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Background: Postoperative ileus (POI) after colorectal surgery leads to increased
morbidity, costs, and hospital stays. Identifying POI risk for early intervention is
important for improving surgical outcomes especially given the increasing trend
towards early discharge after surgery. While existing studies have assessed POI risk with
regression models, the role of deep learning's remains unexplored.

Methods: We assessed the performance and transferability (brutal
force/instance/parameter transfer) of Gated Recurrent Unit with Decay (GRU-D), a
longitudinal deep learning architecture, for real-time risk assessment of POl among
7,349 colorectal surgeries performed across three hospital sites operated by Mayo Clinic
with two electronic health records (EHR) systems. The results were compared with
atemporal models on a panel of benchmark metrics.

Results: GRU-D exhibits robust transferability across different EHR systems and
hospital sites, showing enhanced performance by integrating new measurements, even
amid the extreme sparsity of real-world longitudinal data. On average, for labs, vitals,
and assisted living status, 72.2%, 26.9%, and 49.3% respectively lack measurements
within 24 hours after surgery. Over the follow-up period with 4-hour intervals, 98.7%,
84%, and 95.8% of data points are missing, respectively. A maximum of 5% decrease in
AUROC was observed in brutal-force transfer between different EHR systems with
non-overlapping surgery date frames. Multi-source instance transfer witnessed the best
performance, with a maximum of 2.6% improvement in AUROC over local learning. The
significant benefit, however, lies in the reduction of variance (a maximum of 86%
decrease). The GRU-D model's performance mainly depends on the prediction task's
difficulty, especially the case prevalence rate. Whereas the impact of training data and
transfer strategy is less crucial, underscoring the challenge of effectively leveraging
transfer learning for rare outcomes. While atemporal Logit models show notably
superior performance at certain pre-surgical points, their performance fluctuate
significantly and generally underperform GRU-D in post-surgical hours.

Conclusion: GRU-D demonstrated robust transferability across EHR systems and
hospital sites with highly sparse real-world EHR data. Further research on built-in
explainability for meaningful intervention would be highly valuable for its integration
into clinical practice.



Background

Postoperative ileus (POI) poses a common challenge following colorectal surgery,
contributing to heightened morbidity, increased costs, and prolonged hospital stays ™.
With an occurrence rate of 10%-30% and typically manifesting within 6-8 days
post-surgery 2, addressing POI has gained significance for hospitals due to various
reasons. These include a payment reform that emphasizes extended care episodes and
Medicare penalties associated with readmissions within 30 days, an increasing
preference for outpatient surgery to conserve limited hospital resources amid the
COVID-19 pandemic 3, along with a contentious surge in interest for same-day or
next-day discharge *. Efficiently identifying the risk of POI to enable early intervention
stands as a crucial factor in enhancing surgical outcomes. While various studies have
discussed the prediction of POI 5 ¢ 7 & 9 ©°_ predominantly utilizing multivariate logistic
regression techniques, there exists a notable gap in research concerning deep
learning-based approaches in POI prediction. This is particularly intriguing given the
widespread application of deep learning in tackling other postoperative complications *
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We previously benchmarked the Gated Recurrent Unit with Decay (GRU-D), a RNN
based architecture proposed by Che et al 4, in making real-time risk assessment of
post-surgical complications including superficial infection, wound infection, organ
space infection, and bleeding **. GRU-D exhibited advantageous attributes including
automated missing imputation, the flexibility to tailor sampling intervals, and the
capacity to update and enhance risk assessment by incorporating newly received
measurements. These features position GRU-D as an ideal candidate for risk modeling
associated with longitudinal clinical data, a domain often characterized by substantial
missings in data, asynchronous updates, and the need for prompt risk assessment.

