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Abstract 
 

Circulating cytokines orchestrate immune reactions and are promising drug targets for 
immune-mediated and inflammatory diseases. Exploring the genetic architecture of 
circulating cytokine levels could yield key insights into causal mediators of human disease. 
Here, we performed genome-wide association studies (GWAS) for 40 circulating cytokines in 
meta-analyses of 74,783 individuals. We detected 359 significant associations between 
cytokine levels and variants in 169 independent loci, including 150 trans- and 19 cis-acting 
loci. Integration with transcriptomic data point to key regulatory mechanisms, such as the 
buffering function of ACKR1 acting as scavenger for multiple chemokines and the role of 
TRAFD1 in modulating the cytokine storm triggered by TNF signaling. Applying Mendelian 
randomization (MR), we detected a network of complex cytokine interconnections with TNF-
b, VEGF, and IL-1ra exhibiting pleiotropic downstream effects on multiple cytokines. Drug 
target cis-MR paired with colocalization revealed G-CSF/CSF-3 and CXCL9/MIG as 
potential causal mediators of asthma and Crohn’s disease, respectively, but also a potentially 
protective role of TNF-b in multiple sclerosis. Our results provide an overview of the genetic 
architecture of circulating cytokines and could guide the development of targeted 
immunotherapies.  
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Introduction 
 

Chronic inflammation contributes to multiple human diseases, including allergic and 
autoimmune diseases, cardiometabolic diseases, and cancer. Inflammatory proteins like 
cytokines, chemokines and growth factors (hereafter collectively referred to as “cytokines”) 
orchestrate the immune response underlying inflammation.1,2 Circulating cytokines are readily 
accessible and therefore attractive targets for therapeutic modulation, as they represent soluble 
ligands that execute downstream mechanisms through binding to membrane receptors or other 
circulating agents.3 While several immunotherapies targeting circulating cytokines have been 
successfully introduced into the clinic, the lack of efficacy in other indications and the usually 
associated susceptibility to infection underscore the need for targeted approaches.4,5 

Prioritizing specific downstream mediators is critical to minimize safety signals and ensure 
adherence to a life-long pharmacotherapy.5,6  
 
Recent advances in human genetics have enabled an in silico prioritization of drug targets7,8, 
with approval rates more than two times higher than targets without genetic support.9 
Mendelian randomization (MR) uses data from genome-wide association studies (GWAS) 
and offers a statistical framework for exploring associations between variants in genes 
encoding drug targets and disease traits.10 Previous MR analyses have illustrated the potential 
of integrating GWAS data for circulating proteins, including cytokines, with disease outcomes 
to discover novel drug targets.11–16 However, existing efforts have been largely restricted by 
the small sample sizes of GWAS studies for circulating cytokines. For example, the largest-
to-date targeted GWAS which focused specifically on, circulating cytokines included up to 
8,293 individuals and allowed the detection of 27 significant genomic loci for 41 cytokines.17  
 
Novel proteomic platforms, such as the aptamer-based SOMAScan® and the proximity 
extension assay Olink®, gain popularity in quantifying at scale large numbers of proteins 
including cytokines. Here, we performed cross-assay comparisons in the genetic architecture 
of 40 cytokines quantified with 3 approaches (multiplex bead-based immunoassay, aptamer-
based assay, proximity extension assay) and pooled data in GWAS meta-analyses including 
up to 74,783 individuals. This effort allowed the detection of 359 significant associations 
between 169 independent genomic loci and one or more of the 40 cytokines offering novel 
insights into mechanisms regulating circulating cytokine levels. Applying MR, we establish a 
causal cytokine network including upstream mega-regulator cytokines that exert influence on 
a range of other cytokines. Finally, integrating these data with GWAS data for relevant 
disease endpoints, we provide genetic support for putative anti-inflammatory drug targets.  
 
Results 
 
Study cohorts and cross-assay reproducibility rate of significant genomic loci 
 
We leveraged summary-level GWAS data for 40 circulating cytokines from 3 published 
datasets summing up to 74,783 individuals: the Cardiovascular Risk in Young Finns Study 
(YFS) and FINRISK studies that measured cytokines in serum using Luminex bead-based 
multiplex immunoassays (N=8,293); the Systematic and Combined AnaLysis of Olink 
Proteins (SCALLOP) study that measured cytokines in plasma using the proximity extension 
assay-based Olink® platform (N=30,931); and the dataset provided by deCODE that measured 
cytokines in plasma using the aptamer-based SOMAScan® assay (N=35,559, Figure 1).  
 

Figure 1. Flowchart of the study design. Illustration of the analytical pipeline steps applied in this study to 
decipher the genetic architecture of circulating cytokines and their relation to allergic and autoimmune, 
cardiometabolic and cancer outcomes. SCALLOP, Systematic and Combined AnaLysis of Olink Proteins; SNP, 
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Single-nucleotide polymorphism; TWAS-MR, Transcriptome-wide Mendelian randomization analysis; YFS & 
FINRISK, Cardiovascular Risk in Young Finns Study. 
 
 
Given the known differences across the assaying methods, we first tested the replication rate 
of significant variants detected in each dataset in the other two datasets.18 Although the 
GWAS in SCALLOP led to a considerably lower number of genome-wide significant loci for 
available cytokines, these variants showed the highest rate of reproducibility (p<5x10-5 and 
directionally consistent) in the other two datasets (median 67% in YFS & FINRISK and 63% 
in deCODE, Figure 2, Supplementary Table S1). A lower reproducibility rate was found for 
significant variants detected in YFS & FINRISK (median 4% in deCODE and 11% in 
SCALLOP) and deCODE (median 21% in YFS & FINRISK and 19% in SCALLOP). The 
cytokines that showed the highest relative proportion of reproducible SNPs across all 3 
datasets independently of the measuring assay were CC chemokine ligand 2 (CCL2/MCP-1) 
and vascular endothelial growth factor (VEGF). 
 
