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ABSTRACT 
 
Accurate differential diagnosis of dementia disorders including Alzheimer’s disease (AD), 
frontotemporal dementia (FTD), dementia with Lewy bodies (DLB), Parkinson’s disease 
dementia (PDD), and vascular cognitive impairment and dementia (VCID), along with 
conditions like prodromal mild cognitive impairment (MCI) or negative controls (NCs), 
continues to challenge neurologists. The nuanced and sometimes shared pathophysiological 
features underscore the need for precision in developing disease-modifying therapies. In the 
pursuit of reliable antemortem biomarkers, extracellular vesicles (EVs) have emerged as a 
popular tool for their capacity to encapsulate disease-specific signatures, particularly in 
neurodegenerative and neurological disorders. To this end, we have performed a comprehensive, 
PRISMA-guided systematic review and meta-analysis, utilizing sophisticated statistical 
modeling to determine the diagnostic accuracy, explore between-study variance and 
heterogeneity (I2), and investigate potential publication bias using various statistical tests. 
Biomarkers derived from general EVs demonstrated superior diagnostic accuracy, less between-
study variance, heterogeneity, and publication bias than those from speculative CNS-enriched 
EVs. The trim-and-fill method suggested a potential overestimation of diagnostic effectiveness 
for biomarkers derived from CNS-enriched EVs due to four hypothesized missing studies with 
low diagnostic results, but none for general EVs. Meta-regressions revealed that studies using 
cerebrospinal fluid or serum, involving non-fasting individuals, sampling in the afternoon, 
employing citrate instead of EDTA for blood collection, using thrombin for coagulation factor 
depletion, isolating EVs with purer methods such as combined ultracentrifugation and size-
exclusion chromatography, not freezing EVs post-isolation, and quantifying miRNA biomarkers, 
achieved better diagnostic accuracy and less heterogeneity. The diagnostic accuracy was low in 
differentiating among different dementia disorders. However,  the analysis for diagnosing 
persons with AD vs. VCID achieved the highest diagnostic accuracy, suggesting that further 
studies may focus on this comparison. Additionally, we highlight several limitations in the 



included studies and recommend the following: Implement the use of appropriate negative 
controls, thorough documentation of preanalytical factors, inclusion of more dementia groups 
beyond AD, comprehensive reporting on pharmacological treatments, consideration of racial and 
ethnic minority groups, adherence to ISEV guidelines, application of the A-T-N framework, 
detailed documentation of dementia stages, extension of studies beyond differential diagnosis, 
reanalysis when postmortem definitive diagnostics become available, evaluation of prodromal 
conversion rates, and commitment to accurate statistical modeling and data transparency. We 
hope that lessons learned from this comprehensive meta-analysis can be beneficial for those 
attempting to discover biomarkers for AD and related dementias through EVs or alternative 
approaches.  
 
 
 
 
 
 
 
 
 
INTRODUCTION 
 
Alzheimer’s disease (AD) is a financially, physically, and psychologically debilitating multi-
factorial disorder typically characterized by neuropathological accumulation of extracellular 
amyloid plaques and intracellular neurofibrillary tangles, predominantly composed of amyloid-β 
(Aβ) and tau, respectively. While AD constitutes the bulk of dementia cases, other notable 
disorders include prodromal mild cognitive impairment (MCI), frontotemporal dementia (FTD), 
dementia with Lewy body (DLB), Parkinson’s disease dementia (PDD) and vascular cognitive 
impairment and dementia (VCID). Each typically presents a unique underlying pathophysiology. 
For example, FTD can involve other proteins such as TDP-43 and FUS [1] , and areas such as 
frontal and temporal lobes, synucleinopathies such as PDD and DLB predominantly involve α-
synuclein (α-syn) [2] and to a lesser degree tau [3], while VCID involves cerebrovascular 
pathology across different brain regions [4].  
 
Despite their distinct pathophysiological features, these conditions are often misdiagnosed 
antemortem due to their overlapping cognitive dysfunction symptoms. Definitive diagnosis is 
only possible through a neuropathological examination postmortem, given the current absence of 
accurate and reliable antemortem biomarkers [5-9]. It should also be noted that the co-occurrence 
of distinct neuropathological features, such as Aβ and α-synuclein deposits and vascular 
dysfunction, is common, and individuals are frequently diagnosed with one or more of these 
diseases upon postmortem examination [10-12]. 
 
This leads to several detrimental consequences. Firstly, the inability to accurately diagnose these 
conditions in living persons hampers the development and evaluation of potential disease-
modifying therapeutics, as treatment strategies may be misdirected or ineffective against the 
actual underlying pathology. This lack of specificity in diagnosis also complicates the process of 
stratification in clinical trials, leading to less reliable outcomes and potentially obscuring 



beneficial effects of treatments that might be efficacious for correctly diagnosed individuals. 
Furthermore, misdiagnosis can cause significant emotional distress for physicians, patients, and 
their families, who are often left grappling with uncertainty and the emotional toll of an 
unpredictable disease trajectory. Therefore, finding accurate and reliable antemortem biomarkers 
for diagnosing persons with dementia or predicting conversion of at-risk populations is an urgent 
public health need, especially during the early stages.  
 
Extracellular vesicles (EVs) are minute, bubble-like structures, encapsulated by a phospholipid 
bilayer that safeguards their diverse cargo of proteins, carbohydrates, lipids, and nucleic acids 
[13]. Unlike cells, they do not replicate. They carry the ability to traverse the blood-brain 
barrier to the peripheral circulation, allowing them to transport cell-state-specific signals 
throughout the body. Given their potential to carry materials reflective of their cells of origin, 
EVs have emerged as a prominent subject in biomarker discovery for neurodegenerative and 
neurological disorders [14-16]. In particular, EVs enriched from the central nervous system 
(CNS)—referred to as ‘speculative CNS-enriched EVs’—when isolated from the blood, may 
offer a minimally invasive diagnostic tool. Thus, biomarker discovery for neurodegenerative 
disorders from general EVs and/or speculative CNS-enriched EVs, in hopes of hypothetically 
mirroring the neuropathological conditions present within the brain, has become a popular 
diagnostic approach. 
 