The considerable practical values that GRU-D holds underscores the importance of
examining its applicability across a variety of real-world contexts. Here we aim to assess
the feasibility, performance, and transferability of GRU-D in risk modeling of POI
across two electronic health record (EHR) systems in three separate hospital sites
affiliated with Mayo Clinic. The results are compared with atemporal logistic regression
and random forest models on both pre-surgical and post-surgical periods to evaluate the
strengths and limitations of GRU-D based strategy in POI risk assessment. This
evaluation takes place against the backdrop of the increasing significance of time series
data, a prevalent format in clinical settings used to chronicle patient longitudinal
information, within the realm of transferability research. Notably, prior research on
transferability involving time series data has primarily centered around neurology and
cardiology * *°. There exists a substantial dearth of research concerning the transfer
learning of time series data related to surgical contexts, with only a limited number of
studies being documented 7 8,
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Materials and Methods

CRC surgery samples

The study consists of 7349 colorectal surgery records from 7103 patients with colorectal
surgeries performed at Mayo Clinic Rochester (MR), Arizona (MA), Florida (MF)
hospital sites between 2006 and 2022 as part of the National Surgical Quality
Improvement Program (NSQIP) cohort *. Specifically, due to a transition from
Centricity to EPIC system in 2018, data from MR is split into two parts as MR centricity
(MR..) and MR EPIC (MR,,). Whereas data from both MA and MF are after 2018 with
the EPIC system. The distribution of surgery time by sites and EHR systems are
illustrated in Fig 1. The baseline characteristics of the patients are shown in Table 1. The
study was approved by the Mayo Clinic institutional review board (IRB number:
15-000105). All patients included in this study had consent for their data to be used for
research.

Ileus status ascertainment

The identification of ileus was followed by the application of a standardized NLP
pipeline through the OHNLP infrastructure. Additional details about the NLP
methodology can be found in our previous studies 2° 2. Briefly, the development of the
ileus algorithm followed an integrative process, which included corpus annotation,
symbolic ruleset prototyping, ruleset refinement, and final evaluation. The validated
ileus rulesets were then integrated into the OHNLP Backbone and MedTaggerIE NLP
pipeline, which includes a built-in context classifier (e.g., status, subject, and certainty).

Training data and held-out data selection

For surgery records of each site, 30% were randomly selected as held-out, and the
remaining 70% were randomly splitted into six equal-sized training chunks (Table 2).
The randomization was performed 100 times to select the one that minimizes the
difference between chunk-level and site-level characteristics on ileus complication rate,
surgery duration, gender, and race.

Transfer learning naming rules and transfer schemes

Throughout the paper we adhere to the following naming rules for clarity. For each
dataset, subscripted MR, MR,,, MF,,, MA,, represent the dataset originated from Mayo
Clinic Rochester Centricity, Rochester EPIC, Florida EPIC, and Arizona EPIC system,
respectively. Source training (S”") and source held-out (S7°) represent data from the
training and held-out chunks of source site-system(s), respectively. Target training (77"
) and target held-out (7'7°) represent data from the training and held-out chunks of the

Tr
target site-system(s), respectively. E.g., SMR.. represents source training dataset from

Mayo Clinic Rochester Centricity system. We use function M 0 to represent deep
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learning model to make a distinction from the corresponding dataset it was trained

Tr Tr
upon. E.g. M(Sy/g,.) represent models trained from SMR.. dataset.

For each site-system, the six chunks of training data were used to train six independent
models by iteratively leaving one chunk out. The models were named, take MR, for

Tr
example, as M(Sy/g..) (an ensemble of six models). We consider five model training

Tr

scenarios (Take MR,, for example) including local learning (i.e. training on Su Rep and
Ho Tr

predict TMRep ) and four scenarios of transfer learning (transfer from SMRee for

example) detailed below, according to solution based categorization 2.

Tr Ho
Brutal-force transfer: Directly apply M (SifR,.) to 1aR.,,

Single-source instance transfer: Combine training data records from MR, and

Tr Ho
MR,, and apply M (SR etmr Rep) to IMR.,.

T
Parameter transfer: Continuous training of M(Sirr..) on MR,,. The models were

Tr Ho
named M(Sy Rep(M Rec) ) , which were then applied to Ty,

. . . T ..
Multi-source instance transfer: Train brand new models M(SarL) by combining
Ho
training data from all sites and then applied to T Rep,

GRU-D model architectures
The basic architecture of the GRU-D model was described by 3, here we recapitulate the
equations for handling missing values.

¢ = mizi + (1 —m{)(vg,2y + (1 = g,)29)

where mf is the missing value indicator for feature d at timestep ¢. mf takes value 1
when xchl is observed, or 0 otherwise, in which case the function resorts to weighted sum
of the last observed value 37?/ and empirical mean ¢ calculated from the training data
for the dth feature. Furthermore, the weighting factor Vgt is determined by

v = exp{—max(0, W.o; + b,)}

where W5 is a trainable weights matrix and 9: is the time interval from the last
observation to the current timestep. When 0: is large (i.e. the last observation is far
away from current timestep), 7t is small, results in smaller weights on the last observed

value l’;si/, and higher weights on the empirical mean 7 (ie. decay to mean).