Figure 2. Comparisons of significant genomic loci for 40 circulating cytokines across 3 proteomics assays. 
(a) Number of reproducible and non-reproducible SNPs per cytokine (depicted as saturated and light-colored 
bars, respectively) for deCODE, SCALLOP and YFS & FINRISK cohorts. (b) Median proportion of replicated 
SNPs across the three platforms (error bars represent the 25th and 75th percentiles). Colored bars represent 
deCODE consortium in red, SCALLOP consortium in blue and YFS & FINRISK cohorts in yellow. SNP, 
Single-nucleotide polymorphism; SCALLOP, Systematic and Combined AnaLysis of Olink Proteins; YFS & 
FINRISK, Cardiovascular Risk in Young Finns Study. 
 
 
GWAS meta-analysis reveals novel trans- and cis-acting variants  
 
Next, we performed GWAS meta-analyses across the 3 datasets. We identified a total of 359 
significant associations between variants at 169 independent genomic loci and the circulating 
levels of one or more of the 40 cytokines (p<5×10−8 in fixed-effects meta-analysis, Figure 3, 
Supplementary Table S2). Variants that showed significant heterogeneity between the three 
cohorts (HetPval < 0.1) are reported in Supplementary Table S3 (48% of the significant loci; 
range 0% to 100% across the 40 cytokines). The lambda values ranged between 0.96 for 
interleukin (IL)-16 and 1.04 for basic fibroblast growth factor (FGF-b), indicating absence of 
overall inflation in the test statistics (Supplementary Table S3). According to GWAS 
catalog (https://www.ebi.ac.uk/gwas/)19, 156 of the loci have not been associated with 
circulating levels of the 40 cytokines in previous GWASs (Supplementary Table S4). The 
proportion of explained variance by the significant variants ranged from 0.0008 for IL-17 to 
0.033 for stem cell growth factor beta (SCGF-b) (Supplementary Table S2). 
 
Figure 3. Genetic architecture of the circulating levels of the 40 cytokines. Circular Manhattan plot of 
genomic loci significantly associated with circulating levels of 40 cytokines in a meta-analysis of the three 
datasets. The 359 genome-wide significantly associated variants at p < 5x10−8 are depicted as black dots for 
GWAS meta-analyses in YFS & FINRISK, SCALLOP, and deCODE cohorts. The horizontal and vertical 
location of dots in each single rectangle depict genomic positioning (increasing from left to right) and p-value 
(descreasing from bottom to top), respectively. SCALLOP, Systematic and Combined AnaLysis of Olink 
Proteins; YFS & FINRISK, Cardiovascular Risk in Young Finns Study. 
 
 
As expected due to larger effects sizes for rare genetic variants, we found a strong inverse 
correlation between minimum allele frequency and effect size (Spearman’s rho=-0.827, 
p=5x10-30, Figure 4a). The majority of the significant loci (150 out of 169) represented trans-  
(distant-) acting variants. When excluding the human leukocyte antigen (HLA) region on 
chromosome 6, we found 33 pleiotropic variants showing associations with >1 cytokine 
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among the significant trans- variants (Figure 4b). A locus hotspot associated with multiple 
cytokines was found at the region of the gene encoding complement factor H (CFH). This 
soluble mediator plays an essential role by interacting with the C3 convertase for regulation of 
inflammatory responses exerted by the complement system, which could possibly explain the 
associations with multiple cytokines.20 While at least 1 significant trans-variant was present 
for all studied cytokines (median number of variants per cytokine = 5, range 1 to 22), we 
found significant cis- (local-) acting variants in the vicinity of their encoding gene for 19 
cytokines (Supplementary Table S2). The lead cis-acting variants showed stronger 
associations with cytokine levels (mean absolute beta: 0.18, range: 0.05-0.94) than trans-
acting variants (mean absolute beta: 0.08, range: 0.03-0.55, p-for-comparison=0.03, Figure 
4c).  
 
Figure 4. Trans- and cis-acting genetic variants underlying circulating cytokines. (a) Inverse correlation 
between minimum allele frequency and effect size illustrated for trans- and cis-acting loci. (b) Number of 
pleiotropic loci associated with circulating cytokines (excluding the HLA region on chromosome 6).  (c) Cis-
acting variants showed stronger associations with cytokine levels when compared with trans-acting variants. 
Bars and lines represent median and 95% confidence intervals, respectively. HLA, human leukocyte antigen; 
SD, standard deviation. 
 
To map causal variants responsible for associations between cytokine serum levels and genes 
within each of the 169 independent genomic loci we used SuSiE fine mapping. Employing a 
Bayesian framework, fine mapping identifies credible sets of variants with posterior 
probability (PP) 95%. The number of variants within credible sets ranged from 2 to 50. The 
highest numbers of variants within a credible set were found at 15q21.3 for stem cell factor 
(SCF) (n=50), at 19q13.33 for SCGF-b (n=49), and at 6p21.1 for VEGF (n=44). SuSiE 
mapped the association test lead variant to the credible sets for 49 genomic loci, identifying 
the GWAS lead as most likely causal mutations (supplementary Table S5). 
 
