  (index  date)  to  within  24  hours  after 
 surgery,  there  are  on  average  72.2%  labs,  26.9%  vitals,  49.3%  ADL,  95.4%  CCS  codes 
 lacking  a  measurement.  With  a  standardized  4  hour  interval  based  time  grid,  the 
 average  missing  proportions  throughout  the  entire  follow-up  are  98.7%,  84%,  95.8%, 
 and  95.5%  for  labs,  vitals,  ADL,  and  CCS  codes,  respectively.  Notably,  in  adhering  to  a 
 realistic  approach  regarding  data  availability,  no  feature  was  eliminated  based  on  its 
 missing  proportion  in  the  assessment  of  GRU-D  models.  Consequently,  the  extent  of 
 data  sparsity  depicted  in  Fig  2  and  S3  reflects  the  input  consumed  by  the  GRU-D 
 models. 

 GRU-D Transferability based on last timestep analysis 
 Multi-source instance transfer has overall the best performance 
 After  investigating  the  transferability  between  different  EHR  systems  within  the  same 
 hospital  site,  and  same  EHR  system  between  different  hospital  sites,  a  general 
 observation  is  that  multi-source  instance  transfer  with  data  source  indicator  has  overall 
 the  best  performance  (Table  3,4,5  ALL  (w)ds  ),  slightly  surpassing  without  data  source 
 indicator  (Table  3,4,5  ALL  (w/o)ds  ).  However,  the  enhancement  compared  to  local 
 learning  is  only  marginal.  E.g.  The  improvement  in  AUROC  last  ranges  between  a 
 minimum  of  0.4%  (Table  3  MR  ep  0.935  vs  ALL  (w)ds  0.939)  and  a  maximum  of  2.6% 
 (Table  4  MF  ep  0.883  vs  ALL  (w)ds  0.906).  Whereas  the  significant  benefit  lies  in  the 
 reduction  of  variance.  E.g.  For  the  EPIC  site  (  MF  ep  )  with  the  smallest  training  sample 
 size  (Table  2,  n=226),  the  CI  of  AUROC  last  reduced  86%,  from  0.042  on  local  learning  to 
 0.006  on  multi-source  instance  transfer  (Table  4).  Similarly,  the  CI  of  AvgPrec  last 

 reduced 56% from 0.071 to 0.031. 

 Parameter and instance transfer perform similarly with two data sources 
 For  models  trained  on  only  two  data  sources,  parameter  transfers  (Table  3  MR  ep  (MR  cc  ), 
 Table  4  MF  ep  (MR  ep  )  ,  Table  5  MA  ep  (MR  ep  )  )  perform  similarly  as  their  single-source 
 instance  transfer  counterparts,  either  with  or  without  data  source  indicator  (e.g.  Table  3 
 MR  cc  +  MR  ep  (w)(w/o)ds  ).  Data  source  indicator  shows  mixed  effect  on  performance 
 when  there  are  only  two  data  sources.  For  both  parameter  and  instance  transfers,  there 
 is  generally  no  significant  enhancement  over  local  learning  either  in  the  evaluation 
 metric  or  CI,  with  the  exception  of  the  EPIC  site  (  MF  ep  )  that  has  the  smallest  training 
 sample size (Table 4). 



 Brutal-force transfer outperform local learning in specific scenarios 
 For  AUROC  last  ,  we  see  up  to  5%  decrease  among  all  brutal-force  transfers  explored  in 
 this  study  (Table  2  MR  ep  source  to  MR  ep  target  (0.935)  vs  MR  cc  target  (0.888)).  Whereas 
 the  performance  of  AvgPrec  last  and  F-score  last  depends  predominantly  on  the  target 
 dataset  (Table  2  MR  ep  source  to  MR  ep  target  (AvgPrec  last  0.704)  vs  MR  cc  target 
 (AvgPrec  last  0.395)).  While  brutal-force  transfer  is  poorer  than  instance  or  parameter 
 transfer  under  most  circumstances  (Table  3,4,5),  it  outperforms  local  learning  in 
 scenarios  including  1)  the  outcome  prevalence  in  the  local  dataset  is  low.  E.g.  Models 
 trained  with  MR  ep  training  data  have  significantly  better  AvgPrec  last  (0.395)  and 
 F-score  last  (0.463)  in  predicting  MR  cc  target  than  MR  cc  local  learning  (Table  4  AvgPrec  last 

 0.369,  CI(0.353,0.385);  F-score  last  0.432,  CI(0.418,0.446)).  2)  The  local  dataset  has  a 
 small  sample  size.  E.g,  Models  trained  with  MR  ep  training  data  have  higher  AUROC  last 

 and  F-score  last  and  remarkably  lower  variance  than  MF  ep  local  learning  (Table  4  MR  ep  vs 
 MF  ep  on  MF  ep  target). 

