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Abstract: 

Objectives: 

We adopt a weighted variant burden score GenePy2.0 for the UK Biobank phase 2 cohort of 

inflammatory bowel disease (IBD), to explore potential genomic biomarkers underpinning 

IBD’s known associations. 

 

Design: 

Nucleating from IBD GWAS signals, we identified 794 GWAS loci, including target 

genes/LD-blocks (LDBs) based on linkage-disequilibrium (LD) and functional mapping. We 

calculated GenePy2.0–a burden score of target regions integrating variants with 

CADDPhred>15 weighted by deleteriousness and zygosity. Collating with other burden-based 

test, GenePy-based Mann-Whitney-U tests on cases/controls with varying extreme scores 

were used. Significance-levels and effect sizes were used for tuning the optimal GenePy 

thresholds for discriminating patients from controls. Individual’s binarized GenePy status 

(above or below threshold) of candidate regions, was subject to itemset association test via 

the sparse Apriori algorithm. 

 

Results: 

A tailored IBD cohort was curated (nCrohn’s_Disease(CD)=891, nUlcerative_Colitis(UC)=1409, 

nControls=60118). Analysing 885 unified target regions (794 GWAS loci and 104 monogenic 

genes with 13 overlaps), the GenePy approach detected statistical significance (permutation 

p<5.65x10-5) in 35 regions of CD and 25 of UC targets exerting risk and protective effects on 

the disease. Large effect sizes were observed, e.g. CYLD-AS1 (Mann-Whitney-

�=0.89[CI:0.78-0.96]) in CD/controls with the top 1% highest scores of the gene. Itemset 

association learning further highlighted an intriguing signal whereby GenePy status of IL23R 

and NOD2 were mutually exclusive in CD but always co-occurring in controls. 

 

Conclusion: 

GenePy score per IBD patient detected ‘deleterious’ variation of large effect underpinning 

known IBD associations and proved itself a promising tool for genomic biomarker discovery. 

 

 

 



What is already known on this topic –  

Inflammatory bowel disease (IBD) is a genetically heterogeneous disease with both common 

polygenic, and rare monogenic, presentations. Previous studies have identified known genetic 

variants associated with disease. 

 

What this study adds –  

A genomic biomarker tool, tailored for large cohort, GenePy2.0 is developed.  It’s rank-based 

test is more powerful than mutation-burden based test in validating known associations and 

finding new associations of IBD. We identified large risk and protective effects of 

‘pathogenic genes/loci’ in IBD, including expanding previous associations to wider genomic 

regions.   

 

How this study might affect research, practice or policy –  

GenePy2.0 facilitates analysis of diseases with genetic heterogeneity and facilitates 

personalised genomic analysis on patients. The revealed genetic landscape of IBD captures 

both risk and protective effects of rare ‘pathogenic’ variants, alongside more common 

variation. This, could provide a fresh angle for future targeted therapies in specific groups of 

patients. 

  



INTRODUCTION 

Inflammatory bowel disease (IBD) is a chronic, highly heterogenous, inflammatory condition 

resulting from an aberrant immune response to environmental triggers, in genetically 

susceptible individuals[1].  The disease is commonly classified into two subtypes: Crohn’s 

disease (CD) and ulcerative colitis (UC) based on clinical findings, yet the clinical phenotype 

is much more varied and hinders effective disease treatment.  

Genome-wide association studies (GWASs) of common variants (minor allele 

frequency (MAF)>3~5% in the general population) on IBD, driven by large cohorts including 

the UK Biobank[2], have identified over 300 IBD-associated loci, which shed light both on 

the IBD genetic landscape and implicate pathways[1].  However, with modest effect sizes, 

common variants altogether explain only a minor fraction of the observed IBD heritability, 

and most of the GWAS variants are not causal variants but rather proxies of the causative 

variations based on linkage disequilibrium (LD)[3].  This limits the application for clinical 

translation of GWAS.   