 
Functional follow-up analyses highlight immune response regulatory mechanisms 
 
To understand the biological significance and downstream functional impact of the identified 
variants, we performed follow-up analyses. A MAGMA gene-based analysis showed 829 
significant associations with the levels of circulating cytokines at a Bonferroni-defined 
significance level (Supplementary Table S6). In total, 626 uniquely mapped genes were 
associated with at least 1 cytokine. The number of genes mapped to cytokines ranged from 1 
for beta nerve growth factor (bNGF), cutaneous T-cell attracting (CCL27/CTACK), IL-10 and 
tumor necrosis factor-alpha (TNF-a) to up to 95 genes mapped for SCGF-b, 92 genes for 
macrophage inflammatory protein-1β (CCL4/MIP—1b) and 51 genes for CCL11/eotaxin-1. 
In line with our GWAS results, the gene that was mapped for most cytokines (n=16) was 
CFH. The genes with the lowest p-value were H4C14 for monocyte specific chemokine 3 
(CCL7/MCP-3) (p=1×10−50), DBA4 for IL-16 (p=1.3×10−45), and ABC1 for SCF 
(p=1.9×10−29). A gene-property analysis revealed that the cytokine-related genes were 
primarily enriched for expression in the liver (p=4.9×10−10), in line with its well-established 
role as a main source of production of many cytokines. Other enriched tissues included the 
spleen (p=4.9×10−4) and lung (p=5.9×10−4, Supplementary Table S7). A MAGMA gene-set 
analysis prioritized 41 pathways for 12 cytokines that reached a Bonferroni-adjusted 
significance level (p<1.2x10-7, Supplementary Table S8). The identified pathways were 
primarily related to immune response with a small cluster involved in metabolic and 
developmental processes.  
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Positional mapping ascribed 75% of significant variants to intronic (54%) and intergenic 
(21%) regions, suggesting that the identified variants primarily determine gene transcription 
or gene expression profiles (Supplementary Table S2).21 Thus, we integrated our GWAS 
data with transcriptomic data and performed a transcriptome-wide association study (TWAS) 
using Mendelian randomization (MR) for a deeper elaboration on the transcriptional effects 
underlying our GWAS results. Summary statistics for expression quantitive trait loci (eQTLs) 
in whole blood were obtained from the eQTLGen consortium including transcriptomic 
profiles for 31,684 individuals of primarily European ancestry.22 Using cis-eQTLs as genetic 
instruments, we identified 245 significant associations between genetically proxied gene 
expression in whole blood and cytokines levels (Figure 5, Supplementary Table S9). The 
number of significant genes per cytokine ranged from 1 to 18. While most significant genes 
(78%) influenced the levels of a single cytokine, the genetically proxied expression of 54 
genes showed an effect on circulating levels of up to 9 cytokines (n[SKIV2L]=9, n[5HLA-
DRB5]=9, n[NELFE]=7, n[ACKR1]=5, n[FCER1A]=4, n[TRAFD1]=4, n[LCMT2]=4). 
Interestingly, we found significant cis-effects of the encoding gen expressions on the 
circulting levels of only 3 of the 40 respective cytokines. This is in line with previous eQTL-
pQTL comparisons and aligns with the fact that the circulating proteome is not the direct 
product of the whole-blood transcriptome.23,24  
 
Figure 5. Genetically predicted gene expression in peripheral blood partly explains the genetic 
architecture of 40 circulating cytokine levels. The dots represent genes, the blood expression of which was 
significantly associated with circulating cytokine levels in a Mendelian randomization-based transcriptome-wide 
association study. 
 
 
Excluding genes within the very dense HLA region (i.e. SKIV2L, HLA-DRB5 and NELFE) we 
explored deeper the biological relevance of the pleiotropic ACKR1, TRAFD1 and LCMT2 
genes. The genetically proxied mRNA levels of ACKR1 were associated with circulating 
CCL2/MCP-1, CCL7/MCP-3, CCL11/eotaxin-1, growth regulated oncogene-α 
(CXCL1/GROa), CXCL8/IL-8. ACKR1 codes for a cell-surface receptor that binds, 
internalizes and transports multiple CC and CXC chemokines and promotes leukocyte 
transcytosis into the circulation.25,26 By acting as scavenger receptor, ACKR1 modulates the 
bioavailability of cytokines and thereby affects inflammatory responses.27,28 The identified 
associations were driven by rs12075, a well-characterized missense variant in ACKR1, 
resulting in less efficient chemokine binding to ACKR1 due to loss of a necessary amino-acid 
sulfation (Figure 6a).29 The impaired receptor binding leads to elevated circulatory levels of 
chemokines and might in turn result in a compensatory increase in ACKR1 expression which 
could explain the positive association between genetically proxied ACKR1 and its ligands.30 
We replicated previously reported associations between ACKR1 and levels of CCL2/MCP-1, 
CCL7/MCP-3, CCL11/eotaxin-1, and CXCL1/GROa  and additionally showed an association 
with CXCL8/IL-8 levels.17,23 The genetically proxied expression of tumor necrosis factor 
receptor-associated factor 1 (TRAFD1) was also associated with multiple circulatory cytokine 
levels, including CCL7/MCP-3, monokine induced by interferon-gamma (CXCL9/MIG), 
interferon gamma-induced protein 10 (CXCL10/IP-10), and tumor necrosis factor-beta (TNF-
b) (Figure 6b). TRAFD1 functions as an adaptor protein that binds to the intracellular domain 
of TNF receptors expressed on both innate and adaptive immune cells. It regulates 
downstream signaling also involving the NF-κB pathway and thereby modulates the 
production of several pro-inflammatory cytokines and inflammatory responses.31–33 TRAFD1 
is a master regulator of genes involved in interferon-γ (IFNg) signaling and T-cell receptor 
activation.34 Genetically proxied expression of the gene encoding for LCMT2 showed 
associations with beta nerve growth factor (bNGF), CXCL8/IL-8, CXCL10/IP-10 and 
platelet-derived growth factor-bb (PDGFbb). LCMT2 is involved in amino-acid metabolism 
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presumably regulating hypothalamic gene expression but there is only limited knowledge on 
its biological function.35,36 
 
Figure 6. Gene expression of ACKR1 and TRAFD1 exert pleiotropic effects on multiple cytokine levels. (a) 
Schematic illustrating the impact of cis-eQTLs for ACKR1 on receptor function. Left hand side shows ACKR1 
gene encoding the atypical chemokine receptor 1 functioning as sink for multiple chemokines which are buffered 
intracellularly in venular endothelial cells. Depicted on the right, is the missense variant rs12075 coding for a 
dysfunctional receptor with less efficient chemokine binding efficacy. This leads to higher levels of circulating 
CCL2/MCP-1, CCL7/MCP-3, CCL11/eotaxin-1, CXCL1/GROa, and CXCL8/IL-8 and possibly to a 
compensatory increase in ACKR1 expression and receptor density. (b) Schematic illustrating how genetically 
proxied TRAFD1 expression regulates multiple cytokine levels (CCL7/MCP-3, CXCL9/MIG, CXCL10/IP-10, 
TNF-b), supporting its regulatory role in TNF-mediated NF-κΒ signaling. ACKR1, atypical chemokine receptor 
1; TNF-R, TNF-receptor. 
 