 Negative transfer 
 Negative  transfer  was  only  observed  when  transfer  from  Centricity  to  EPIC  system 
 (Table  3  MR  cc  +  MR  ep  vs  MR  ep  on  MR  ep  target).  Compared  to  local  learning  with  EPIC 
 data  only,  the  performance  of  AUROC  last  ,  AvgPrec  last  ,  and  F-score  last  decreased 
 remarkably  after  incorporating  training  data  from  the  Centricity  system,  regardless  of 
 transferring  strategy.  However,  no  notable  negative  transfer  was  observed  when  transfer 
 from EPIC to Centricity (Table 3  MR  cc  +  MR  ep  vs  MR  cc  on  MR  cc  target  ). 

 GRU-D Transferability based on timestep specific analysis 
 Being  a  dynamic  time  series  model,  GRU-D  inherently  provides  risk  predictions  at  each 
 timestep  during  the  follow-up  period.  Hence,  evaluating  the  model's  transferability  at 
 the timestep level is essential. Here we made the following major observations 

 1)  Multi-source  instance  transfer  shows  overall  optimal  performance  on  the 
 majority  of  evaluation  metrics  both  before  and  after  index  date.  E.g.  It 
 significantly  excels  in  predicting  one  of  EPIC  targets  (  MA  ep  )  before  index  date 
 (Fig  5).  It  also  yields  a  significantly  improved  Flag  rate/Flag  PPV  when 
 forecasting  the  another  EPIC  target  (  MF  ep  )  which  has  the  smallest  sample  size 
 (Fig 4). 

 2)  Brutal-force  transfer  is  notably  suboptimal  in  Centricity  to  EPIC  transfer  after 
 index  date  (Fig  3),  but  not  cross  site  transfer  within  EPIC  system  (Fig  4,5). 
 Notably,  it  exhibits  a  generally  higher  variance  a  few  days  post-index  date  as  the 
 count of remaining cases decreases (Fig 3,5). 



 3)  Local  learning  is  only  marginally  poorer  than  other  transfer  strategies  on  certain 
 metrics  (e.g.  Fig  3  Q4-cases,  AvgPrec).  The  only  scenario  where  local  learning 
 significantly  underperforms  is  in  predicting  one  EPIC  target  (  MA  ep  )  on  AUROC 
 and Flag rate a few days post-index date (Fig 5). 

 4)  The  model  performance  is  predominantly  determined  by  the  prediction  task, 
 whereas  the  training  data  plays  a  very  limited  role.  This  is  evident  from  the 
 observation  that  when  the  models  trained  with  Centricity  training  data  (  MR  cc  )  are 
 brutal-force  transferred  to  EPIC  target  (  MR  ep  )  ,  they  exhibit  significantly  better 
 performance than being applied locally (i.e. to MRcc target)(Supp Fig 1). 

 5)  The  marginal  improvement  in  traditional  metrics  like  AUROC,  precision,  and 
 F1-score  does  not  necessarily  translate  to  improvement  in  more  clinical  utility 
 oriented  metrics  like  accumulated  Q4  cases  and  accumulated  case  percentage 
 (Fig 3,4) 

 Comparison with atemporal models 
 At  various  points  before  the  index  date  and  up  to  three  days  afterward,  the  atemporal 
 Logit  and  RF  models  markedly  surpass  the  GRU-D  models  in  terms  of  AUROC,  average 
 precision,  F-scores,  and  most  notably  in  Q4-cases  and  Accum  Case  %  (Fig  3,4  ALL  (w)ds 
 Logit  and  ALL  (w)ds  RF  ).  Beyond  three  days  after  the  index  date,  the  performance  of 
 the  atemporal  models,  particularly  the  Logit  models,  display  significant  instability,  with 
 performances  fluctuating  at  different  timesteps  and  generally  underperform  the  GRU-D 
 models.  Nevertheless,  it’s  important  to  note  that  within  the  current  experimental 
 framework  (i.e.  conducts  daily  risk  assessments  starting  four  days  before  surgery),  both 
 Logit  and  RF  models  identified  a  significantly  larger  proportion  of  ileus  patients  in  the 
 highest risk quartile in two EPIC sites (  MR  ep  ,  MF  ep  ). 