Rare variants (RVs) with major effect sizes represent a key genomic driver that have 

known associations with IBD[4, 5]. Although methodologically challenging[4], a growing 

number of RVs have been statistically identified in complex IBD and functionally validated 

for monogenic IBD, with the latter manifesting as a rare Mendelian subtype of IBD with 

familial clustering of occurrence, often with specific additional features, such as 

immunodeficiency[6, 7].  Association of RVs often overlap with common variants [8].   In 

complex IBD, evidence suggests these variants may be associated with disease through a 2nd 

hit mechanism by RV in the pathogenesis pathway/gene in addition to a GWAS association, 

or via synthetic association of RVs underpinning the GWAS signal in the LD region, while 

both mechanisms may hold the key to decipher the RVs’ role in disease[3, 9-11].  The means 

that both targeted genes of the GWAS association and the region delineated by the LD block 

(LDB) that encompasses the association signal can host the disease causal RVs.  LDBs can 

vary among different ethnic groups, whilst targeted genes either under influence of 

expression Quantitative Trait Loci (eQTL) or in physical adjacency of the variant cannot 

always be clearly defined due to pleiotropic effects and epigenetic modifications[12-15].   

Within a targeted genomic region, burden-based test of selected RVs, e.g. missense 

variants, or loss-of-function variants, is the norm to check for the case versus control 

associations, with well-established sequence kernel association test (SKAT/SKAT-O) for 

example.  However, refined pathogenicity weighting of the variants in the burden tests can be 

essential to elucidate the role of RVs in GWAS loci and in disease.  Taking the ‘mendelian-



complex’ genes, the causal genes that overlap between complex IBD and monogenic IBD, for 

instance, while damaging mutations of these genes cause a severe phenotypic presentation as 

monogenic IBD, the variant of modest effect can predispose risk to a milder polygenic form 

of the phenotype as identified from GWASs[6].  The pathogenicity variance of the variants in 

the same gene is the cause of the vastly different phenotypic presentation in this case.  

Methods based on this, represented by GenePy score integrating mutation load, allele 

frequency and pathogenicity score of individual variants, has been successfully applied in 

both clinical genetics and machine learning models based on small cohorts of data[16, 17]. 

In this study we developed GenePy2 to adapt with large cohort of rare variants data 

and tested it as a prototype of a DNA biomarker for IBD.  This was followed by 

investigations on disease association and personalized examination on patients’ genetic 

landscape of disease. Analyses were carried out on the UK Biobank cohort and tested on 

GWAS association regions of IBD. 

  



 

MATERIALS AND METHODS 

The UK BioBank IBD cohort 

The analysis is based on the UK Biobank phase 2 dataset (project 72911), encompassing 

exome sequencing and detailed phenotype information from approximately 200,000 

participants, which was publicly released in October 2020[18, 19].  Participants who have 

withdrawn were excluded from the analysis. The exomes were captured using the IDT xGen 

Exome research panel V1.0, designed to target 39 Mbps of the human genome. To ensure 

data quality, additional quality control (QC) metrics were applied to the project-VCF (pVCF). 

A detailed workflow of this process, along with a list of immune-related diseases curated by 

the clinic and informatics team, is presented in Figure 1a and supplementary methods with 

Table S1.  

 Patients or the public WERE NOT involved in the design, or conduct, or reporting, or 

dissemination plans of our research. 

Curation of the IBD-associated genomic variants 

UC, CD, or IBD-associated Single-nucleotide polymorphisms (SNPs) with maximum 

association p-value of 5x10-8 were retrieved from the GWAS Catalogue v1.09 [20].  Through 

a literature review conducted in June 2023, we refined the dataset by excluding associations 

derived from case-case studies, associations related to disease subtypes other than UC and 

CD, as well as those identified in non-European populations.  The PubMed search query 

utilized for literature review was: (((((("Crohn's disease") OR "inflammatory bowel disease") 

OR "Ulcerative Colitis")) AND (("genome-wide association"[Title/Abstract]) OR "genome-

wide association"[Title/Abstract]))) AND ("1000"[Date - Create] : "2023/06/07"[Date - 

Create]).  