 
Genetic associations point to network interactions between circulating cytokines  
 
As a next step, we explored cross-trait genetic correlations between the circulating levels of 
the 40 studied cytokines (Figure 7a, Supplementary Table S10). One third of the between-
cytokine correlations were significant at p<0.05; the vast majority of the significant 
associations (96%) were positive. Furthermore, to understand causal interconnections between 
circulating cytokines levels, we performed MR analysis using cis-variants from our GWAS 
meta-analysis. We found significant (FDR-corrected p<0.05) associations between 65 
cytokine pairs (53 positive associations and 12 negative associations, Figure 7b, 
Supplementary Table S11). Genetically proxied levels of CCL7/MCP-3, stromal cell-
derived factor-1alpha (CXCL12/SDF-1a), granulocyte colony-stimulating factor (G-
CSF/CSF-3), IL-9, TNF-b, and VEGF were positively associated with the levels of >2 other 
cytokines, whereas genetically proxied CXCL1/GROa  and IL-1 receptor antagonist (IL-1ra) 
were negatively associated with lower level of >2 other cytokines. Most significant 
associations were detected for TNF-b (n=13), VEGF (n=9), IL-1ra (n=7), IL-9 (n=7), and G-
CSF/CSF-3 (n=7). The negative associations between IL-1ra and several proinflammatory 
cytokines (CCL7/MCP-3, IL-9, TNF-a, TNF-b), chemokines (macrophage inflammatory 
protein-1α, CCL3/MIP-1a), and growth factors (hepatocyte growth factor, HGF; VEGF) align 
well with the immunoregulatory role of the IL-1 pathway and the inhibitory effect of IL-1ra 
on downstream IL-1 signaling.37,38. TNF-b emerged as a significant player in our network 
analysis, demonstrating characteristics of a master regulator by showing significant 
associations with higher circulating levels of 13 mostly pro-inflammatory cytokines. 
Furthermore, TNF-b exhibited significant positive LDSC genetic correlations with 7 of the 13 
cytokines, suggesting a shared genetic architecture within the TNF-β network (Figure 7a). 
While certain interactions with TNF-b, such as those involving IL-1ra, TNF-a, TNF-related 
apoptosis inducing ligand (TRAIL), and VEGF, are well-documented, the majority of 
interactions have not been reported previously and merit additional investigation.39–41  
 
Figure 7. Cross-cytokine genetic associations.  (a) Genetic correlations with LD-score regression across 
cytokine serum levels are depicted as correlation heatmap. Stars highlight significance level *, 0.05; **, 
0.0001; ***, 0.00001. LD-score correlation coefficients are illustrated according to the legend below 
spanning from -1 in blue to +1 in red, missing correlation coefficients are depicted in grey. (b) Cis-
Mendelian randomization between genetically proxied circulating cytokine levels. Arrow heads show the 
direction of causal influence, color gradient indicates the effect estimate and line width the logarithm-
adjusted Benjamin-Hochberg corrected significance level. LD, linkage disequilibrium. 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.19.24306036doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306036
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Cis-Mendelian randomization and colocalization highlight potential drug targets for 
immune-related diseases 
 
For insights into the clinical consequences of genetically proxied levels of the circulating 
cytokines, we analyzed associations with allergic and autoimmune, cardiometabolic, and 
cancer outcomes in two-sample MR followed by colocalization analyses (Figure 8 and 
Supplementary Table S12). We used cis-acting genetic variants as instruments due to their 
lower likelihood of influencing cytokine levels through pleiotropic mechanisms. We further 
complemented these analyses with Bayesian colocalization to prioritize associations less 
likely to be influenced by pleiotropy due to linkage disequilibrium of studied variants with 
neighboring genes.42 Following correction for multiple comparisons, we found 24 significant 
MR associations between genetically proxied cytokine levels and disease outcomes (14 
positive and 10 negative associations). Our MR findings partially confirmed established 
pathogenetic associations with diseases and therapeutic drug targets that are already in clinical 
application. For example, there is solid evidence linking IL-2 receptor subunit alpha (IL-2ra) 
increasing variants to elevated risk for multiple sclerosis (MS) and Crohn’s disease (CD).17 
Aldesleukin, a recombinant form of IL-2 approved for cancer indications, is currently under 
investigation in a phase-2 clinical trial for CD (ClinicalTrials.gov ID:  NCT04263831).43 
Also, compounds targeting IL-1 signaling, anakinra or canakinumab, represent established 
treatment algorithms for inflammatory joint diseases like rheumatoid arthritis (RA) or juvenile 
arthritis.44,45  
 
Of the 24 signals, 4 also showed evidence of significant colocalization, that is a PP of 
association >80% for shared causal variants between cytokine levels and disease outcomes 
(Figure 8, Supplementary Table S13), thus providing even stronger evidence for causality. 
These included associations of higher genetically proxied G-CSF/CSF-3 levels with asthma, 
lower genetically proxied G-CSF/CSF-3 and higher genetically proxied CXCL9/MIG levels 
with CD, as well as lower genetically proxied TNF-b levels with MS. Furthermore, the 
association between genetically proxied IL-1 receptor antagonist (IL-1ra) levels and lower 
risk of RA reached a PPA of 68% for a shared causal variant in colocalization analysis. These 
results are consistent with data from preclinical studies,46–48 observational studies in 
humans,49–53 and clinical trials,54,55 thus providing support for potentially promising targeted 
immunotherapies for these indications. 
 
Figure 8. Cis-Mendelian randomization associations and colocalization analyses between genetically 
proxied cytokine levels and disease risk. Significant associations between circulating cytokine levels and 
disease outcomes are shown for allergic and autoimmune, cardiometabolic, and cancer outcomes. Effect 
sizes and log-transformed, Benjamin-Hochberg corrected p-values are illustrated by color gradient and 
circle size, respectively. Only cytokines and disease endpoints with at least 1 significant association are 
depicted. Numbers at the top indicates average number of cis-acting genetic variants used as instruments in 
MR analyses. Stars highlight significant genetic colocalizations (posterior probability of association >80%) 
for shared causal variants between circulating cytokine levels and disease risk. 
 