 Examining  the  regression  coefficients  of  Logit  models  over  the  follow-up  period  reveals 
 a  transition  in  the  primary  contributing  factors.  Factors  such  as  surgery  type,  hospital 
 site,  ileus  medication,  and  smoking  status  are  most  influential  at  4,  3,  and  2  days  before 
 the  index  date.  This  shifts  to  skin  condition  and  surgery  type  as  the  main  factors  1  day 
 before  the  index  date,  and  further  shifts  to  pain  location,  dressing  type,  assisted  living 
 status,  urine  condition,  and  muscle  color  on  the  index  date  (i.e.  immediately  after 
 surgery). 

 Transferability of model explainability 
 To  explore  how  model  explainability  changes  under  various  transfer  schemes,  we 
 performed  permutation  feature  importance  tests  on  selected  scenarios  detailed  below.  a) 
 Brutal-force  transfer  from  Centricity  to  EPIC  within  site  (Fig  6  a).  b)  Instance  transfer 



 between  Centricity  and  EPIC  within  site  (Fig  6  b).  c)  Brutal-force  transfer  between  EPIC 
 of different sites (Fig 6 c). d) Instance transfer between EPIC of different sites (Fig 6 d). 

 In  brutal-force  transfer  from  Centricity  to  EPIC  system  within  hospital  site  (Scenario  a), 
 we  observed  12  overlapping  features  among  top  20  features  from  each  target  dataset. 
 The  features’  importance  varies  widely  after  brutal  force  transfer  (Fig  6  a).  Interestingly, 
 instance  transfer  (Scenario  b)  resulted  in  a  feature  importance  pattern  remarkably 
 similar  to  that  of  brutal-force  transfer  (Fig  6  b  vs  a),  with  the  exception  for  a  few  features 
 like CCS code and oxygen amount. 

 In  brutal-force  transfer  between  EPIC  systems  across  hospital  sites  (Scenario  c),  several 
 features  (e.g.  urine  status,  urine  amount,  surgery  time)  have  no  contribution  when 
 brutal-force  transferred  to  another  hospital  site  (Fig  6  c).  Instance  transfer  (Scenario  d) 
 modified  explanation  to  a  subset  of  features  (e.g.  CCS,  surgery  time,  dressing 
 condition/type)  while  maintaining  the  significance  of  several  key  attributes  (e.g.  pain 
 location,  urine  status,  skin  condition,  nausea)  largely  in  line  with  that  of  brutal  force 
 transfer. 

 ICD diagnosis date versus ICD post date 
 In  clinical  practice,  there  is  often  a  delay  of  1-4  days  before  the  ICD  diagnosis  date 
 becomes  available  in  the  electronic  health  record  (EHR)  system.  As  a  result,  the  ICD 
 post  date  is  more  readily  accessible  for  integration  into  risk  models.  To  evaluate  the 
 impact,  we  trained  models  using  multi-source  instance  transfer  and  incorporated 
 dynamic  ICD  diagnosis  date,  dynamic  ICD  post  date,  and  static  ICD  post  date  (i.e.  use 
 whatever  ICD  code  available  4  days  before  surgery  and  replicated  through  follow-up)  as 
 predictors  for  predicting  the  hell-out  data  of  MRep,  MFep,  and  MAep,  respectively.  In 
 our  analysis  (Supp  Fig  2),  we  observed  no  significant  difference  in  performance  when 
 using these different dates. 