A few meta-analyses have been published on this topic [17-19] focusing on the levels of specific 
biomarkers, especially Aβ and tau in EVs. However, to date, no detailed diagnostic accuracy 
meta-analysis and meta-regression have been conducted that adequately accounts for the myriad 
of possible covariates known to substantially influence the EVs signature. Conducting such 
comprehensive analysis is critical not only for evaluating and comparing biomarkers derived 
from both general EVs and speculative CNS-enriched EVs—thereby differentiating among 
individuals with prodromal or clinically diagnosed dementia and from negative controls (NCs), 
including biomarkers beyond Aβ and tau—but also for establishing guidelines for EV isolation 
and biomarker quantification. These guidelines could pinpoint which preanalytical factors and 
methods can enhance the diagnostic accuracy of biomarkers derived from EVs.  
 
Given these reasons, we conducted a diagnostic accuracy meta-analysis and meta-regression 
focusing on studies attempting to differentiate persons with prodromal (MCI) or clinically 
established dementia (AD, FTD, DLB, PDD or VCID) from one another or from negative 
controls (NC), using biomarkers derived from general EVs or speculative CNS-enriched EVs. 
Although the analyses center on the diagnostic accuracy of biomarkers derived from EVs for 
dementia,  the insights gained—particularly those derived from the meta-regressions on 
preanalytical factors—should be broadly applicable across various fields of biomarker discovery 
for neurodegenerative an non-neurodegenerative disorders that utilize EVs.  
 
METHODS 
 
We performed the systematic review and meta-analysis according to the guidelines outlined in 
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA). 



We utilized anonymized data, with no collection of personal information or involvement of 
human subjects. Due to the complexity and detailed nature of this meta-analysis, the protocol 
was not registered.  
 
Search Strategy 
 
We performed a thorough search for relevant studies using specific search terms related to AD 
and related dementias. The search was conducted in two databases, PUBMED and EMBASE, 
and covered studies published from the inception of the databases until Mar 22nd, 2024. The 
comprehensive search strategy can be accessed in Table S1. 
 
Terminology 
 
Studies employing techniques to isolate EVs without further immunocapture of cell-specific EVs 
are termed ‘general EVs’. Studies using enrichment antibodies to immunocapture cell-specific 
EVs from the CNS are referred to as ‘speculative CNS-enriched EVs’ for three main reasons. 
First, there is no conclusive evidence confirming that these EVs originate from the CNS. Second, 
the antibodies used for enriching CNS EVs, particularly from neurons (e.g., L1CAM), are not 
exclusive to the CNS; they are also expressed on other cell types, exist in soluble forms and have 
been shown to not co-elute with EVs isolated using size-exclusion chromatography (SEC) [20]. 
Importantly, the group that initially discovered L1CAM association with EVs [21] also later 
found that L1CAM is  cleaved from the surface of EVs [22], further obscuring their CNS origin. 
Lastly, the absorption and re-release of EVs by trillions of cells, along with the recycling of their 
cargo [23], casts doubt on whether their cargo can accurately reflect cell-state-specific messages 
from the CNS.  
 
Moreover, because EVs are believed to have a biomolecular corona [24-28], we use the term 
biomarkers ‘derived from’ instead of biomarkers ‘in’ or ‘within’ EVs as the biomarkers 
measured after lysis of EVs do not necessarily have to be encased within the EVs’ phospholipid 
membrane.  
 
Eligibility criteria 
 
Eligible studies included in the meta-analysis must have focused on assessing biomarkers 
derived from general EVs and/or or speculative CNS-enriched EVs isolated from a biofluid 
(cerebrospinal fluid (CSF), plasma, serum, saliva or urine) for AD and at least one of the 
following cognitive impairment or dementia disorders: MCI, FTD, PDD, DLB and/or VCID or 
NCs. The studies must have included a receiver operating characteristics (ROC) analysis with 
accompanying area under the curve (AUC), sensitivity, specificity, and sample size for each 
disease. If this information was not available, we contacted the authors to either obtain the 
missing information, for them to perform the analysis and provide the information, or provide the 
dataset for us to perform the analysis using a binomial logistic regression and obtain the 
sensitivity and specificity that maximizes Youden’s index. All studies focusing on animals, cell 
lines, postmortem brain tissues, or not including the specified diseases were excluded.  
 



For any article that provided ROC analysis for discovery and validation groups, we chose the 
discovery, validation or both groups depending on the size and AUC. For any article where there 
were univariate and combined models, we selected the combined model if the AUC was higher 
than the singular model. For longitudinal studies or treatment interventions, we only considered 
the baseline assessments. 
 
Moreover, all authors were contacted to obtain any missing information on fasting status before 
biofluid collection, timing of biofluid collection, anticoagulant molecule used with plasma, 
defibrinating treatment (e.g., thrombin or thromboplastin-D), platelet depletion, EVs’ cargo 
extraction method, freezing of EVs after isolation or extraction of proteins or RNAs, genetic 
testing for APOE and PET imaging for Aβ or tau. Additionally, the authors were contacted for  
missing methodological information including centrifugation speed, duration and temperature, 
catalog numbers for kits used, and missing demographics including age, female %, disease 
duration, education length and cognitive scores (e.g., MMSE and MoCA).  
 
Risk of bias assessment 
 
We did not assess risk of bias using the Quality Assessment for Diagnostic Accuracy Studies 
(QUADAS-2) [29] because of the complex nature of the meta-analysis including contacting the 
authors to obtain or clarify any missing information.  
 
Data synthesis 
 
The two most common models for meta-analyses of diagnostic accuracy are the hierarchical 
summary ROC (HSROC) model and the bivariate random effects meta-analysis model (BRMA) 
[30]. Both models are equivalent when no covariates are incorporated [31]. In this study, we used 
the BRMA model if the number of studies was > 3. If the number of studies was ≤ 3, we used a 
univariate fixed-effects model [32]. We further fit the data with  the unstructured or structured 
covariance matrix based on the lowest combination of Akaike information criteria (AIC) and 
Bayesian information criteria (BIC). In cases of a tie, we selected the model with the lowest AIC. 
Importantly, in the HSROC curve, the closer the SROC line and mean point to the upper left 
quadrant, the higher the accuracy is.  
 
Heterogeneity was assessed using I2 statistics by Zhou & Dendukuri [33]. Publication bias [34] 
was assessed using Begg’s rank correlation, Egger’s and Deek’s regression and the trim-and-fill 
method [35]. We also conducted meta-regressions using included categorical variables to 
investigate the potential impact of different covariates on the absolute sensitivity and specificity. 
 