For each timestep of each patient, sigmoid activation function is applied to the hidden
output to generate a predicted probability Yit (0~1) of developing ileus within 30 days
after surgery. Yit is evaluated against the true class label (O), i.e., whether or not the
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patient actually developed ileus within 30 days of surgery. Specifically, the loss function

is as follow
N T

losStotar = Z(I/Vz Z(Oilog(yu) + (1 = Oy)log(1 — yu)))

i=1 t=1
where N is the number of training samples in a batch. Wi is the weights for sample i
(minor group inverse weighted). i is the maximum allowed timesteps (i.e. the
timesteps before ileus onset, if any) for sample i. O; is the observed outcome. Yit is the
predicted probability for sample ¢ at timestep .

Competing models

The performance of GRU-D model was compared with atemporal logistic regression
with lasso regularization (Logit) (R package glmnet) and atemporal random forest (RF)
(R package randomForestSRC). For both models, we implemented unlimited time last
value carry forward to fill in the missing values. The remaining missing values were
imputed with RF adaptive tree imputation ** with three iterations. Specifically, the
imputation for training and held-out data from different sites were implemented
separately. Separate models were trained at integer days (i.e., -4, -3 ... 13, 14) and used
to make predictions at corresponding time points. Features with missing proportions
greater than 0.2 were removed from analysis. For the Logit model, the default
configurations (alpha=1, nlambda=100) were adopted. For the RF model, the number of
trees were set to 100 with a minimum of 10 terminal nodes.

Input features and feature selection

We included features that appeared in all four site-systems (Table S1). Notably, for the
GRU-D model no exclusion of features by missing proportion was performed, to respect
real world scenarios where data availability may vary across sites.

We meticulously reviewed each feature to classify it as continuous or categorical. To
support transfer learning, we manually established a biologically meaningful mapping
from Centricity to EPIC categories for each categorical feature, resulting in a
semi-homogeneous transfer learning setup. For example, we mapped the 29
fine-grained "Diet" categories in the Centricity system to the 3 corresponding categories
("Nothing by mouth," "Diet 50," and "Diet 100") in the EPIC system.

Categorical features underwent one hot encoding based on categories presented across
all four site-systems, while continuous features were z-score normalized using mean and
standard deviation values calculated from the source training data. During parameter
transfer learning, we updated the mean and standard deviation values with
corresponding values from the target training data, if available. To avoid extreme values,
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the z-score values were hard clamped to between -5 and 5 before being fed into the
machine learning models.

Sampling scheme of dynamic and static features

Dynamic features were sampled at a 4-hour interval from 4 days before surgery to 14
days after surgery, using the last measurement in the past 4 hours, or marked as missing
if no value was spotted. This generates 109 timesteps for each feature of each patient.
Static features were replicated across time. Age is converted to within range o~1 by
dividing by 100. Surgery time duration is hourly based. Surgery subtypes are one hot
encoded into 14 categories.

Evaluation metrics

We benchmarked the models’ performance with established metrics such as area under
the receiver operating characteristic (AUROC), average precision, the optimal cutoff
threshold (which maximizes the geometric mean of sensitivity and specificity), and the
F-score (at the optimal threshold). Furthermore, we also experimented with a panel of
customized metrics focused on clinical utility. These include setting up a monitoring
ward specifically for the highest risk quartile (i.e., the fourth quartile) and record the
number of unique ileus cases identified in each time step (referred to as Q4-cases), the
cumulative number of unique Q4-cases over the entire follow-up period (Q4-cases
accum), and the percentage of accumulated cases among all monitored patients (Accum
Case %, i.e. accumulated precision). We also presented for each model the flag rate (i.e.
the proportion of patients that need to be monitored) and positive predictive value
(PPV) in order to achieve 60% sensitivity throughout each time point of the follow-up.
To ensure comparability between GRU-D and atemporal models, the clinical utility
related metrics were evaluated exclusively on integer days (-96h, -72h, ..., 24h, 48h...).
To ensure the accuracy of our evaluation metrics, we removed patients who had already
developed ileus complications before the specific timestep of interest, thus eliminating
confounding effects from prior occurrences of the complication.