 Discussion 
 Over  the  past  decade,  extensive  research  has  revolved  around  the  integration  of  AI  into 
 healthcare,  but  only  a  handful  of  AI  tools  have  undergone  thorough  validation,  and  even 
 fewer  have  been  put  into  clinical  practice  25  26  27  28  .  An  important  part  of  this  challenge 
 lies  the  lack  of  generalizability  and  transferability  research  with  large  scale  clinical  data. 
 Here  we  provide  compelling  evidence  of  the  transferability  of  GRU-D  architecture  in 
 predicting  POI  at  multiple  time  points  of  follow-up  across  EHR  systems  and  hospital 
 sites.  Our  findings  align  with  previously  reported  transferability  of  RNN  based  RETAIN 
 models  in  predicting  heart  failure  across  hospitals  29  ,  which  however  only  reported  static 
 risk  prediction.  These  outcomes  support  the  potential  applicability  of  such  models  in 
 improving clinical predictive tasks across diverse healthcare environments. 

 Despite  the  extreme  sparsity  in  the  input  feature  space,  brutal-force  transfer  maintained 
 remarkably  consistent  performance  across  EHR  systems  and  hospital  sites,  maintaining 
 reasonable  stability  in  the  explanation  of  feature  importance.  This  leads  to  two 
 intriguing  insights:  1)  The  ground  truth  behind  input  features,  informative  missing,  and 
 POI  outcome  is  embedded  within  each  local  dataset,  which  the  GRU-D  architecture  has 
 managed  to  capture  to  a  certain  degree.  2)  The  contribution  of  each  feature  to  the 
 outcome  is  intrinsic  to  the  dataset  and  less  relevant  to  the  model  training  process. 
 Whereas  the  variation  in  how  the  model  explains  certain  features  (such  as  CCS  codes, 
 surgery  time,  dressing  condition/type)  suggests  that  incorporating  data  from  other 
 instances enables the model to find a more effective pathway to predict outcomes. 

 In  essence,  instance  or  parameter  transfers  offer  only  a  slight  advantage  over  local 
 learning  or  brutal-force  transfer  when  it  comes  to  the  direct  improvement  of  evaluation 
 metrics.  However,  they  notably  outperform  in  terms  of  variance  reduction,  particularly 
 in  scenarios  where  the  available  training  data  is  extremely  limited.  This  reduction  in 
 variance  leads  to  predictions  that  are  more  precise  and  therefore  more  useful  for 
 supporting  interventions.  Furthermore,  these  findings  underscore  the  ability  of  GRU-D 
 to  effectively  handle  small  datasets  with  remarkable  sparse  features.  They  also  imply 
 that  for  hospitals  with  restricted  access  to  samples,  employing  multi-fold 
 cross-validation  and  averaging  the  results  presents  a  feasible  strategy  for  applying 
 GRU-D in dynamic risk prediction, despite greater variance. 

 Negative  transfer  was  observed  when  transfer  from  Centricity  to  EPIC  but  not  the 
 reverse.  This  could  be  influenced  by  1)  the  differences  in  feature  distribution,  stemming 
 from  the  non-overlapping  colorectal  surgery  period  (Centricity  used  before  2018,  and 
 EPIC  after  2018),  and  2)  variations  in  how  different  EHR  systems  record  data  (e.g.  the 
 records  from  Centricity  system  has  remarkably  more  lab  and  less  vital  measurements 
 than  EPIC  system).  These  findings  are  consistent  with  a  previous  study  on  transfer 
 learning  of  CNN-based  time  series  classification  30  ,  which  indicated  that  transfer 
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 learning  is  more  effective  when  the  source  data  bears  greater  similarity  to  the  target 
 data. 

 Experiments  of  mutual  transfer  between  the  Centricity  and  EPIC  systems  reveal  that  the 
 model  performance  is  primarily  influenced  by  the  difficulty  of  the  prediction  task, 
 specifically  the  case  prevalence,  despite  our  efforts  to  address  case  imbalance  through 
 inverse  weighting.  In  contrast,  the  contribution  of  the  training  data  on  which  the  model 
 is  built  and  the  training  or  transferring  strategy  is  comparatively  less  significant.  It  is 
 anticipatable  that  for  cohorts  with  extremely  rare  cases,  even  the  implementation  of 
 intricately  designed  transferring  approaches  may  result  in  limited  improvements  in 
 performance.  This  highlights  the  challenge  of  effectively  leveraging  transfer  learning  in 
 situations where the target task involves highly uncommon outcomes. 