3. RESULTS 
 
The systematic review encompassed 115 studies [36-150]. Detailed information for each 
included study in the meta-analysis is presented in Table 1, while studies omitted due to 
incomplete inclusion criteria are listed in Table S2. A comprehensive summary of each model’s 
statistics for biomarkers derived from general EVs and speculative CNS-enriched EVs for all 
comparative analyses is included in Table 2. Descriptive statistics including the biomarker(s) 



used, sensitivity, specificity, diagnostic odds ratio (DOR), positive and negative likelihood ratios 
are included in Table 3. 
 
We aimed to provide as much detail as possible by sub-stratifying the data according to fasting 
status, timing of biofluid collection, and specific treatments such as thromboplastin-D versus 
thrombin (for plasma only) and platelet depletion (also for plasma only). Additionally, we 
considered the type of anticoagulant molecule used (for plasma only), lysis methodology, 
whether the EVs were frozen post-isolation or lysis, the isolation and quantification method. Due 
to the limited scope of studies extending beyond persons with AD and NCs, coupled with the 
small sample size resulting from insufficient data, meta-regressions were exclusively conducted 
for this comparison to evaluate the influence of preanalytical factors on the diagnostic accuracy 
of biomarkers derived from general EVs and/or speculative CNS-enriched EVs.    
 
3.1 AD vs. NC 
 
Analysis of biomarkers derived from general EVs (Table 2) irrespective of the biofluid (Figure 
2A-C) revealed high diagnostic accuracy, sensitivity and specificity but large between-study 
variance and heterogeneity for sensitivity and specificity. Analysis of biomarkers derived from 
speculative CNS-enriched EVs (Figure 2D-F) revealed high diagnostic accuracy, sensitivity, and 
specificity, but larger variance and heterogeneity for sensitivity and specificity despite the 
smaller number of studies included, suggesting that biomarkers derived from general EVs may 
offer more reliability.  
 
Sub analysis by biofluid (Figure S1A-U) revealed that the diagnostic accuracy for both general 
EVs and speculative CNS-enriched EVs decreased in the following order: serum > cerebrospinal 
(only for  general EVs) > plasma > defibrinated plasma, while all methods suffered from 
considerable heterogeneity (Table 2).  
 
Begg’s correlation (Figure 3A), Egger’s (Figure 3B) and Deek’s (Figure 3C-D) regression tests 
revealed potential publication bias for general EVs. However, close examination of the figures 
suggests this bias is minimal. Moreover, the trim-and-fill method did not identify any missing 
studies with null or low diagnostic accuracy due to publication bias for general EVs (Figure 3E). 
In contrast, while Begg’s correlation (Figure 3F), Egger’s (Figure 3G) and Deek’s regression 
(Figure 3H-I) tests did not reveal publication bias for speculative CNS-enriched EVs, the trim-
and-fill method estimated 4 missing studies with low or null diagnostic accuracy due to 
publication bias (see white circles in Figure 3J), suggesting that studies with negative or null 
results were less likely to be published. This is in agreement with the fact that many efforts in 
independent replication and validation have been met with futility for many of the studies 
utilizing biomarkers derived from speculative CNS-enriched EVs. This is also in support of our 
other meta-analyses for parkinsonian disorders of which the trim-and-fill method estimated 5 
missing studies out of 16 for speculative CNS-enriched EVs [151] due to publication bias, but 
only 2 out of 21 for general EVs [152]. Subanalysis of publication bias by medium of isolation 
(Figure S2A-E, Figure S3A-J, Figure S4A-J and Figure S5A-J) also revealed lower 
publication bias for general EVs vs. speculative CNS enriched EVs.  
 
3.2 AD vs. NC – Meta-Regressions 



 
We further investigated whether preanalytical factors would influence the results as described 
above. 
 
3.2A  Fasting Status 
 
Surprisingly, in both biomarkers derived from general EVs (Figure S6A-C) and speculative 
CNS-enriched EVs (Figure S7A-C), studies with non-fasting individuals achieved a higher 
diagnostic accuracy (Table S3). As fasting is expected to reduce the noise introduced to the EVs’ 
cargo from dietary sources and decrease release from other cells in response to food, this 
unexpected result hints at the possibility that factors unrelated to the EVs' intended cargo might 
inadvertently contribute to inflation of the diagnostic accuracy. It is also important to note that 
the lack of a fasting requirement does not imply that individuals from included groups abstained 
from fasting. It is plausible that some may have fasted, while some did not. Variability in the 
findings could potentially be attributed to outliers in the study groups who consumed specific 
dietary foods, affecting biomarkers derived from EVs, which would be evident in the lysate 
following the lysis of the EVs. The absence of documented dietary intake for the included 
individuals underscores the necessity for future studies to identify which foods may influence the 
contents from EVs or their biomolecular corona, thereby affecting diagnostic accuracy. This 
could be used to develop guidelines for foods to avoid prior to biofluid collection, especially for 
those interested in biomarkers derived from EVs. 
 
3.2B Time of Collection 
 
Acknowledging that platelets show circadian rhythmicity, peaking in the morning [153], which 
in part contributes to platelets having the largest number of EVs in the blood [154], and given the 
circadian nature of cargoes derived from EVs [155], we considered the timing of collection in 
our examination of diagnostic accuracy, especially since platelet depletion is commonly 
overlooked before EV isolation. For both general EVs (Figure S8A-C) and speculative CNS-
enriched EVs (Figure S9A-C), the diagnostic accuracy was consistently higher for studies who 
obtained their samples in the afternoon vs. the morning (Table S3). We speculated that the larger 
presence of morning platelet EVs or circadian rhythmicity in the blood may contribute to this 
effect. To test these hypotheses, we further sub-stratified the analysis by defibrinated plasma and 
plasma as both serum and CSF are platelet-free. Indeed, the diagnostic accuracy was higher in 
the afternoon than in morning for general EVs (Figure S10A-C) and speculative CNS-enriched 
EVs (Figure S11A-C) when only accounting for studies utilizing defibrinated plasma or plasma. 
However, these conclusions may be limited due to the small sample size of included studies as 
well as different methodologies of EV isolation and biomarker quantification. We further 
attempted to isolate the impact of circadian rhythmicity on the EVs’ cargo by focusing on the 
timing of serum or CSF collection, as platelets are not expected to be present in the serum or 
CSF. We were unable to perform this analysis as only one included study indicated collection of 
CSF in the afternoon [40], while no included studies reported collection of serum in the 
afternoon.  
 