 
Integration of cytokine-disease MR and TWAS-MR results implicates additional  
mediators of disease mechanisms that could represent promising drug targets  
 
As a last step, we aimed to integrate the cytokine-disease MR results with the TWAS MR 
results with the goal of also detecting upstream regulators of the potentially causal cytokines. 
We performed MR analyses between genetically proxied expression of genes significantly 
associated with G-CSF/CSF-3, CXCL9/MIG, and TNF-b in our TWAS-MR analyses and the 
associated disease outcomes. We found that higher genetically proxied expression of 
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PPP1R37 is associated with lower levels of G-CSF/CSF-3, as well as with a lower risk of 
asthma (Figure 9a). We also found higher genetically proxied expression of TRAFD1 to be 
associated with higher CXCL9/MIG levels and higher risk of CD (Figure 9b).  
 
Figure 9. Causal associations between genetic regulators for cytokines, circulating cytokine levels and 
disease risk. (a) Genetically proxied mRNA for PPP1R37, PVR, RTN2 and IGFBP2 affect serum G-CSF/CSF-3 
levels leading to increased risk for asthma. In turn, PPP1R37 directly lowers disease risk for asthma. (b) 
Genetically proxied mRNA for 11 genes underlying CXCL9/MIG serum levels differentially affect circulating 
cytokine concentrations which influence the risk for Crohn’s disease. Independently, TRAFD1, ATF6B and C4A 
also modulate disease risk for Crohn’s disease.  
 
 
 
 
Discussion 
 
Pooling data from up to 74,783 patients from 3 independent GWAS cohorts, we identified 
169 independent genomic loci influencing the circulating concentration of 40 cytokines, 156 
of which have not been associated with circulating cytokine levels in previous GWASs. 
Integrating our results with transcriptomic data, a TWAS-MR analysis revealed 245 
potentially causal associations between gene expression of mostly immunoregulatory genes in 
peripheral blood and circulating cytokine levels. Analyzing regulatory interactions between 
cytokines, we found TNF-b, VEGF, and IL-1ra as master controllers of the circulating levels 
of multiple cytokines. Finally, we provide genetic evidence that the circulating levels of 3 
cytokines (G-CSF/CSF-3, CXCL9/MIG, TNF-b) might be causally involved in the 
pathogenesis of asthma, CD, and MS, thus offering insights for the development of more 
specific immunotherapies.  
 
Our MR and colocalization analyses provided evidence for potential causality for four 
cytokine-indication pairs, thus offering genetic support for potentially promising targeted 
immunotherapies for asthma, CD, and MS. These results are highly consistent with 
preclinical, epidemiological, and occasionally clinical data. For example, G-CSF/CSF-3 is a 
pro-inflammatory cytokine involved in neutrophil differentiation and systemic mobilization 
and has been implicated in the pathogenesis of neutrophilic atopic asthma.46,56 Several 
preclinical studies in asthma models showed that blockage of upstream inductors or the 
receptor of G-CSF/CSF-3 reduced circulating cytokine levels, alleviated the airway 
inflammatory response, and improved disease outcome.46–48,57 Furthermore, G-CSF/CSF-3 
levels in the sputum of asthma patients have been suggested as a marker of airway 
neutrophilic inflammation.58 Our results provide genetic support for the concept of targeting 
G-CSF/CSF-3 in asthma, potentially focusing on patients with neutrophilic asthma.  
 
Using integrated results from our GWAS and TWAS findings, we identified an upstream 
mechanism of yet unknown relevance: higher PPP1R37 gene expression was associated with 
reduced G-CSF/CSF-3 serum levels and lower risk of asthma. The gene encodes a regulatory 
subunit that acts as phosphatase inhibitor and has, so far, not been associated with airway 
diseases.59 Prveious studies investigating related regulatory subunits have unveiled potential 
biological mechanisms through which these subunits may influence the immune response60,61 
and genetic studies have provided support for the significance of other protein phosphatase 
regulatory subunits as contributing factor to airway diseases.62–64 For example, genetically 
proxied expression of PPP1R3D was associated with disease characteristics of asthma 
including mucosal immunity, cell metabolism, and airway remodeling and predicted 
responsiveness to omalizumab therapy.62 Although the specific biological mechanism 
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underlying our finding is unknown, one might speculate that the diverse range of functions 
associated with PP1, including cell progression, apoptosis, and muscle contraction, might 
underlie the observed findings.  
 
The MR results supported a connection between genetically proxied circulating levels of 6 
cytokines and CD. Among them, associations of higher CXCL9/MIG and lower G-CSF/CSF-
3 with CD were also supported by colocalization evidence. CXCL9/MIG, a proinflammatory 
IFNg-induced CXC-chemokine, is released by various immune cells including macrophages 
to attract and activate T-cells and forms together with neighboring CXCL10/IP-10, 
CXCL11/IP-9 and their cognate CXCR3 receptor an axis with specific relevance in 
inflammatory bowel disease.65,66 In clinical studies, elevated CXCL9/MIG serum levels have 
been associated with CD relapses, affirming CXCL9/MIG as a risk factor in CD.53 Apart from 
pro-inflammatory actions, exogenous administration of G-CSF/CSF-3 has been associated 
with immunoregulatory effects, such as modulation of T-cell responses.67 Two open-label 
studies have indeed demonstrated that subcutaneous G-CSF/CSF-3 is effective in inducing 
clinical remission, fostering mucosal healing, and normalizing cell counts and cytokine 
responses in CD patients.54,55  
 
Integrating our results linking CD with circulating CXCL9/MIG levels, we identified 
genetically proxied expression of TRAFD1 as a potential upstream causal regulator of 
CXCL9/MIG levels and subsequently risk of CD.53,68,69 TRAFD1 binds as homodimer or in 
interaction with TRAFD2, to TNF receptors, impacting pro-inflammatory cytokine production 
and modulating inflammatory responses in immune cells.32,33,70 In celiac disease, TRAFD1 
was recognized as an upstream regulator of IFNg signaling and thereby activating cytotoxic 
T-cells, an important pathomechanism.34 The identified function of TRAFD1 as inductor of 
IFNg signaling aligns well with the literature and also with our findings showing increased 
CXCL9/MIG serum levels underlying TRAFD1 expression.66 Substantiating the risk-
increasing associations in our analysis, elevated expression of TRAFD1 and TRAFD2 was 
noticed in acutely inflamed mucosal biopsies of CD patients.71 Together these reports confirm 
our findings for the importance of TRAFD1 in the pathology of CD and as modulator of 
inflammatory reactions through effects on cytokine levels.  
 