 Aligned  with  our  previous  findings  on  superficial  infections  and  bleeding,  Logit  and  RF 
 models  demonstrate  top-tier  performance  at  specific  moments  before  or  immediately 
 after  the  index  date,  significantly  contributing  to  the  Q4-case  related  metrics  in  two 
 hospital  sites.  Intriguingly,  during  most  of  the  post-surgical  hours,  when  more  current 
 measurements  are  available,  the  advantage  of  atemporal  models  does  not  persist  and 
 instead  exhibits  a  high  level  of  instability.  This  counterintuitive  performance  leads  to  the 
 following  hypotheses:  1)  The  relatively  simple  logical  structure  of  static  models  is 
 insufficient  to  handle  the  complexity  of  features  in  post-surgical  hours.  2)  Temporal 
 information  plays  a  crucial  role  in  determining  outcomes,  which  is  not  captured  by  static 
 models.  3)  The  healthcare  system's  reliance  on  a  similar  static  modeling  strategy  for 
 triggering  complication  alerts  (e.g.,  bleeding  determined  algorithmically  through 
 hemoglobin  levels)  may  influence  results.  Despite  these  observations,  we  do  not  dismiss 
 the  potential  superiority  of  static  models  under  certain  conditions.  However,  the 
 feasibility  of  constructing  and  managing  multiple  static  models  deserves  further 
 discussion if dynamic risk update is a crucial component. 

 Limitations 
 In  this  study  we  focused  on  the  transferability  across  EHR  systems  and  hospital  sites, 
 and  didn’t  evaluate  the  data  inequality  and  data  distribution  discrepancies  between 
 racial/ethnic  minorities  and  the  medically  underserved  groups.  In  our  previous  studies 
 31  21  ,  we  found  that  the  EHR  system  itself  significantly  impacts  the  structure  and  format 
 of  clinical  data.  This  influence  arises  from  built-in  documentation  functionality,  such  as 
 templates,  copy  and  paste,  auto-documentation,  and  transcription,  which  can  impact 
 the  EHR's  specific  syntactic  and  semantic  definitions  for  the  data  it  contains. 
 Additionally,  changes  in  clinical  and  billing  processes,  as  well  as  documentation 
 guidelines,  may  also  contribute  to  this  heterogeneity.  In  the  context  of  PSC-related 
 clinical  concepts  documentation  (e.g.,  abscess,  anemia,  purulent  drainage,  and  wound 
 infection),  we  discovered  high  syntactic  variation  and  a  moderate  difference  in  semantic 
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 type  and  frequency  across  document  sections  21  .  These  aforementioned  patterns  may 
 apply  to  the  ileus  documentation,  contributing  to  an  increasing  number  of  cases  after 
 EPIC  migration.  A  follow-up  study  is  needed  to  systematically  examine  this  pattern  to 
 ensure data quality and process transparency. 
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 Table 1 Baseline characteristic of study population 

 Hospital site full name 
 Mayo Clinic 

 Rochester 
 Mayo Clinic 

 Rochester 

 Mayo 
 Clinic 

 Arizona 

 Mayo 
 Clinic 

 Florida 

 Hospital site abbreviation  MR  MR  MA  MF  ALL 

 EHR system  Centricity  EPIC  EPIC  EPIC  - 

 Time period  2006-2018  2018-2021  2018-2022  2020-2022 

 Site-System Abbreviation  MR  cc  MR  ep  MA  ep  MF  ep  - 

 Number of patients  3535  2352  898  318  7103 

 Number of records  3598  2493  932  326  7349 

 Age at surgery  59(45,71)  a  58(45,69)  61(47,71)  62(48,71)  59(46,70) 

 Gender 

 Male  1767(50%)  1098(47%)  439(49%)  147(46%)  3451(49%) 

 Female  1768(50%)  1252(53%)  459(51%)  171(54%)  3650(51%) 

 Ileus cases  274(7.6%)  475(19.1%)  187(20.1%)  76(23.3%) 
 1012(13.8% 

 ) 

 Race 

 Caucasian  3315(94%)  2161(92%)  818(91%)  289(91%)  6583(93%) 

 Non-caucasian  220(6%)  191(8%)  80(9%)  29(9%)  520(7%) 

 Surgery subtype 

 Laparoscopy, colectomy  978(27%)  530(21%)  268(29%)  68(21%)  1844(25%) 