3.2C Anticoagulant Molecule Mixed with Plasma 
 



In a previous review [154], we compared the usage of different anticoagulant molecules on EV 
isolation and biomarker analysis, and underscored the advantage of using citrate over EDTA and 
heparin to reduce noise introduced to the biomarker measurements from EVs, which was 
recently supported by a large comparative study [156]. Our comparative analysis of the 
diagnostic accuracy using general EVs (Figure S12A-C) or speculative CNS-enriched EVs 
(Figure S13A-C) demonstrated that studies using citrate did indeed achieve a higher diagnostic 
accuracy compared to EDTA (Table S3). Although we note that only one study [63] documented 
the usage of citrate plasma for speculative CNS-enriched EVs, limiting any definitive 
conclusions. Interestingly, when only comparing studies using citrate plasma, the diagnostic 
accuracy of general EVs surpassed that of speculative CNS-enriched EVs, suggesting that the 
lower diagnostic accuracy seen in differentiating persons with AD from NCs (Figure 2) may be 
attributed to the wrong choice of anticoagulant molecule (i.e., EDTA). No included study in the 
meta-analysis documented the usage of heparin plasma for isolation of EVs for differentiating 
persons with AD from NCs, precluding our ability to include it in the comparative analysis.  
 
3.2D Coagulation depletion: Thrombin vs. Thromboplastin-D 

Studies attempting to deplete the coagulation factors typically either incubate plasma with 
thrombin or thromboplastin-D at RT for a few minutes followed by a high-speed centrifugation 
to precipitate the fibrinogen pellet. Importantly, the thromboplastin-D used in the included 
studies was derived from rabbit brain. In one study [47], the authors showed that thromboplastin-
D dissolved in PBS cross-reacts with the used antibodies for phosphorylated tau at Threonine 
181 (pT181-tau) and mid-region tau using ELISA, resulting in a substantially higher noise signal 
in comparison to thrombin. The authors also showed that thrombin produced more consistent 
defibrinated clots in comparison to thromboplastin-D. As such, we tested whether this could 
potentially influence the diagnostic accuracy of biomarkers derived from EVs. No studies 
documented the usage of thromboplastin-D for general EVs, as such, we limited our analysis to 
speculative CNS-enriched EVs. The analysis revealed that studies utilizing thromboplastin-D 
had higher diagnostic accuracy (Figure S14A-C) but also higher generalized between-study 
variance (σ2 = 2.87) and heterogeneity (I2 = 73.3%) in comparison to thrombin (σ2 = 0.06, I2 = 
53.4%), suggesting that diagnostic accuracy may be due to noise. Furthermore, two studies using 
thromboplastin-D have used ELISAs for TDP43 [52] and MMP9 [54], but did not rule out their 
cross-reactivity with thromboplastin-D.  

Lastly, because ExoQuick is incompatible with the coagulation factors found in plasma, we 
attempted to sub-stratify the analysis by whether studies employed ExoQuick alongside thrombin 
or thromboplastin-D, as opposed to those that did not. However, the paucity of studies using 
ExoQuick without depleting the coagulation factors precluded our ability to perform this 
analysis.   

3.2E Platelet Depletion 
 
We further tested whether prior depletion of platelets may affect the diagnostic accuracy using 
studies that documented the usage of serum or specific methodologies known to deplete platelets 
vs. those that did not. Prior depletion of platelets appeared to have minimal effects on the 



diagnostic accuracy (Table S3) for both general EVs (Figure S15A-C) and speculative CNS-
enriched EVs (Figure S16A-C).  
 
Platelets are significantly larger, with an estimated size range of 1–5 µm [157] compared to 
smaller-sized EVs, such as putative exosomes ectosomes, which are typically the focus of 
isolation in the majority of studies using polymer-based precipitation, ultracentrifugation (UC), 
or SEC. Consequently, we posited that the omission of platelet depletion could be negligible for 
studies focused on quantifying putative smaller-sized vs. putative larger-sized EVs. To explore 
this hypothesis further, we attempted to sub-stratify our analysis based on studies targeting 
putative larger-sized EVs using lower UC speeds (10,000-20,000xg) versus those employing 
higher speeds (≥ 100,000xg). However, an insufficient number of studies precluded this 
comparison. It is also plausible that depleting platelets may not substantially affect the accuracy 
of diagnostic tests relative to the presence of platelet derived EVs. Unfortunately, no included 
studies documented methodologies to deplete platelet EVs before isolation of general EVs or 
speculative CNS-enriched EVs, precluding our ability to do this comparison. Notably, one study 
did indeed show that platelet depletion improves detection of miRNAs derived from EVs [158], 
but we were not able to test this comparison in our analysis.  
 
3.2F Isolation Methodology 
 
We further compared how different isolation methodologies would impact the diagnostic 
accuracy of biomarkers derived from EVs. Because the majority of studies focusing on 
speculative CNS-enriched EVs have used a polymer-based precipitation technique (e.g., 
ExoQuick) before immunoprecipitation of speculative CNS-enriched EVs, we only applied this 
analysis to general EVs. Our analysis revealed that the diagnostic accuracy (Figure S17A-C) 
decreased in the following order combined SEC and UC > UC > membrane affinity = polymer-
based precipitation > SEC > FACS, suggesting that a combination method of SEC and UC 
provides the best diagnostic accuracy. This also in support of the fact that although UC and SEC 
provide a lower quantity of EVs, they are considered to be relatively purer [28, 159, 160]. 
 
3.2G Freezing of EVs  
 
There has been considerable debate regarding the optimal storage conditions for EVs post-
isolation, with numerous metrics warranting careful consideration. These include the type and 
pH of the buffer in which EVs are resuspended, the EVs concentration, the nature of the biofluid 
and the method employed for EV isolation, and the addition of protease and phosphatase 
inhibitors to avert enzymatic degradation or modification. Furthermore, the use of cryoprotective 
agents such as trehalose and dimethyl sulfoxide, the application of lyophilization, the precise 
management of storage temperature and duration, and rapidity of thawing temperatures are all 
pivotal to consider. Notably, these factors may be influenced variably by the method used for 
isolation and type of intended downstream applications, such as the method used for 
quantification of proteins, lipids, or nucleic acids. A recent systematic study evaluated eight 
storage strategies, and found that storing EVs at -80°C led to a time-dependent reduction in EV 
concentration and purity. Additionally, there was an increase in particle size, size variability, and 
increased occurrence of fusion phenomena. These outcomes were observed irrespective of the 



storage strategy employed, suggesting that, under most conditions, the storage of EVs at -80°C is 
detrimental to their purity [161].  
 