Our analysis also provided evidence for an inverse association between genetically proxied 
circulating TNF-b and MS risk. TNF-b, is a pro-inflammatory cytokine within the TNF 
superfamily with substantial genetic correlation to TNF-a and binding affinity to pro-
inflammatory as well as anti-inflammatory TNF receptors.72 In a randomized phase 2 trial the 
TNF-inhibitor lenercept was tested for safety and efficacy in MS but had to be terminated 
prematurely after the interim analysis detected a dose-dependent increase in the frequency and 
severity of MS exacerbations.73 In contrast to the TNF blockers infliximab, adalimumab and 
golimumab, lenercept provides equal inhibitory efficacy for TNF-a and TNF-b.72,74 While 
TNF inhibition has demonstrated success in treating autoimmune diseases such as rheumatoid 
arthritis or psoriasis, patients undergoing anti-TNF therapy for these indications are at risk for 
developing demyelinating CNS lesions, indicating a disease-specific effect.40,75 Supporting 
the clinical findings, GWAS studies in MS identified TNF lowering alleles for both cytokines 
TNF-a and TNF-b that were associated with higher risk for MS.23,76 We provide additional 
genetic evidence in line with observational, clinical, and GWAS findings for a potentially 
protective role of TNF-b in MS. 
 
In our network analysis, over 80 percent of the significant cytokine-cytokine interactions led 
to an increase in downstream cytokine concentrations. Given that the majority of the involved 
cytokines were pro-inflammatory implies a self-perpetuating feedback mechanism leading to 
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strong inflammatory responses and suggests a global trend where cytokines mutually activate 
each other to amplify their immune reaction. For the IL-1ra and TNF-b network, specifically, 
we successfully expanded the list of downstream affected cytokines. TNF-b exhibited notable 
downstream effects on 13 other cytokines, signifying its role as a master regulator. This 
observation aligns with existing reports on TRAFD1's downstream effects, influencing various 
cytokine-encoding genes like CXCL10/IP-10 and IFNg.34  
 
Our study has limitations. First, our meta-analysis was based on 3 cohorts that used different 
affinity-based assaying approaches for quantifying circulating cytokines. The different 
approaches might yield varying measurements for the same proteins with only moderate 
correlations across the assays.18 This might explain the difference in replication rates across 
the 3 cohorts. Interestingly, we found a higher replication rate for signals detected with the 
Olink assay. In a previous cross-assay comparison between Olink and SomaScan, the 
proportion of assays with detected pQTLs was also higher with the Olink-based assay.18 The 
differences across the panels should be further explored at a larger scale to explore the extent 
to which it would be possible to scale genetic explorations across cohorts utilizing different 
proteomic platforms. Second, due to differences in reporting of effect sizes for genetic 
variants across the GWAS source data, we could perform only p-value-based meta-analyses 
and only indirectly estimate the pooled effect sizes based on the derived p-values and the 
variant allele frequencies. Inaccuracies in this estimation could influence downstream 
analyses heavily relying on effect sizes. Third, due to data availability, our analyses were 
based on 40 selected cytokines. Future endeavors utilizing solely high-throughput proteomic 
data could scale up to analyses including more inflammatory proteins. Fourth, our analyses 
are based on individuals of European, Finnish, and Icelandic ancestry and as such might not 
be generalizable to individuals of a different ancestry background. Fifth, due to the large 
number of cytokines we adjusted the significance level for multiple testing which might have 
neglected important findings due to non-significance. Using a hypothesis-driven approach, 
future studies should follow-up on our results to identify additional targets we might have 
missed for a comprehensive view around our findings. Sixth our GWAS meta-analysis was 
based on population-based cohorts without predominant inflammatory diseases. Genetic 
variants might influence cytokine levels in specific contexts such as a response to infection or 
other pro-inflammatory stimuli; our approach could not detect such signals.  
 
Conclusion 
 
In conclusion, our study, leveraging data from 74,783 individuals across 3 cohorts, identified 
169, mostly novel, genomic loci influencing circulating cytokine levels. Follow-up analyses 
of the detected signals reveal interesting underlying pathways, which enhance our 
understanding of the biology of the immune response. Integrating our data with genetic data 
for human disease risk, our analyses suggest potential targets like G-CSF/CSF-3, 
CXCL9/MIG, and TNF-b for immune-related diseases including asthma, Crohn’s disease, and 
multiple sclerosis, warranting further exploration in clinical trials. The summary statistics 
from our study offer a valuable resource for future omics analyses, aiding data integration for 
the identification of potential drug targets for human diseases. 
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Materials & Methods 
 

Study populations and design 
The study cohorts and a flowchart of the study design are depicted in Figure 1. We 
downloaded publicly available GWAS summary statistics for the circulating levels of up to 40 
cytokines from 3 independent cohorts. Details of the study protocols have been published 
elsewhere.17,77,78 Human genome assembly GRCh37 (hg19) from Genome Reference 
Consortium was used for genomic positioning.79 Before further computations, all 3 databases 
were harmonized regarding data structure. For the GWAS meta-analyses and downstream 
computations we included all cytokines that were available in at least 2 cohorts. To ensure 
that the available cytokines were identical between cohorts we used information provided on 
the NIH (https://www.ncbi.nlm.nih.gov/gap/) and GeneCards (https://www.genecards.org/) 
websites and verified synonyms and aliases in the abbreviated and full names of the 
cytokines. We excluded 1 cytokine (IL-12) from the analyses, because different subunits of 
the protein were quantified in the two cohorts (IL-12p70 in YFS & FINRISK and IL-12p40 in 
deCODE).  
 