For each association SNP, we first examined its physically mapped genes 

(mappedGenes), using the same approach of GWAS Catalogue[20].  We identified cis-

regulated genes (eGenes) using data from the recent GTEx database V8 

(https://www.gtexportal.org/), by extracting those associated-SNPs that function as 

expression Quantitative Trait Loci (eQTLs) in tissues including transverse colon, sigmoid 

colon, small intestine&terminal ilium, EBV-transformed lymphocytes, fibroblasts, and whole 

blood [21].   

To delineate linkage disequilibrium (LD) blocks (LDBs) associated with IBD, we 

projected the locus of each association SNP onto the LD unit map of the European 



population. Employing a sliding window of 1 LD unit (LDU) in size, whereby loci within a 

1-LDU distance are grouped into one LDB [14, 15]. In cases where direct interpolation of a 

locus was not feasible, we utilized the position of the most adjacent marker for this purpose.  

Such LDBs and targeted genes were identified as GWAS loci in this study. 

Monogenic IBD genes retrieved from literature are also included in the analysis.  The 

curation process of all the candidate loci is illustrated in Figure 1B.   

  

Per-locus GenePy score for the IBD cohort 

The GenePy v2.0 was developed to cope with large cohort data by addressing issues: 1) 

incorporation of multi-allelic considerations into the score (maximum-nalternative_allele=10); 2) 

enabling the calculation of scores for various genomic regions, such as LDBs; 3) 

computational cost reduction with optional processing using GPU; 4) optional selection of 

variants that are pathogenic or likely pathogenic.  The score was built on assessing the 

pathogenicity potential of each variant allele besides the variant load of a genomic region, 

integrating information from the Combined Annotation–Dependent Depletion(CADD V1.6) 

score and population allele frequency as observed in the 200K participants [22]. Genepy2 

score was calculated for each candidate gene or LDB based on likely-pathogenic variants of 

CADDphred_score >15 for every individual within the cohort. 

Details of calculation were described in supplementary methods. The GenePy2.0 

pipeline is open source and can be accessed at https://github.com/UoS-HGIG/GenePy-2 

  

LDB/gene-based mutation test  

GenePy2 score-based Mann-Whitney U test was conducted with other burden and threshold-

based tests (supplementary methods).  We considered the genetic heterogeneity of IBD, with 

the most commonly associated gene, NOD2 for example, estimated to account for  7.5% of 

Crohn’s disease cases [7, 23] therefore tapered the test from all individuals to those with all 

non-zero score, top 7.5%, 5%, 2.5% and 1% of highest GenePy scores in cases and controls 

respectively, to provide a more statistically robust characterisation of the contribution of each 

gene to disease pathogenesis. This was also followed by a permutation test of 105 times to 

address confounding effects caused by population stratifications.  The effect size of the 

Mann-Whitney U test was evaluated using the Mann-Whitney parameter, theta 

� = Pr[X < Y] + 0.5Pr[X = Y] 

with bootstrap resampling to estimate its confidence interval[24-26]. 



All associated tests utilized the same sets of variants and identical LDB/gene 

coordinates, specifically focusing on pathogenic variants with a CADDPhred_Score>15. Mann-

Whitney U tests are based on the scikit-learn library of Python 3.7[27]. 

Itemset analysis 

GenePy status was defined as follows: individuals in the sub-population (i.e. those with the 

top 7.5%, 5%, 2.5%, or 1% highest scores, or all with non-zero scores) whereby maximum 

effect size is observed in the GenePy-based Mann-Whitney U test, were deemed positive for 

GenePy for the testing locus, others with lower scores as negative. The binarization process 

was conducted for UC case/controls and CD case/controls separately. GenePy status of 

associated loci (Mann-Whitney U test permutation p<5.65x10-5 addressing multiple testing 

issue), was analysed by an item association rule mining unsupervised learning approach via 

the APRORI algorithm[28, 29], as implemented in arules and arulesViz package of R[30, 

31]. To reduce the sparsity of the data, individuals without any positive GenePy status were 

removed before the association mining.  