We examined two approaches for assessing metrics in our study. Taking AUROC as an
example, the first approach, termed timestep-specific analysis (AUROC,), involves
evaluating the predicted probability at a particular timestep t against ileus outcome,
while excluding patients with ileus diagnosed prior to that timestep. The second
approach, termed last-timestep analysis (AUROC,,,,), evaluates the predicted probability
at the final timestep before ileus onset (or the 109th timestep if no ileus) against ileus
outcome. This second approach is specifically designed to assess the transferability of
GRU-D models using all available information. In our study, we evaluated AUROC,
average precision, and F-score using both strategies, whereas the remaining metrics
were only evaluated using the first strategy.



Permutation feature importance

The permutation feature importance test is performed by randomly rearranging the
sample IDs of a given feature in the target dataset. For each of the six models (obtained
from the six-fold cross-validation) five permutations were executed, resulting in a total
of 30 permutations for each feature at every timestep. The AUROC, was assessed both
before and after the permutation. The mean discrepancy in AUROC, across all timesteps
(calculated as before permutation minus after permutation) was used to gauge the
model's reliance on the specific feature.



Results

Feature sparsity of real-world data

To demonstrate the level of feature sparsity derived from real-world EHR data, we
visualized the missing proportion of selected features (Labs, Vitals, ADL (Assisted
Living Status)) in Fig 2, and CCS codes in Fig S3. The EHR data from the studied
hospital sites is predominantly sparse across multiple modalities throughout the
duration of follow-up. From surgery completion (index date) to within 24 hours after
surgery, there are on average 72.2% labs, 26.9% vitals, 49.3% ADL, 95.4% CCS codes
lacking a measurement. With a standardized 4 hour interval based time grid, the
average missing proportions throughout the entire follow-up are 98.7%, 84%, 95.8%,
and 95.5% for labs, vitals, ADL, and CCS codes, respectively. Notably, in adhering to a
realistic approach regarding data availability, no feature was eliminated based on its
missing proportion in the assessment of GRU-D models. Consequently, the extent of
data sparsity depicted in Fig 2 and S3 reflects the input consumed by the GRU-D
models.

GRU-D Transferability based on last timestep analysis

Multi-source instance transfer has overall the best performance

After investigating the transferability between different EHR systems within the same
hospital site, and same EHR system between different hospital sites, a general
observation is that multi-source instance transfer with data source indicator has overall
the best performance (Table 3,4,5 ALL (w)ds), slightly surpassing without data source
indicator (Table 3,4,5 ALL (w/o)ds). However, the enhancement compared to local
learning is only marginal. E.g. The improvement in AUROC,, ranges between a
minimum of 0.4% (Table 3 MR,, 0.935 vs ALL (w)ds 0.939) and a maximum of 2.6%
(Table 4 MF,, 0.883 vs ALL (w)ds 0.906). Whereas the significant benefit lies in the
reduction of variance. E.g. For the EPIC site (MF,,) with the smallest training sample
size (Table 2, n=226), the CI of AUROC,, reduced 86%, from 0.042 on local learning to
0.006 on multi-source instance transfer (Table 4). Similarly, the CI of AvgPrec,
reduced 56% from 0.071 to 0.031.

Parameter and instance transfer perform similarly with two data sources
For models trained on only two data sources, parameter transfers (Table 3 MR,,(MR..),
Table 4 MF,,(MR,,), Table 5 MA,,(MR,,)) perform similarly as their single-source
instance transfer counterparts, either with or without data source indicator (e.g. Table 3
MR, + MR,, (w)(w/o0)ds). Data source indicator shows mixed effect on performance
when there are only two data sources. For both parameter and instance transfers, there
is generally no significant enhancement over local learning either in the evaluation
metric or CI, with the exception of the EPIC site (MF,,) that has the smallest training
sample size (Table 4).