This prompted us to test whether freezing of EVs post-isolation impacts the diagnostic accuracy 
of biomarkers derived from EVs or speculative CNS-enriched EVs. In some studies, it was 
difficult to ascertain whether EVs were frozen after isolation and before extraction of cargo. All 
authors were contacted to clarify this point. For studies where we received no response and 
which did not specify a method for EV isolation (such polymer-based precipitation, UC, or SEC) 
prior to quantification, we categorized the EVs as 'not frozen’. In support of the notion that 
freezing EVs is detrimental to their purity [161], our analyses indicated that studies not 
subjecting their isolated EVs to freezing achieved substantially higher accuracy (Table S3). This 
trend was consistent for general EVs (Figure S18A-C) and speculative CNS-enriched EVs 
(Figure S19A-C). 
 
3.2H Extraction of EVs’ cargo  
 
To further assess whether the method of EV cargo extraction could affect the diagnostic 
accuracy, we attempted to compare the two most popular protein extraction methods from EVs: 
lysis with radioimmunoprecipitation assay buffer (RIPA) and mammalian protein extraction 
reagent (MPER). However, only two studies employing RIPA [89, 91] from the same research 
group were identified, which precluded a comparative analysis. To the best of our knowledge, no 
study has directly compared the efficacy of RIPA vs. MPER for lysing EVs and extracting the 
protein cargo, nor their impact on subsequent analyses. We also aimed to compare miRNA 
extraction methods involving QIAzol and TRIzol. Unfortunately, the scarcity of studies using 
TRIzol made this comparison unfeasible. 
 
3.2I Quantification Method  
 
In the subsequent part of our analysis, we aimed to examine how different methods for 
quantifying proteins and RNA affect the diagnostic accuracy (Table S3). Our examination of 
these methods from general EVs (Figure S20A-C) indicated that miRNA quantification 
techniques, specifically SYBR Green and TaqMan qPCR, were associated with the highest 
diagnostic accuracy. This suggests that utilizing miRNA biomarkers derived from EVs may be 
the best option for future studies for differentiating AD from NCs, and possibly for other 
comparisons and conditions. This trend was consistent when analyzing biomarkers derived from 
speculative CNS-enriched EVs (Figure S21A-C). 
 
3.2j EV subtype and antibody clonality 
 
To isolate speculative CNS-enriched EVs, studies typically follow one of two protocols. The first 
protocol isolates general EVs via standard methods like polymer-based precipitation or UC, and 
then applies immunoprecipitation with dynabeads-coupled to enrichment antibodies. The 
alternative involves an initial high-speed centrifugation to remove cell debris and putative larger-
sized EVs, followed by a similar immunoprecipitation step. The most popular target is neuronal 
EVs using L1CAM as the marker for enrichment [162]. However, the validity of L1CAM as a 
marker has been questioned since the protein was found to be cleaved from the surface of EVs 



by the same group that discovered its association with EVs [21]. Also, a subsequent study 
showed that anti-L1CAM antibody clone UJ127 does not elute with EVs isolated by size-
exclusion chromatography [22], exists mostly in soluble forms and cross-reacts with antibodies 
employed for biomarker quantification. For these reasons, many groups have been exploring 
alternative neuronal markers, such as ATP1A3 [80], GAP43, and NLGN3 [131], GABRD and 
GPR162 [81] and NRXN3 [163]. Meanwhile, markers like GLAST1 are sometimes employed to 
enrich speculative astrocytic EVs. However, it is important to note that no study to date has 
proven that the EVs isolated using these markers do indeed originate from the brain.  
 
This prompted us to compare how different markers may compare to one another in influencing 
the diagnostic accuracy of biomarkers derived from speculative CNS-enriched EVs. Similar to 
what we reported for parkinsonian disorders [151], studies employing the anti-L1CAM antibody 
clone 5G3 achieved higher diagnostic accuracy (Table S3) than anti-L1CAM antibody clone 
UJ127, and both were lower than studies employing anti-GLAST1 antibody for enrichment of 
speculative astrocytic EVs (Figure S22A-C). However, because only two studies utilized the 
anti-L1CAM clone UJ127 antibody or the anti-GLAST1 antibody, respectively, the conclusions 
are limited and do not definitively establish one clone or antibody over the other.  
 
3.3 AD vs. MCI 
 
Comparative analysis of biomarkers derived from general EVs (Figure 4A-C) and speculative 
CNS-enriched EVs (Figure 4D-F) revealed higher diagnostic accuracy for the latter with lower 
heterogeneity (Table 2), we limited our comparison of diagnostic accuracy to plasma for general 
EVs (Figure S23A-C) vs. speculative CNS-enriched EVs (Figure S23D-F). Similar to the 
above, the diagnostic accuracy was higher for speculative CNS-enriched EVs with lower 
heterogeneity. No publication bias was identified in all tests for general EVs (Figure S24A-E). 
In support of the publication bias seen with speculative CNS-enriched EVs for persons with AD 
vs. NCs, the majority of tests did not identify publication bias (Figure S24F-I), but the trim-and-
fill method identified one missing study out of six for speculative CNS-enriched EVs (Figure 
S24J). This suggests that studies using biomarkers derived from CNS-enriched EVs with null or 
low diagnostic accuracy were less likely to be published.  
 
3.4 AD vs. FTD 
 
No included studies attempted to differentiate persons with AD from FTD using biomarkers 
derived from speculative CNS-enriched EVs. As such, we only conducted analyses for studies 
using biomarkers derived from general EVs. Overall, the analyses revealed low accuracy for the 
models utilizing combined CSF and plasma general EVs (Figure S25A-C), only CSF (Figure 
S25D-F) or only plasma (Figure S25G-I). Although some of the tests revealed the presence of 
publication bias (Figure S26A-E), the trim-and-fill method did not identify any missing studies 
(Figure S26E).  
 
3.5 AD vs. DLB/PDD 
 
No included studies attempted to differentiate persons with AD from persons with DLB/PDD 
using biomarkers derived from speculative CNS-enriched EVs. As such, we only conducted 



analyses using biomarkers derived from general EVs. Analysis of the diagnostic accuracy (Table 
2) revealed high diagnostic accuracy (Figure 5A-C), which was substantially lower for studies 
utilizing CSF (Figure S27A-C) vs. plasma (Figure S27D-F). All tests revealed the presence of 
publication bias (Figure S28A-E) but without any identifiable missing studies (Figure S28E).  
 