Itemset support (i.e. frequency), lift, and confidence were examined in both CD and 

UC cohorts and for cases and controls separately to understand the pattern of co-occurrence 

of association loci, exploring the potential epistatic effects of risk and protective variants.  

The minimum itemset support for the analysis was 0.0001, and minimum confidence was 0.5. 

 

  



RESULTS 

LDB and genes in association with IBD 

A total of 546 IBD-associated single-nucleotide polymorphisms (SNPs) were identified from 

35 association studies (Table S2), corresponding to 718 GWAS genes.  This set includes 413 

mappedGenes and 448 eGenes, with an overlap of 143 genes, as depicted in Figure 1B and 

Table S2.  Notably, 13 of the 104 monogenic IBD genes (monoGenes) are GWAS genes, i.e. 

’Mendelian-complex genes’, exhibiting significant intersection (Fisher’s exact test; protein-

coding genes only, p=6.72x10-6).  Functional gene set enrichment analysis revealed similar 

enrichment of both GWAS genes and monoGenes in immune-related pathway (Table S3; 

Figure S1), aligning with the anticipated convergence of molecular pathogenic pathways in 

monogenic IBD and complex IBD. 

Another feature of GWAS genes is the enrichment of non-protein coding pseudogenes 

(n=157), which make up 26.39% of mappedGenes and 12.95% of eGenes.  This aligns with 

overrepresentation of pseudogenes in the applied reference GENCODE V43 [32, 33] and our 

impartial SNP-gene mapping approach with no preferable selection for protein-coding genes 

or known IBD genes.  Whilst there is growing knowledge of their association with disease 

and immune regulation [34], the majority of the pseudogenes are not covered by the Exome 

capture kit (n=116; Figure 1b). 

Utilizing the European-based LDU map[14], 546 GWAS SNPs are categorized into 

260 LDBs, with 150 consisting of a single association SNP (IBD-association p<5x10-8), and 

the remaining defined by > 2 GWAS association SNPs.  The LDBs span from 1.00 to 3.20 

LDU, or 3,630bp to 3,246,717 bp according to the physical position in size.  The largest 

LDB, LDB78b, is located at 5q31.1 (Table S2), and encompasses 6 GWAS association SNPs, 

which consist of eQTLs of MEIKIN.  LDB78a, despite being >1LDU far away from 

LDB78b, encompasses another IBD-associated eQTL of MEIKIN.  Such LDBs, by sharing a 

common gene with the association SNP that they encompass, are defined as clusters of LDBs 

(n=21).  As might be expected, the most significant cluster is the HLA region at 6p21.32-33, 

comprising 7 LDBs (Table S2).  One hundred and ninety-four LDBs are captured by the 

Exome sequencing assay.  These LDBs encompass the complete sequence of 313 GWAS 

genes, partially overlap with 201 GWAS genes, and have no intersection with the other 204 

GWAS genes.  LDBs can also extend beyond mappedGenes and eGenes.  For instance, 

LDB187 at 16q12.1, delineated by 5 GWAS SNPs covers CYLD, a monoGene but not a 

GWAS gene, besides NOD2 and CYLD-AS1 (Figure S2). 



The GWAS genes, LDBs and monoGenes together account for 885 target regions to 

be tested, as component LDBs within a LDB cluster is tested separately. 

The UK Biobank IBD cohort 

Following QC, ethnicity- and phenotype-based filtration retained 891 CD, 1,409 UC cases, 

and 60,118 controls.  Most of the IBD diagnoses were made in patients’ adulthood, whilst 37 

CD and 33 UC were diagnosed on or before the patients reached 18 years old.  Further 

demographic and sub-phenotypic features of the UC and CD patients are derived based on the 

ICD-10 code of diagnosis as shown in Table 1. 