Brutal-force transfer outperform local learning in specific scenarios

For AUROC,,, we see up to 5% decrease among all brutal-force transfers explored in
this study (Table 2 MR,, source to MR,, target (0.935) vs MR, target (0.888)). Whereas
the performance of AvgPrec,, and F-score,, depends predominantly on the target
dataset (Table 2 MR,, source to MR, target (AvgPrec,y 0.704) vs MR, target
(AvgPrec,; 0.395)). While brutal-force transfer is poorer than instance or parameter
transfer under most circumstances (Table 3,4,5), it outperforms local learning in
scenarios including 1) the outcome prevalence in the local dataset is low. E.g. Models
trained with MR,, training data have significantly better AvgPrec,, (0.395) and
F-score), (0.463) in predicting MR, target than MR, local learning (Table 4 AvgPrec,,
0.369, CI(0.353,0.385); F-score, 0.432, CI(0.418,0.446)). 2) The local dataset has a
small sample size. E.g, Models trained with MR,, training data have higher AUROC,,
and F-score,,; and remarkably lower variance than MF,,local learning (Table 4 MR,,vs
MF,,on MF,, target).

Negative transfer

Negative transfer was only observed when transfer from Centricity to EPIC system
(Table 3 MR, + MR,, vs MR, on MR,, target). Compared to local learning with EPIC
data only, the performance of AUROC,,, AvgPrec,y, and F-score,; decreased
remarkably after incorporating training data from the Centricity system, regardless of
transferring strategy. However, no notable negative transfer was observed when transfer
from EPIC to Centricity (Table 3 MR, + MR,, vs MR..on MR, . target).

GRU-D Transferability based on timestep specific analysis

Being a dynamic time series model, GRU-D inherently provides risk predictions at each
timestep during the follow-up period. Hence, evaluating the model's transferability at
the timestep level is essential. Here we made the following major observations

1) Multi-source instance transfer shows overall optimal performance on the
majority of evaluation metrics both before and after index date. E.g. It
significantly excels in predicting one of EPIC targets (MA,,) before index date
(Fig 5). It also yields a significantly improved Flag rate/Flag PPV when
forecasting the another EPIC target (MF,,) which has the smallest sample size

(Fig 4).

2) Brutal-force transfer is notably suboptimal in Centricity to EPIC transfer after
index date (Fig 3), but not cross site transfer within EPIC system (Fig 4,5).
Notably, it exhibits a generally higher variance a few days post-index date as the
count of remaining cases decreases (Fig 3,5).



3) Local learning is only marginally poorer than other transfer strategies on certain
metrics (e.g. Fig 3 Q4-cases, AvgPrec). The only scenario where local learning
significantly underperforms is in predicting one EPIC target (MA,,) on AUROC
and Flag rate a few days post-index date (Fig 5).

4) The model performance is predominantly determined by the prediction task,
whereas the training data plays a very limited role. This is evident from the
observation that when the models trained with Centricity training data (MR,.) are
brutal-force transferred to EPIC target (MR,,) , they exhibit significantly better
performance than being applied locally (i.e. to MRcc target)(Supp Fig 1).

5) The marginal improvement in traditional metrics like AUROC, precision, and
F1-score does not necessarily translate to improvement in more clinical utility
oriented metrics like accumulated Q4 cases and accumulated case percentage

(Fig 3,4)

Comparison with atemporal models

At various points before the index date and up to three days afterward, the atemporal
Logit and RF models markedly surpass the GRU-D models in terms of AUROC, average
precision, F-scores, and most notably in Q4-cases and Accum Case % (Fig 3,4 ALL (w)ds
Logit and ALL (w)ds RF). Beyond three days after the index date, the performance of
the atemporal models, particularly the Logit models, display significant instability, with
performances fluctuating at different timesteps and generally underperform the GRU-D
models. Nevertheless, it’s important to note that within the current experimental
framework (i.e. conducts daily risk assessments starting four days before surgery), both
Logit and RF models identified a significantly larger proportion of ileus patients in the
highest risk quartile in two EPIC sites (MR,,, MF,,).

Examining the regression coefficients of Logit models over the follow-up period reveals
a transition in the primary contributing factors. Factors such as surgery type, hospital
site, ileus medication, and smoking status are most influential at 4, 3, and 2 days before
the index date. This shifts to skin condition and surgery type as the main factors 1 day
before the index date, and further shifts to pain location, dressing type, assisted living
status, urine condition, and muscle color on the index date (i.e. immediately after

surgery).