YFS and FINRISK 
Genomic data for 40 cytokines were drawn from up to 8,293 individuals of Finnish 
background that were included in the YFS & FINRISK cohorts 1997 and 2002, respectively.17 
The mean age across all studies was 49 years (standard deviation 8 years). The cytokine 
measurements were carried out in EDTA plasma for the FINRISK 1997 cohort, in heparin 
plasma for the FINRISK 2002 cohort and in serum for the YFS cohort using cytokine 
Luminex®�-based multiplex immunoassays from Bio-Rad®�. Genotyping was completed 
using the Illumina HT12 platform for the YFS study and the Illumina 670k HumanHap array 
for both FINRISK studies. Imputation was performed using the 1000 Genomes reference 
panel across all cohorts.79 The GWAS meta-analyzing all 3 studies normalized the cytokine 
distribution using inverse transformation and adjusted the genetic analyses for age, sex and 
ancestral principal components 1-10. The reported effect sizes were scaled per standard 
deviation increment in inverse-transformed cytokine levels. 
 
SCALLOP Consortium 

Genomic data for 16 cytokines were drawn from up to 30,931 individuals with European 
background from the SCALLOP consortium, a collaborative framework analyzing gene-
protein associations across 13 studies.78 The cytokine measurements were carried out in 
plasma samples using the proximity extension assay-based Olink® platform. Genotyping 
methods across the studies included Cardiometabochip, Immunochip, PsychChip, Illumina 
HumanCoreExome, Illumina OmniExpress, Metabochip, Illumina OmniExpress 2.5, 
Affymetrix Axiom UK Biobank array, HumanCytoSNP-12 BeadChip, HapMap300v2, 
Human Exome, Illumina HumanOmniExpressExome-8 v1, Illumina HumanHap300v1, 
Omni1, OmniX, Illumina HumanHap300v1 and Infinium PsychArray-24 v1.2. Imputation 
was performed using the following panels: 1000G phase v5, 1000G phase v3, UK10K 
reference panel, HRC, HRC r1.1. The GWAS meta-analyzing all 13 studies adjusted the 
cytokines for age, gender, site, OLINK batch, Olink plate, MDS components, storage time, 
bleed to processing time (days), smoking status, oral contraceptive usage, blood cell counts, 
season of venipuncture and ancestral principal components 1-10. The log2-based normalized 
expression values (NPX) for each protein were rank-based inverse normal transformed and 
standardized to units of standard deviation. 
 
deCODE 
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Genomic and proteomic data for 39 cytokines were taken from 35,559 Icelandic individuals 
included in deCODE.77 The mean age was 55 years (standard deviation 18 years). The 
cytokine measurements were carried out in plasma samples using the aptamer-based 
SOMAScan® assay. Genotyping was completed using Illumina SNP Chip. Imputation was 
based on an in-house developed whole genome sequencing reference panel. The genetic 
analyses were adjusted for age and sex. Cytokine measurements were normalized using rank-
inverse normal transformation and standardized to standard deviation increment. To allow 
alignment with other datasets, we excluded all SNPs that were not covered by the 1000 
Genomes reference panel. 
 
Cross-assay comparisons in the genetic architecture of circulating cytokines 
To explore differences in the genomic architecture of cytokines levels between the 3 studies 
that applied different measurement assays, we compared the proportion of overlapping SNPs 
between datasets confined to significant (p-value < 0.05) and directionally concordant (same 
direction of effect estimates across all 3 databases) variants. Using the raw data, we analyzed 
overlapping SNPs by taking one dataset as reference comparing it to the other two.  
 
GWAS meta-analyses 
We performed fixed-effects inverse variance-weighted meta-analysis for each cytokine across 
the available cohorts using METAL software (v.2011-03-25, number of cohorts and sample 
sizes per cytokine GWAS are provided in Supplementary Table S14).80 Due to differences 
in scaling of the derived effect estimates across the 3 datasets, we applied a z-score-based 
meta-analysis (SCHEME SAMPLESIZE). Subsequently, we estimated standardized beta 
coefficients using p-values, minimum allele frequency, and direction of effects, weighted 
according to sample sizes, as previously described.81 For estimation of heterogeneity of effect 
sizes between data sources we calculated chi-square test statistics for all included markers. To 
control for genomic inflation we calculated lambda statistics for each cytokine 
(Supplementary Table S3).82 Significant variants were defined based on the established 
genome-wide significance level (p<5x10-8). To detect independent variants following 
correction for linkage disequilibrium, we clumped across the significant ones using 
clump_data (TwoSampleMR R package version 0.5.6) at an r2<0.001 based on the European 
1000 Genomes Project reference panel.79 We defined independent loci as SNPs that were 
separated by more than 1 Mb from the next SNPs in the 3’ and 5’ direction, as reported 
earlier.83 

Linkage disequilibrium score regression (LDSC)  
Using the LD score v1.0.1. tool we applied LDSC regression with reference data from the 
European 1000 Genomes project for calculation of cross-trait LDSC genetic correlations 
between all 40 cytokines using the meta-analysis results.79,84–86  
 
Fine mapping, functional annotation, pathway and gene-set analysis 
To identify causal variants responsible for variations in circulating cytokine concentrations, 
we investigated significant loci associated with cytokines. We employed PLINK v1.9 to 
compute LD score correlation matrices and further refined the results using SuSiE (susieR R 
package version 0.12.16) to derive sets of variants, ensuring the inclusion of at least one 
causal variant with a cumulative probability ≥95%.87,88 Subsequently, the causal variants were 
utilized to estimate the total variance explained by the identified loci for individual 
cytokines.89 For functional analyses we used phenoscanner (MendelianRandomization R 
package version 0.6.0) which ascribes functional consequences (intron, intergenic, exon, 
upstream, downsteam, etc.) of single variants using positional mapping (physical 
distance).90,91 Gene-property analyses was conducted for identification of the tissue specificity 
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of cytokines using the FUMA Gene2Func web database.92 Lastly, MAGMA gene-based and 
gene-set analyses were conducted. Gene-based analysis initially calculates p-value association 
tests for variants mapped to protein coding genes which are then used to calculate gene-set p-
values in the gene-set analysis. Using predefined gene-sets, variants with significant 
associations to genes can then be analyzed to determine their underlying functional or 
process-related feature, i.e. gene-sets belonging to molecular functions or biological 
processes.93 
 