 

Pathogenic mutations of GWAS association loci and monogenic IBD genes 

All but 10 of the GWAS-derived set of 794 targets host >1 variants with CADDphred_score>15 

in the cohort, and all the monoGenes were mutated in at least 1 patient. Despite this, 

pathogenic variants were very sparsely identified in the patients. Approximately half of the 

testing loci had a non-zero GenePy score in fewer than 5% of patients, as observed on 416 

(52.39%) of the GWAS loci and 46 (44.23%) of the monoGenes in CD patients, and similarly 

on 425 (53.53%) GWAS loci and 48 (46.15%) monoGenes in UC. With more than half of the 

values being zeros, the GenePy score matrix per locus/individual is a sparse matrix for 

downstream analysis. 

The most mutated genes are the 13 known ‘mendelian-complex’ IBD genes, as 8 

(61.53%) are mutated in >5% of both UC and CD, except for CD40, IL2RA, IL10, STAT3 and 

LACC1 that are rarely mutated either UC or CD. Such sparsity of non-zero GenePy scores of 

the patients corresponds to the genetic heterogeneity of IBD and is the rational for the 

following GenePy-based association tests on subpopulations with highest scores. 

 

Association of the candidate regions with disease 

Under the monogenic IBD model, two significant associations are observed with CD which 

exert opposing effects on disease: NOD2 being risk under the recessive model and IL23R, 

under the dominant and additive inheritance models, both with protective effects. Both genes 

are known IBD genes with NOD2 also being a ‘mendelian-complex’ IBD gene. No 

significant associations were detected with UC from this test (Figure S3).   

Burden-based SKAT-O test highlighted the most significantly associated gene of UC, 

RIPK2-DT, a noncoding eGene associated with the IBD-association SNP rs7015630.  RIPK2-



DT plays a role in mitigating inflammation induced by free fatty acids but is less known in 

IBD compared to its downstream gene RIPK2 [35, 36]. The RIPK2-DT association was not 

detected in the GenePy-based rank sum tests. 

 GenePy-based Mann-Whitney U test uncovered 35 loci in significant association with 

CD and 25 with UC (Figure 2; Figure S4). HLA-DQA1 and HLA-DQB2 are the most 

significantly associated genes with UC and controls of the top 7.5% or GenePy scores, albeit 

of modest effect sizes (�HLA-DQA1=0.63, CI [0.59,0.67]; �HLA-DQB2=0.66, CI [0.63,0.70]), 

compared to other associated genes, e.g. �SLC17A1=0.81, CI [0.73,0.88], or the monoGene 

LIG4, where �LIG4=0.82, CI [0.74,0.89];  NOD2, together with the co-located LDB187 and 

CYLA-AS1 gene (Figure S2), but not CYLD the monoGene, are the most significantly 

associated with CD (Figure 2). Such associations propped up by the rare pathogenic variants 

(CADDphred_score>15) exert larger effect sizes to disease compared to that identified from the 

original GWAS, of both protective and risk effects observed, and such effects tend to be 

bigger when the afftected sub-population is smaller (Figure 2).  Notably, although the 

smallest p value of NOD2 was observed in individuals of the top 7.5% highest scores 

(p=1.41x10-17, �=0.80, CI [0.77,0.83], the maximum effect size was observed in those with 

the top 2.5% highest score p=5.13x10-7, �=0.81, CI [0.76,0.86])  

The eGene NOTCH1 and a mappedGene CARD9 at locus 9q34.3 are tagged by the 

association SNPs encompassed by LDB131a/b, and both exhibited significant association 

with CD, evincing pleiotropic effects at the gene level of a GWAS association locus.  In 

another case, LDB189 which constitutes a proportion of the PLCG2 gene encompassing the 

phospholipases domain, is significantly associated with CD with protective effects but the 

entire PLCG2 gene is not (Figure 3), in line the GWAS findings[37].  