 Laparoscopy, colectomy, partial  634(18%)  578(23%)  265(28%)  87(27%)  1564(21%) 

 Removal of colon  701(19%)  409(16%)  120(13%)  55(17%)  1285(17%) 

 Removal of colon, partial  505(14%)  460(18%)  147(16%)  69(21%)  1181(16%) 

 Removal of rectum  255(7%)  111(4%)  18(2%)  9(3%)  393(5%) 

 Others  b  525(15%)  405(16%)  124(13%)  38(12%)  1092(15%) 

 Surgery time duration, minutes  188(136,256) 
 238(158,353 

 ) 
 198(138,28 

 6) 
 236(185,31 

 9) 
 204(143,29 

 0) 
 a  Data shown as n(%) or median(IQR) 
 b  See Table S1 for a comprehensive list of subtypes 



 Table 2 Training and held-out split 

 Site-System  MR  cc  MR  ep  MF  ep  MA  ep  ALL 

 Total  3598  2493  326  932  7349 

 Ileus cases  274  475  76  187  1012 

 case (%)  7.60%  19.10%  23.30%  20.10%  13.80% 

 Held-out  1079  747  97  278  2201 

 cases  75  144  25  57  301 

 case (%)  7.00%  19.30%  25.80%  20.50%  13.70% 

 Training  2519  1746  229  654  5148 

 cases  199  331  51  130  711 

 case (%)  7.90%  19.00%  22.30%  19.90%  13.80% 



 Table 3 Centricity to EPIC transferability within MR site 

 Training 
 Source 
 data (  S  Tr  ) 

 MR  cc  MR  ep  MR  cc  + 
 MR  ep 

 (w/o)d 
 s  a 

 MR  cc  + 
 MR  ep 

 (w)ds  b 

 MR  ep 

 (MR  cc  ) 
 MR  cc 

 (MR  ep  ) 
 ALL 
 (w/o)ds 

 ALL 
 (w)ds 

 AUROC  last  0.882 
 , 
 0.022 

 0.935, 
 0.006 

 0.925, 
 0.01 

 0.929, 
 0.002 

 0.929, 
 0.013 

 0.907, 
 0.014 

 0.935, 
 0.006 

 0.939, 
 0.003 

 AvgPrec  last  0.601 
 , 
 0.056 

 0.704, 
 0.038 

 0.683, 
 0.028 

 0.707, 
 0.024 

 0.691, 
 0.040 

 0.642, 
 0.035 

 0.709, 
 0.032 

 0.72, 
 0.028 

 F-score  last  0.643 
 , 
 0.047 

 0.73, 
 0.009 

 0.7, 
 0.023 

 0.709, 
 0.009 

 0.728, 
 0.022 

 0.679, 
 0.026 

 0.737, 
 0.014 

 0.736, 
 0.014 

 AUROC  last 
 ’ 

 0.886 
 ,0.00 
 9 

 0.888, 
 0.011 

 0.882, 
 0.018 

 0.883, 
 0.016 

 0.9, 
 0.009 

 0.89, 
 0.01 

 0.89, 
 0.012 

 0.893, 
 0.009 

 AvgPrec  last  0.369 
 , 
 0.016 

 0.395, 
 0.018 

 0.331, 
 0.043 

 0.358, 
 0.041 

 0.393, 
 0.018 

 0.342, 
 0.038 

 0.372, 
 0.024 

 0.366, 
 0.05 

 F-score  last  0.432 
 , 
 0.014 

 0.463, 
 0.03 

 0.411, 
 0.048 

 0.428, 
 0.034 

 0.465, 
 0.031 

 0.403 
 0.032 

 0.446, 
 0.033 

 0.438, 
 0.032 
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 Table 4  EPIC transferability from MR to MF site 

 Training 
 Source 
 data (  S  Tr  ) 

 MR  ep  MF  ep  MR  ep  + 
 MF  ep 
 (w/o)ds  a 

 MR  ep  + 
 MF  ep 
 (w)ds  b 

 MF  ep 
 (MR  ep  ) 