Transferability of model explainability

To explore how model explainability changes under various transfer schemes, we
performed permutation feature importance tests on selected scenarios detailed below. a)
Brutal-force transfer from Centricity to EPIC within site (Fig 6 a). b) Instance transfer



between Centricity and EPIC within site (Fig 6 b). ¢) Brutal-force transfer between EPIC
of different sites (Fig 6 c). d) Instance transfer between EPIC of different sites (Fig 6 d).

In brutal-force transfer from Centricity to EPIC system within hospital site (Scenario a),
we observed 12 overlapping features among top 20 features from each target dataset.
The features’ importance varies widely after brutal force transfer (Fig 6 a). Interestingly,
instance transfer (Scenario b) resulted in a feature importance pattern remarkably
similar to that of brutal-force transfer (Fig 6 b vs a), with the exception for a few features
like CCS code and oxygen amount.

In brutal-force transfer between EPIC systems across hospital sites (Scenario ¢), several
features (e.g. urine status, urine amount, surgery time) have no contribution when
brutal-force transferred to another hospital site (Fig 6 c). Instance transfer (Scenario d)
modified explanation to a subset of features (e.g. CCS, surgery time, dressing
condition/type) while maintaining the significance of several key attributes (e.g. pain
location, urine status, skin condition, nausea) largely in line with that of brutal force
transfer.

ICD diagnosis date versus ICD post date

In clinical practice, there is often a delay of 1-4 days before the ICD diagnosis date
becomes available in the electronic health record (EHR) system. As a result, the ICD
post date is more readily accessible for integration into risk models. To evaluate the
impact, we trained models using multi-source instance transfer and incorporated
dynamic ICD diagnosis date, dynamic ICD post date, and static ICD post date (i.e. use
whatever ICD code available 4 days before surgery and replicated through follow-up) as
predictors for predicting the hell-out data of MRep, MFep, and MAep, respectively. In
our analysis (Supp Fig 2), we observed no significant difference in performance when
using these different dates.



Discussion

Over the past decade, extensive research has revolved around the integration of Al into
healthcare, but only a handful of Al tools have undergone thorough validation, and even
fewer have been put into clinical practice 2> 2° 7 28, An important part of this challenge
lies the lack of generalizability and transferability research with large scale clinical data.
Here we provide compelling evidence of the transferability of GRU-D architecture in
predicting POI at multiple time points of follow-up across EHR systems and hospital
sites. Our findings align with previously reported transferability of RNN based RETAIN
models in predicting heart failure across hospitals *°, which however only reported static
risk prediction. These outcomes support the potential applicability of such models in
improving clinical predictive tasks across diverse healthcare environments.

Despite the extreme sparsity in the input feature space, brutal-force transfer maintained
remarkably consistent performance across EHR systems and hospital sites, maintaining
reasonable stability in the explanation of feature importance. This leads to two
intriguing insights: 1) The ground truth behind input features, informative missing, and
POI outcome is embedded within each local dataset, which the GRU-D architecture has
managed to capture to a certain degree. 2) The contribution of each feature to the
outcome is intrinsic to the dataset and less relevant to the model training process.
Whereas the variation in how the model explains certain features (such as CCS codes,
surgery time, dressing condition/type) suggests that incorporating data from other
instances enables the model to find a more effective pathway to predict outcomes.

In essence, instance or parameter transfers offer only a slight advantage over local
learning or brutal-force transfer when it comes to the direct improvement of evaluation
metrics. However, they notably outperform in terms of variance reduction, particularly
in scenarios where the available training data is extremely limited. This reduction in
variance leads to predictions that are more precise and therefore more useful for
supporting interventions. Furthermore, these findings underscore the ability of GRU-D
to effectively handle small datasets with remarkable sparse features. They also imply
that for hospitals with restricted access to samples, employing multi-fold
cross-validation and averaging the results presents a feasible strategy for applying
GRU-D in dynamic risk prediction, despite greater variance.

Negative transfer was observed when transfer from Centricity to EPIC but not the
reverse. This could be influenced by 1) the differences in feature distribution, stemming
from the non-overlapping colorectal surgery period (Centricity used before 2018, and
EPIC after 2018), and 2) variations in how different EHR systems record data (e.g. the
records from Centricity system has remarkably more lab and less vital measurements
than EPIC system). These findings are consistent with a previous study on transfer
learning of CNN-based time series classification 3°, which indicated that transfer
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learning is more effective when the source data bears greater similarity to the target
data.