Set of highly mutated genes in IBD and controls 

We tested Rare variant-based associations in both UC and CD, appeared to exert both 

protective and risk effects, with the potential for some cases of the disease to constitute 

oligogenic pathogenesis given the large effect sizes.  We tested this using an itemset 

association analysis by the APRIORI algorithm, with patients carrying higher GenePy2 score 

than the cut-off applied in association tests considered being GenePy positive for a mutant 

gene or LDB (Table S5-8).  The test was conducted on 398 CD patients and 28,017 controls 

with any positive GenePy status of the 34 CD-associated genes/LDBs, and similarly on 613 

UC with 25,748 controls with positive GenePy of the 25 association loci. 



GenePy status of LDBs/genes within the same GWAS association region tend to be 

associated because of the existing intra-region overlaps (Table S2 and Table S5-8).  Between 

GWAS regions, considerable coexistence of ‘positive’ GenePy status of LDB187/NOD2 and 

IR23R/LDB6 were observed in controls (Figure 4A). This coexistence was completely absent 

in itemset observation in CD cases, with GenePy(+) status of both the NOD2/IL23R regions 

being mutually exclusive in CD patients (Figure 4A; Table S5-S6).  IL23R and the genomic 

region also showed strongest associations with other regions in controls of the UC-associated 

genes/LDBs (Figure 4B; Table S7-8), indicating its counter-risk effects in both IBD subtypes, 

albeit the observation in UC can be biased as the sub-population with IL23R positive GenePy 

status constituted 14.08% of the UC cohort (Figure 3C). 

 

 

 

 

 

  



DISCUSSION 

Both single DNA variant and aggregated effects of multiple variants has been utilized for 

disease risk stratifications[38, 39], but a biomarker from rare and functional genomic variants 

is missing for complex disease despite their potentially direct causal effect with disease.  

Filling the gap relies on a large cohort, but big genomic data is enriched with issues of 

complex variations, e.g. multi-allelic variation, variation of unknown significance, etc.  Based 

on the UK BioBank cohort, we tackled such complexities using an evolved GenePy2.0, and 

then tested it on known GWAS loci represented by common variants-based associations.  A 

tailored analysis on IBD was performed, and the result demonstrated the significant 

enrichment of associations represented by GenePy score with both risk and protective effects 

on disease occurrence, which will change our previous outlook on the IBD genetic 

architecture. This approach also exemplifies a new approach to tackling the relationship of 

GWAS CVs and rare variants. 

 IBD is the archetypal ‘complex’ disease, with genetic heterogeneity leading to distinct 

underlying aetiology of disease pathogenesis within individuals and governing the role of 

both triggering and ongoing environmental drivers of disease. In addition to the plethora of 

GWAS findings which shed light on the genetic pathogenic pathways of the disease, recent 

analysis of large numbers of patients with WES data has continued to advance knowledge 

and implicated more rare variation in pathogenesis [4].  Here we build upon the ability to 

assess rare variation through application of statistical analysis to determine the maximal 

contribution of each GWAS locus to IBD pathogenesis within the cohort. 

We did not limit our view on GWAS to genes, instead followed a naïve approach 

revisiting the SNP associations with LD mapping in addition to evidence-based physical and 

eQTL mapping of candidate genes.  This introduced pseudogenes and intergenic LDBs which 

are undesirable targets for the WES-based downstream analysis as many of the candidates are 

not captured by the sequencing assay, not to mention that many are less studied.  However, 

this has also led to novel discoveries. Our analysis points to variation across the entire NOD2-

associated LDB, rather than just the gene, as being significantly associated with Crohn’s 

disease inferring important roles for regulatory regions in addition to established coding 

variants. Similarly, our analysis pinpoints an association in the PLCG2 to only part of the 

gene with the potential to utilise this to better understand the underlying biological process 

through which variants lead to disease. Pseudogenes RIPK2-DT and CYLD-AS1 also stand 

out in association tests which indicates novel pathogenic gene pathway of IBD. 