 ALL 
 (w/o)ds 

 ALL 
 (w)ds 

 AUROC  last  0.904, 
 0.007 

 0.883, 
 0.042 

 0.903, 
 0.005, 

 0.899, 
 0.01 

 0.906, 
 0.009 

 0.895, 
 0.01 

 0.906, 
 0.006 

 AvgPrec  las 

 t 

 0.652, 
 0.026 

 0.652, 
 0.071 

 0.635, 
 0.015 

 0.668, 
 0.032 

 0.657, 
 0.024 

 0.648, 
 0.045 

 0.691, 
 0.031 

 F-score  last  0.804, 
 0.022 

 0.745, 
 0.064 

 0.813, 
 0.014 

 0.777, 
 0.022 

 0.807, 
 0.02 

 0.792, 
 0.033 

 0.815, 
 0.015 

 Table 5  EPIC transferability from MR to MA site 

 Training 
 Source 
 data (  S  Tr  ) 

 MR  ep  MA  ep  MR  ep  + 
 MA  ep 
 (w/o)ds  a 

 MR  ep  + 
 MA  ep 
 (w)ds  b 

 MA  ep 
 (MR  ep  ) 

 ALL 
 (w/o)ds 

 ALL 
 (w)ds 

 AUROC  last  0.889, 
 0.013 

 0.894, 
 0.013 

 0.896, 
 0.011 

 0.894, 
 0.01 

 0.896, 
 0.005 

 0.903, 
 0.006 

 0.911, 
 0.009 

 AvgPrec  last  0.624, 
 0.017 

 0.657, 
 0.022 

 0.650, 
 0.048 

 0.67, 
 0.029 

 0.646, 
 0.023 

 0.692, 
 0.02 

 0.675, 
 0.024 

 F-score  last  0.726, 
 0.027 

 0.723, 
 0.013 

 0.708, 
 0.018 

 0.726, 
 0.019 

 0.722, 
 0.034 

 0.726, 
 0.019 

 0.716, 
 0.02 

 a  without data source indicator 
 b  with data source indicator 
 Bold font indicate the best performed model 
 data shown at metric, error margin of 95% CI 
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 Fig 1  Distribution of colorectal surgery time (left) and time to event (right) across 
 site-systems. 

 Fig 2  Missing proportion of selected features throughout each timesteps of follow-up, 
 from 4 days before surgery to 14 days after surgery. 



 Fig 3  Centricity to EPIC transferability evaluated by timestep-specific analysis.  All 

 predictions made on  .  ALL  : instance transfer from  ;  MR  ep  (MR  cc  )  : 

 parameter transfer from  ;  MR  cc  + MR  ep  : instance transfer  from  MR  cc  ;  MR  ep  : 

 local learning;  MR  cc  : brutal-force transfer from  ;  ALL w(ds) Logit  : Logit 

 based on  with data source indicator;  ALL w(ds) RF:  Random forest based on 

 with data source indicator 
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 Fig 4  EPIC transferability from  MR  ep  to  MF  ep  evaluated by timestep-specific analysis.  All 

 predictions made on  .  ALL  : instance transfer from  ;  MF  ep  (MR  ep  )  : 

 parameter transfer from  ;  MR  ep  + MF  ep  : instance transfer  from  MR  ep  ;  MF  ep  : 

 local learning;  MR  ep  : brutal-force transfer from  ;  ALL Logit  : Logit based on 

 ;  MR  ep  Logit  : brutal-force transfer with Logit trained  on  ;  MF  ep  Logit  : 

 local learning with Logit trained on 
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 Fig 5  EPIC transferability from  MR  ep  to  MA  ep  evaluated by timestep-specific analysis.  All 

 predictions made on  .  ALL  : instance transfer from  ;  MA  ep  (MR  ep  )  : 

 parameter transfer from  ;  MR  ep  + MA  ep  : instance transfer  from  MR  ep  ;  MA  ep  : 

 local learning;  MR  ep  : brutal-force transfer from  ;  ALL Logit  : Logit based on 

 ;  MR  ep  Logit  : brutal-force transfer with Logit trained  on  ;  MA  ep  Logit  : 

 local learning with Logit trained on 
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 Fig 6  Permutation feature importance test of different transferring scenarios. a) 

 explain  vs  . b)  explain  vs  . c) 

 explain  vs  . d)  explain  vs  . For 
 each pair of permutation tests, the top 20 features were retrieved and merged to 
 generate a final list. 
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