3.6 AD vs. VCID 
 
We focused the analysis on biomarkers derived from general EVs only due to the scarcity of 
studies using speculative CNS-enriched EVs for this analysis. Interestingly, despite the limited 
number of studies evaluating biomarkers derived from general EVs for differentiating persons 
with AD from persons with VCID, our analysis revealed the highest diagnostic accuracy (Figure 
6A-C) in comparison to all other analyses, with moderate heterogeneity (Table 2). Although 
many efforts have been ongoing to identify molecular and neuroimaging biomarkers [12, 164, 
165], studies focusing on biomarkers derived from EV are scarce. This suggests that researchers 
should invest further efforts in investigating biomarkers derived from general EVs for this 
comparison.  
 
3.7 MCI vs. NC 
 
Overall, the analyses (Table 2) revealed that  biomarkers derived from general EVs (Figure 7A-
C) offer better diagnostic accuracy than speculative CNS-enriched EVs (Figure 7D-F). 
Importantly, the partial AUC, focusing on a specific range of false positive rates within the curve 
for speculative CNS-enriched EVs was 0.277, suggesting that biomarkers derived from 
speculative CNS-enriched EVs are unreliable for differentiating persons with MCI from NCs. 
Because the majority of studies used plasma in comparison to CSF, defibrinated plasma, and 
serum for speculative CNS-enriched EVs, we did not sub-stratify the analyses by medium of 
isolation.  
 
Most tests did not identify publication bias either for general EVs (Figure S29A-E) or 
speculative CNS-enriched EVs (Figure S29F-J). However, the trim-and-fill method revealed 
two missing studies with null or low diagnostic accuracy for general EVs (Figure S29E).  
 
As no studies attempted to differentiate persons with MCI from FTD or DLB/PDD with either 
biomarkers derived from general EVs or speculative CNS-enriched EVs, we were unable to 
conduct further analyses.   
 
3.8 MCI vs. VCID 
 
Only a few studies attempted to differentiate persons with MCI from VCID using biomarkers 
derived from general EVs. The diagnostic accuracy (Figure S30A-C) and heterogeneity were 
moderate (Table 2).  
 
3.9 FTD vs. NC 
 
Only a few studies attempted to differentiate persons with FTD from NCs using biomarkers 
derived from general EVs. The diagnostic accuracy was high (Figure S31A-C) with moderate 



heterogeneity (Table 2) and minimal publication bias (Figure S32A-E), with only one missing 
study with null or low diagnostic accuracy (Figure S32E).  
 
3.10 FTD vs. DLB/PDD 
 
Only a few studies attempted to differentiate persons with FTD from persons with DLB using 
biomarkers derived from general EVs. The diagnostic accuracy was low (Figure S33A-C), 
suggesting this approach may not be promising for FTD vs. DLB, but the conclusions remain 
limited due to the small number of included studies.  
 
3.11 DLB/PDD vs. NC 
 
Only a few studies attempted to differentiate persons with DLB or PDD from NCs. The 
diagnostic accuracy was high (Figure S34A-C) with high heterogeneity and no publication bias 
(Figure S35A-E). Sub analysis by media revealed that CSF general EVs (Figure S36A-C) had 
similar diagnostic accuracy to plasma general EVs (Figure S36D-F).  
 
3.12 VCID vs. NC 
 
Only a few studies attempted to differentiate persons with VCID from NC using biomarkers 
derived from general EVs. The diagnostic accuracy (Figure S37A-C) and heterogeneity (Table 
2) were moderate with no publication bias (Figure S38A-E).  
 
4. FUTURE DIRECTIONS AND LIMITATIONS 
 
In the course of this meta-analysis, we identified several prevalent issues across the studies that 
warrant attention. These challenges are critical to address to improve the accuracy, 
reproducibility and clinical utility of studies using biomarkers derived from general EVs and/or 
speculative CNS-enriched EVs for differentially diagnosing prodromal or clinically established 
dementia, but also for other neurodegenerative disorders and beyond.  
 
4.1 Inclusion of appropriate negative controls 
 
One of the basic yet powerful tools in experimental research for proving hypotheses is the use of 
appropriate negative controls. Unfortunately, when it comes to biomarkers derived from EVs, 
this is often neglected by researchers, peer-reviewers and editors. Given the labor- and cost-
intensive nature of isolating both general EVs and speculative CNS-enriched EVs, it is 
imperative for studies to first evaluate the biomarkers of interest directly in the biofluid. This 
foundational step should be established before progressing to the isolation of general EVs and 
then speculative CNS-enriched EVs. If the biomarker of interest cannot differentially diagnose 
the disease of interest (e.g., AD) with high accuracy and reproducibility without isolating EVs, 
studies can then spend time and effort on isolating general EVs and/or speculative CNS-enriched 
EVs. Moving straight to analyzing biomarkers derived from EVs, a process that is more 
complex, time-consuming, and resource-intensive, is not only unnecessary but is counter-
intuitive to simple scientific principles.  
 



4.2 Evaluation of pT217-tau as a diagnostic marker for AD 
 
Tau, an intrinsically disordered and natively unfolded soluble protein, is predominantly 
expressed in the central and peripheral nervous systems, with high abundance in neuronal cells. 
It is also present, albeit at lower levels, in glia such as astrocytes and oligodendrocytes. It exists 
in six isoforms (0N3R, 0N4R, 1N3R, 1N4R, 2N3R and 2N4R), created by alternative mRNA 
splicing. The function and structure of tau are regulated by phosphorylation; however, in 
tauopathies including AD, FTD and DLB/PDD, tau proteins can become abnormally 
hyperphosphorylated. This hyperphosphorylation diminishes tau's ability to bind to microtubules, 
leading to the formation of intracellular neurofibrillary tangles—one of the hallmarks 
neuropathologies of AD [166, 167]. 
 
Phosphorylated tau at Threonine 217 (pT217-tau) has emerged as a particularly promising 
biofluid biomarker for AD due to several compiling findings [168-176]: 1) studies indicate its 
high specificity for AD, distinguishing it from other dementias and neurodegenerative disorders, 
2) it demonstrates remarkable accuracy in blood and CSF samples across all stages of AD, 
including prodromal and 3) it performs consistently across different cohorts, clinical settings, 
users and various immunoassays utilizing different sets of antibodies and methodologies for 
detection. Because of these advantages, it is crucial that studies first attempt to rule out pT217-
tau as a minimally invasive and less resource-intensive biomarker for differentially diagnosing 
persons with AD from other dementias, or those at-risk of phenoconversion to AD. To the best of 
our knowledge, only one study [81] used flow-cytometry to quantify speculative CNS-enriched 
EVs (GABRD+ or GPR162+) pT217-tau+ EVs isolated using UC to distinguish persons AD and 
NCs. However, the study did not first attempt to quantify pT217-tau in the crude biofluid or even 
general EVs before moving to speculative CNS-enriched EVs, which we believe would have 
been a possible negative control.  
 