The discovery of associations has been significantly promoted by GenePy.  By 

capturing the role of rare variation at an individual level, this technique provides the ability to 

both determine the relative contributions to IBD pathogenesis of associated genes across a 

cohort, and to determine, at an individual level, patients presumed to have disease where a 

specific gene (or set of genes) has a statistical contribution compared to other patients. This 

opens the possibility of personalising the molecular diagnosis for an individual patient and 

identifies genomic biomarkers of disease.  By taking the subset of individuals with the 

highest GenePy score, we can tackle the genetic heterogeneity of IBD in a straightforward 

approach.  For instance, rank-based comparison recovered the most significant association of 

NOD2 locus for the CD patients with the top 7.5% GenePy scores, concurring with previous 

findings, although we found that the largest hazard effect of NOD2 mutation is for the more 

extreme top 1% of scores. 

Not all ‘pathogenic’ variants are causal to IBD, as we found both risk and protective 

effects in the CD and UC cohort.  This is consistent with the evolutionary picture of 

autoimmune disease[40], and the directionality of genetic variants may be addressed in 

burden-based association test able to annotate gain-of-function, loss-of-function and 

dominant negative effects into the GenePy score in the near future. Interestingly, the effect 

sizes of the GenePy score based tests are much larger than the GWAS findings on index 

SNPs, providing the possibility for the scoring tool to be applied as a potential biomarker for 

implicated genomic  ()counter each other when occurring to the same individual, as we 

observed in controls with positive NOD2 GenePy status being also positive for IL23R.  

Furthermore, identifying this pattern implicates an oligogenic picture of IBD for some 

patients, with disease aetiology lying between complex and monogenic IBD. 

Whilst the UK Biobank cohort provides many advantages, including its large size and 

rich phenotyping data, the nature of WES data are not ideal for analysis of all GWAS targets 

as many of the associations lie in noncoding regions, as observed in a large proportion of the 

LDBs in this study.  WGS may provide the opportunity for improvement in both methods and 

discovery, and application of these methods. Another area of potential weakness in UK 

Biobank data are the precision of the clinical phenotyping, which impedes the subtype or 

genotype-phenotype correlation analysis even with GenePy of large effects. In this study we 

have attempted to identify genomic associations of specific IBD subtypes and are therefore 

reliant on the accuracy of clinical data to make correct associations. It is also important to 

recognise that quality control of phenotypes by specific researchers is not possible and we 



have used the available data to categorise IBD patients, and to identify controls that are 

reported to have no other autoimmune conditions.   

With approved access to the Phase 3 UK Biobank data (project ID140070) and other 

IBD data, we are looking to replicate the GenePy-based findings on IBD and other diseases, 

with testing and development of GenePy as a potential DNA biomarker representing rare 

functional variants for complex diseases. 
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Tables 

Table 1. Characteristics of the European UK BioBank cohort for the analysis. 

  CD (n=891) UC (n=1409) Controls 
(n=60,118) 

Demographics       

Male 387 (43.43%) 730 (51.81%) 32925 (54.77%) 

Female 504 (56.57%) 679 (48.19%) 27193 (45.23%) 

Age at latest assessment: median 
(IQR) (Year) 

59 (51-64) 61 (54-65) 58 (50-63) 

Age at Diagnosis; median (IQR) 
(Year) 

51 (34-62) 52 (37-63) NA 
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GI complications 

Fistula disease 57 (6.40%) 30 (2.13%) NA 

Stricturing disease 138 (15.49%) 57 (4.05%) NA 

colon cancer 26 (2.92%) 43 (3.05%) NA 

megacolon disease 4 (0.45%) 6 (0.43%) NA 

Comorbidities with other autoimmune diseases 
n=1 111 (12.46%) 151 (10.72%) NA 

n=2 15 (1.68%) 15 (1.06%) NA 

n>=3 1 (0.11%) 5 (0.35%) NA 
 