Experiments of mutual transfer between the Centricity and EPIC systems reveal that the
model performance is primarily influenced by the difficulty of the prediction task,
specifically the case prevalence, despite our efforts to address case imbalance through
inverse weighting. In contrast, the contribution of the training data on which the model
is built and the training or transferring strategy is comparatively less significant. It is
anticipatable that for cohorts with extremely rare cases, even the implementation of
intricately designed transferring approaches may result in limited improvements in
performance. This highlights the challenge of effectively leveraging transfer learning in
situations where the target task involves highly uncommon outcomes.

Aligned with our previous findings on superficial infections and bleeding, Logit and RF
models demonstrate top-tier performance at specific moments before or immediately
after the index date, significantly contributing to the Q4-case related metrics in two
hospital sites. Intriguingly, during most of the post-surgical hours, when more current
measurements are available, the advantage of atemporal models does not persist and
instead exhibits a high level of instability. This counterintuitive performance leads to the
following hypotheses: 1) The relatively simple logical structure of static models is
insufficient to handle the complexity of features in post-surgical hours. 2) Temporal
information plays a crucial role in determining outcomes, which is not captured by static
models. 3) The healthcare system's reliance on a similar static modeling strategy for
triggering complication alerts (e.g., bleeding determined algorithmically through
hemoglobin levels) may influence results. Despite these observations, we do not dismiss
the potential superiority of static models under certain conditions. However, the
feasibility of constructing and managing multiple static models deserves further
discussion if dynamic risk update is a crucial component.

Limitations
In this study we focused on the transferability across EHR systems and hospital sites,
and didn’t evaluate the data inequality and data distribution discrepancies between

racial/ethnic minorities and the medically underserved groups. In our previous studies
3121 we found that the EHR system itself significantly impacts the structure and format
of clinical data. This influence arises from built-in documentation functionality, such as
templates, copy and paste, auto-documentation, and transcription, which can impact
the EHR's specific syntactic and semantic definitions for the data it contains.
Additionally, changes in clinical and billing processes, as well as documentation
guidelines, may also contribute to this heterogeneity. In the context of PSC-related
clinical concepts documentation (e.g., abscess, anemia, purulent drainage, and wound
infection), we discovered high syntactic variation and a moderate difference in semantic


https://paperpile.com/c/akhzKQ/ftcP
https://paperpile.com/c/akhzKQ/hH1M

type and frequency across document sections *'. These aforementioned patterns may
apply to the ileus documentation, contributing to an increasing number of cases after
EPIC migration. A follow-up study is needed to systematically examine this pattern to
ensure data quality and process transparency.
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Table 1 Baseline characteristic of study population

Mayo Clinic Mayo Clinic

Hospital site full name Rochester Rochester
Hospital site abbreviation MR MR
EHR system Centricity EPIC
Time period 2006-2018 2018-2021
Site-System Abbreviation MR, MR,,
Number of patients 3535 2352
Number of records 3598 2493
Age at surgery 59(45,71)° 58(45,69)
Gender
Male 1767(50%) 1098(47%)
Female 1768(50%) 1252(53%)
lleus cases 274(7.6%) 475(19.1%)
Race
Caucasian 3315(94%) 2161(92%)
Non-caucasian 220(6%) 191(8%)
Surgery subtype
Laparoscopy, colectomy 978(27%) 530(21%)
Laparoscopy, colectomy, partial 634(18%) 578(23%)
Removal of colon 701(19%) 409(16%)
Removal of colon, partial 505(14%) 460(18%)
Removal of rectum 255(7%) 111(4%)
Others® 525(15%)  405(16%)
238(158,353
Surgery time duration, minutes = 188(136,256) )

Mayo
Clinic
Arizona
MA

EPIC
2018-2022
MA.,

898

932
61(47,71)

439(49%)
459(51%)

187(20.1%)

818(91%)
80(9%)

268(29%
265(28%
120(13%
147(16%

18(2%
124(13%

198(138,28
6)

)
)
)
)
)
)

Mayo
Clinic
Florida
MF

EPIC
2020-2022
MF,,

318
326

62(48,71)

147(46%)
171(54%)

76(23.3%)

289(91%)
29(9%)