4.3 Evaluation of α-synuclein using seed amplification assays for DLB and PDD 
 
α-Synuclein, also an intrinsically disordered and natively unfolded soluble protein, is expressed 
in high concentrations in the central and peripheral nervous system. The function of α-synuclein 
is still under debate, but it is believed to play a critical role in presynaptic vesicle release [177]. 
Disorders where α-synuclein oligomerizes and aggregates leading to intracellular Lewy bodies 
and neurites are called synucleinopathies. This group includes PD, DLB, PDD and multiple 
system atrophy (MSA). Notably, PD, DLB and PDD also affect the tau protein to a large degree 
[178-181], while in MSA, tau pathology is exceptionally rare [182-184]. Importantly, 
synucleinopathies may present with the same triad of parkinsonism (bradykinesia, rigidity and 
tremor), and as with most neurodegenerative conditions, the definitive diagnosis of a 
synucleinopathy can only be confirmed through a neuropathological exam [2, 185-188]. As such, 
there is a dire need to find accurate and reliable prodromal or early stage antemortem biomarkers 
[189, 190].  
 
Recently, we have conducted the largest systematic reviews and meta-analyses for biomarkers 
derived from EVs or speculative CNS-enriched EVs [151, 152, 191, 192] for parkinsonian 
disorders, revealing low to moderate diagnostic accuracy, substantial between-study variance, 
heterogeneity and publication bias, especially for biomarkers derived from speculative CNS-



enriched EVs [151]. This suggested that this approach is unreliable for synucleinopathies and 
other parkinsonian tauopathies such as corticobasal syndrome and progressive supranuclear 
palsy.  
 
However, seed amplification assays (SAA) using either protein misfolding cyclic amplification 
(PMCA) or real-time quaking-induced conversion (RT-QuIC) is becoming popular for 
diagnosing synucleinopathies [193-205]. Neurologists should consider this test as a part of the 
diagnostic work-up for persons with dementia to rule out DLB/PDD and narrow down the 
differential diagnosis to other dementias such as AD. 
 
4.4 Documentation of pharmacological treatments, supplementations, comorbidities, and 
physical activity 
 
A common shortfall in existing studies is the lack of detailed reporting on the nature and regimen 
of pharmacological interventions, including drug type, dosage and treatment duration, which 
could considerably influence the EVs' biomarker profile. This is especially true prior to the 
collection of biofluids, as active pharmaceuticals in circulation are likely to interact with 
biomarkers derived from EVs. Adding to this, a comprehensive account of supplementation 
usage (e.g., Vitamin D3, multivitamin, melatonin, etc.,) and comorbid conditions is equally 
important since these factors can have confounding effects on biomarkers derived from EVs, 
especially if there is published literature indicating a certain drug/supplement or condition that 
could alter the EVs’ signature. Lastly, many studies report that exercise results in the release of 
both general exerkines and exercise-induced myokines (i.e., exerkines coming from skeletal 
muscle) both in the circulation and in EVs [206-209]. As such, it would be important to 
document the physical activity nature of included participants. Integration of these factors will 
help explain how confounding variables may affect biomarkers derived from EVs in dementia 
and other conditions.  
 
4.5 Inclusion of racial and ethnic minority groups 
 
While AD prevalence is indeed higher among White populations in the United States, Black 
African Americans and Hispanic/Latinx face an incidence rate that is approximately two and one 
and a half times higher, respectively [210]. The lack of comprehensive reporting on race, 
ethnicity, and socioeconomic status in studies conducted across multiple continents makes it 
difficult to understand if biomarkers may be beneficial for a specific racial/ethnic group, but not 
others. Based on countries where the included studies were conducted, we estimate that most 
participants are likely of White European or Asian descent. This underscores the critical need for 
inclusive research practices that ensure findings also apply to of Black African American and 
Hispanic individuals, who exhibit a higher risk of developing AD. It is plausible to speculate that 
a biomarker of interest may behave differently based on these, similar to other studies 
investigating PET neuroimaging and genetic APOE haplotype differences [211, 212]. 
Unfortunately, this underrepresentation has been a major public health problem across the AD 
field [210, 213-216], not just those utilizing EVs.  
 
4.6 Reporting of detailed methodology on the EV-TRAK platform using recommendations 
from ISEV-associated task forces 



 
Because many preanalytical factors are known to influence biomarkers derived from EVs, before 
the collection of the biofluid, guidelines on reported EV-related parameters are increasingly 
established by task forces like those from the International Society for Extracellular Vesicles 
(ISEV) for studies using CSF [217], blood (plasma, defibrinated plasma or serum) [218, 219], 
urine [220-222], synovial fluid and tissue-derived. ISEV's minimal information guidelines, first 
published in 2014  [223] and subsequently updated in 2018 [224] and 2023 [28], offer 
researchers in the EV field minimal recommendations to enhance transparency, accuracy, and 
reproducibility. Yet, for researchers who are truly dedicated to the scientific principles of 
transparency and reproducibility, platforms like EV-TRACK present a robust framework for 
documenting methodological details. 
 
EV-TRACK was developed by an international consortium led by Dr. An Hendrix to catalog 
experimental parameters in EV research. It embraces a community consensus approach, inviting 
researchers to contribute data from both published and unpublished experiments. This initiative 
aims to foster informed discussions about relevant experimental parameters, to augment the rigor 
and clarity of EV studies, and to chart the progression of EV research. In our meta-analysis, and 
despite EV-TRACK being available since 2017, we noticed that only three recently published  
studies (4.8%) [46, 67, 73] included an EV-TRACK ID with documented methodologies. We 
encourage researchers to support  EV-TRACK to improve standardization of EV research by 
promoting systematic reporting on the biology and methodology associated with EVs. This effort 
will be critical in solidifying the reliability of biomarkers derived from EVs across various 
studies and clinical laboratory settings.  
 