68(21%)
87(27%)
55(17%)
69(21%)

9(3%)
38(12%)

236(185,31
9)

ALL

7103
7349
59(46,70)

3451(49%)
3650(51%)

1012(13.8%
)

6583(93%)
520(7%)

1844(25%
1564(21%
1285(17%
1181(16%

393(5%
1092(15%

204(143,29
0)

)
)
)
)
)
)

@ Data shown as n(%) or median(IQR)
See Table S1 for a comprehensive list of subtypes



Table 2 Training and held-out split

Site-System MR, MR,, MF,, MA., ALL
Total 3598 2493 326 932 7349
lleus cases 274 475 76 187 1012
case (%) 7.60% 19.10% 23.30% 20.10% 13.80%
Held-out 1079 747 97 278 2201
cases 75 144 25 57 301
case (%) 7.00% 19.30% 25.80% 20.50% 13.70%
Training 2519 1746 229 654 5148
cases 199 331 51 130 711
case (%) 7.90% 19.00% 22.30% 19.90% 13.80%




Table 3 Centricity to EPIC transferability within MR site

Training MR,. MR, MR, + MR+ MR, MR, ALL ALL
Source MR,, MR, (MR,) (MR.,) (w/o)ds (w)ds
data (S™) (w/0)d  (w)ds®
Sa
T]\f}% AUROC,, 0.882 0.935, 0.925, 0.929, 0.929, 0.907, 0.935, 0.939,
* : 0.006  0.01 0.002 0.013 0.014 0.006 0.003
0.022
AvgPrec,,; 0.601 0.704, 0.683, 0.707, 0.691, 0.642, 0.709, 0.72,
: 0.038 0.028 0.024 0.040 0.035 0.032 0.028
0.056
F-score, 0.643 0.73, 0.7, 0.709, 0.728, 0.679, 0.737, 0.736,
: 0.009 0.023 0.009 0.022 0.026 0.014 0.014
0.047
Tﬁ% ~ AUROC,, 0.886 0.888, 0.882, 0.883, 0.9, 0.89, 0.89, 0.893,
o ,0.00 0.011 0.018 0.016 0.009 0.01 0.012  0.009
9
AvgPrec,, 0.369 0.395, 0.331, 0.358, 0.393, 0.342, 0.372, 0.366,
: 0.018 0.043 0.041 0.018 0.038 0.024 0.05
0.016
F-score,s 0.432 0.463, 0411, 0428, 0465, 0403 0.446, 0.438,
0.03 0.048 0.034 0.031 0.032 0.033 0.032

0.014
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Table 4 EPIC transferability from MR to MF site

Training  MR,, MF., MR.,,+ MR, + MF., ALL ALL
Source MF., MF., (MR.,)  (w/o)ds  (w)ds
data (STr) (W/O)dSa (W)dSb
TﬁOF AUROC,, 0.904, 0.883, 0.903, 0.899, 0.906, 0.895, 0.906,
- 0.007 0.042 0.005, 0.01 0.009 0.01 0.006
AvgPrec,s 0.652, 0.652, 0.635, 0.668, 0.657, 0.648, 0.691,
t 0.026 0.071 0.015 0.032 0.024 0.045 0.031
F-score,; 0.804, 0.745, 0.813, 0.777, 0.807, 0.792, 0.815,
0.022 0.064 0.014 0.022 0.02 0.033 0.015
Table 5 EPIC transferability from MR to MA site
Training MR, MA,, MR,+ MR,+ MA,  ALL ALL
Source MA,, MA, (MRe,)  (w/o)ds  (w)ds
data (STr) (W/O)dSa (W)dSb
Tﬁze AUROC,; 0.889, 0.894, 0.896, 0.894, 0.896, 0.903, 0.911,
” 0.013 0.013 0.011 0.01 0.005 0.006 0.009
AvgPrec,; 0.624, 0.657, 0.650, 0.67, 0.646, 0.692, 0.675,
0.017 0.022 0.048 0.029 0.023 0.02 0.024
F-score,, 0.726, 0.723, 0.708, 0.726, 0.722, 0.726, 0.716,
0.027 0.013 0.018 0.019 0.034 0.019 0.02

2 without data source indicator
bwith data source indicator
Bold font indicate the best performed model

data shown at metric, error margin of 95% CI
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