4.7 Usage of the A-T-N framework  
 
The definitive diagnosis of AD is traditionally confirmed postmortem, with clinical 
manifestations varying widely [225]. Before death, some individuals may have significant CNS 
accumulation of Aβ and tau—evident through PET imaging or CSF tests—yet remain symptom-
free, while others with or without these biomarkers might experience dementia or have a 
heightened risk of progressing to AD [226-229]. To address this diagnostic challenge, the AD 
field has adopted the A-T-N framework, which categorizes AD biomarkers into three groups: 
Amyloid plaques (A), Tau tangles (T), and Neurodegeneration or neuronal injury (N) [230]. This 
approach provides a more nuanced understanding of the disease by considering these distinct yet 
interrelated pathological features. Despite the potential of the A-T-N framework, our meta-
analysis found that only a handful of studies have employed PET imaging to distinguish between 
persons with positive (PET+) and negative (PET-) amyloid or tau pathology. Moreover, 
discussions with corresponding authors of studies incorporating PET imaging suggest that 
differentiating persons with PET+ from PET- based on biomarkers derived from EVs has not 
demonstrated a high level of accuracy. This highlights a pressing need for further research 
utilizing the A-T-N framework to improve the precision of AD biomarkers in clinical settings. 
 
4.8 Inclusion of more dementia groups beyond AD 
 
When a person with dementia presents in a clinical setting, neurologists can readily discern that 
the individual's substantial cognitive deficits signify a departure from a negative or healthy 



control state. Yet, the majority of studies to date focus on AD and NC, occasionally 
incorporating MCI but seldom including crucial groups such as FTD, DLB/PDD, and VCID. The 
significant limitation here is that for biomarkers to be clinically effective, they must distinguish 
not just between AD and NC, but also distinguish persons with dementia from one another. As 
such, we encourage future studies to attempt their best in including more comparative dementia 
groups.  
 
4.9 Documentation of EOAD vs. LOAD and early- vs. mid- vs. late-stage dementia 
 
Our comprehension of AD rooted in the study of early-onset cases, including the first described 
by Alois Alzheimer, has primarily centered on what is now known as Early-Onset AD (EOAD) 
rather than Late-Onset AD (LOAD). The distinction between EOAD and YOAD is not just 
nominal; they are indeed different presentations of the disease, with varying genetic, biological, 
and symptomatic profiles [231]. It is important to explore whether biomarkers currently 
associated with AD can be universally applied across different stages and underlying causes of 
the disease. In our meta-analysis, we noted that only one study separated the AD group into 
EOAD and LOAD [39], while the other majority did not report the exact disease duration or 
stage for persons with dementia, precluding our ability to examine such differences.  
 
4.10 Extending the approach beyond the differential diagnosis 
 
While the primary focus of many studies has been on identifying biomarkers derived from EVs 
for differential diagnosis, there is a dire need to assess other metrics. These include prognostic 
insights, tracking disease progression, monitoring treatment responses, screening for risk, 
stratifying participants in clinical trials, interpreting drugs pharmacokinetics and 
pharmacodynamics and identifying responses to environmental toxins [232-235].  
 
4.11 Reanalysis using the definitive postmortem neuropathological diagnosis 
 
The reliance on antemortem clinical diagnoses for biomarker studies in dementia is both a 
practical necessity and a methodological constraint. Studies typically base diagnostic of dementia 
on clinical assessments such as cognitive tests and questionnaires, and further disease-specific 
diagnostics on additional testing such as Aβ42, tau and phosphorylated tau levels in the CSF and 
advanced neuroimaging. However, such methods cannot irrefutably confirm the type of 
dementia, as clinical symptoms and presentations often overlap among dementia subtypes, while 
biomarkers from the CSF and neuroimaging are not definitive [225]. The gold standard for 
specific dementia diagnosis remains the postmortem neuropathological examination [236]. 
Therefore, there is a critical need for reanalysis of the biomarker diagnostic models in light of 
definitive postmortem findings. When the neuropathological results become available, it is 
essential to rerun the diagnostic models and cut-offs while adjusting for diagnostic discrepancies  
This reevaluation could lead to an adjustment in the perceived accuracy of biomarkers—often 
revealing a decrease in diagnostic precision. With many individuals from previous studies now 
deceased, the opportunity for postmortem verification is easy and straight-forward. Moreover, 
future studies should place greater emphasis on incorporating cases with confirmed 
neuropathological diagnoses as opposed to those with only clinical diagnosis. Though we 
acknowledge that finding such samples in good quality is difficult. In this case, studies should 



plan to follow up with another study to validate their findings in light of the postmortem 
diagnosis. 
 
4.12 Evaluation of prodromal conversion and progression rates 
 
MCI often serves as a prodromal condition to dementia, commonly progressing to AD [237-
239]. Although several studies have included persons with MCI aiming to differentiate it from 
AD, NC, and to a lower extent other dementias such as FTD, DLB/PDD, and VCID, they 
typically measure biomarkers at only a single timepoint before conversion. This approach fails to 
account for the possibility that not all persons with MCI will progress to dementia. A 
longitudinal study design with multiple time points would be more ideal. Such a design could 
track changes in biomarker levels throughout the disease course, possibly revealing fluctuations 
that occur before and after the conversion from MCI to dementia within the same population. 
Understanding these changes over time is crucial for developing reliable predictive markers and 
for tailoring interventions to the disease stage. 
 
4.13 Call for accurate statistical modeling and transparency 
 
While some studies have occasionally performed ROC analyses, there is a notable shortfall in the 
detailing of these findings. Often, the ROC curve—critical for the validity of biomarker 
diagnostic studies—is omitted, or there is a failure to calculate the sensitivity and specificity that 
maximize Youden's index or utilizes the highest likelihood ratios obtained using Bézier curves 
[240]. To address these shortcomings, studies working to identify diagnostic biomarkers derived 
from EVs or other biofluids should perform these analyses and report the sensitivity and 
specificity with appropriate cut-off values or likelihood ratios. If they encounter challenges in 
this analysis, the authors should be transparent and share the underlying data as a supplementary 
file or respond to email requests. This will enable the broader research community to validate 
their findings or reanalyze the data using diagnostic models, in hopes of discovering new 
insights.  
 
5. CONCLUSION 
 
Our meta-analysis revealed that biomarkers derived from general EVs offer better diagnostic 
accuracy, exhibit less heterogeneity, and demonstrate substantially lower publication bias 
compared to speculative CNS-enriched EVs. Additionally, we outlined several guidelines for 
researchers in the field of EV-derived biomarkers and encouraged the incorporation of the 
insights and recommendations from this meta-analysis into future studies. 
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