Transcriptome-wide Mendelian randomization analysis (TWAS-MR) 
To further explore whether variant effects on expression of specific genes underlie the genetic 
underpinnings of circulating cytokine levels, we performed transcriptome-wide inverse 
variance-weighted 2-sample MR analysis, as has been previously described.94 Sensitivity 
analyses were conducted using MR Egger regression and the weighted median estimator to 
control for horizontal pleiotropy.95,96 For calculation of effect estimates we used the mr 
command from the TwoSampleMR R Package (TwoSampleMR version 0.5.6) with cis-
expression quantitative trait loci (eQTL) gene instruments from the eQTLGen Consortium as 
exposure (clumped at r2<0.01) and the GWAS meta-analysis results of our cytokine panel as 
outcome. The eQTL consortium included 31,684 individuals of primarily European ancestry 
(detailed methods have been described previously and are available online).22  
 
Mendelian randomization analyses 
We performed MR analyses exploring (i) the effects of circulating cytokine levels on other 
cytokines, (ii) the effects of circulating cytokine levels on allergic and autoimmune, 
cardiometabolic, and cancer disease endpoints, (iii) and, depending on the outcomes of the 2nd 
MR analyses the effects of gene transcripts (eQTL) upstream of promising cytokines on 
allergic and autoimmune endpoints. We used cis-acting variants as genetic instruments for our 
MR analyses, as they are associated with a lower risk of pleiotropic effects when compared to 
trans-acting variants.97 We filtered the GWAS meta-analysis results for variants within 300 
kb around the gene encoding the respective cytokine. We selected variants associated at 
p<5x10-5 and clumped the data at r2<0.1. We applied fixed-effects inverse variance-weighted 
MR analysis as our main analytical approach.94 Again, MR egger regression and the weighted 
median estimator were used as sensitivity analyses.95,96 After harmonization of the effect 
alleles across cytokines we used mr command from the TwoSampleMR R Package 
(TwoSampleMR version 0.5.6) to extract the respective effect estimates.  
 
Disease outcome GWASs 
For the disease endpoints, we downloaded summary level data from the largest publicly 
available GWAS and performed MR analyses for 3 independent disease groups. For allergic 
and autoimmune phenotypes we analyzed asthma (121,940 cases, 1,254,131 controls)98, 
Crohn's disease (5,956 cases, 14,927 controls)99, ulcerative colitis (6,968 cases, 20,464 
controls)99, multiple sclerosis (47,429 cases, 68,374 controls)100, psoriasis (4,815 cases, 
415,646 controls)101, and rheumatoid arthritis (14,361 cases, 43,923 controls)102. For 
cardiometabolic phenotypes we analyzed peripheral vascular disease (31,307 cases, 211,753 
controls)103, coronary artery disease (60,801 cases, 123,504 controls)104, large artery stroke 
(9,219 cases, 1,503,898 controls)105 and diabetes mellitus type II (242,283 cases, 1,569,730 
controls)83. For cancer phenotypes we analyzed breast cancer (133,384 cases, 113,789 
controls)106, colorectal cancer (5,657 cases, 372,016 controls)107, lung cancer (29,266 cases, 
56,450 controls)108, non-Hodgins lymphoma (2,400 cases, 410,350 controls)109, and skin 
cancer (23,694 cases, 372,016 controls)107. The data sources are detailed in Supplementary 
Table S15.  
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Colocalization analysis 
To analyze shared causal variants between SNPs for circulating cytokines and disease 
outcomes showing significant associations in MR analyses, we used the “coloc” v3 R 
package. COLOC is a variant colocalization method that performs tests on shared causal 
variants in the locus. Colocalization methods consider the GWAS and disease outcome 
summary statistics at a locus jointly and probabilistically test if the two signals are likely to be 
generated by the same causal variant. 110 We used the meta-analyses summary statistics for 
the significant cytokines restricted to a flanking region ±300Kb around the genetic location of 
each cytokine and mapped disease-associated variants by their rsID.  
 
Database search 
To assess previously reported associations a database search was conducted using the 
NHGRI-GWAS catalogue111 on February 15th, 2023. We analyzed our GWAS hits for 
assocations with any of the 40 cytokines reported here (supplementary Table S4), restricting 
the results for European-ancestry associations.  
 
Data availability  
The data sources used in the current study are publicly available (download links for the 
summary statistics are available in supplementary Table S14). Ethical approval was not 
required due to usage of publicly available summary-level data.17,77,78 GWAS meta-analysis 
summary statistics will be available at GWAS catalog.  
 
Code availability 
Codes used to generate the results and figures are available on request from the corresponding 
author. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.19.24306036doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306036
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sample  
∑ = 74,783

N = 35,559

deCODE 
consortium

N = 30,931

SCALLOP 
consortium

N = 8,293

YFS, FINRISK 1997 
& FINRISK 2002

Downstream analysis

Fine mapping

Pathway & gene 
set analysis

TWAS 

Cytokine network

Cytokine-disease 
relations

GWAS meta-analysis 
for 40 cytokines

169 significant 
genomic loci

Figure 1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.19.24306036doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306036
http://creativecommons.org/licenses/by-nc-nd/4.0/


bN
GF

CCL1
1/

eo
ta

xin
−1

CCL2
/M

CP−1

CCL2
7/

CTA
CK

CCL3
/M

IP
−1

a

CCL4
/M

IP
−1

b

CCL7
/M

CP−3

CXCL1
/G

ROa

CXCL1
0/

IP
−1

0

CXCL1
2/

SDF−1
a

CXCL8
/IL

−8

CXCL9
/M

IG

FGF−b

G−C
SF/C

SF−3
HGF

IF
Ng

IL
−1

0
IL

−1
3

IL
−1

6
IL

−1
7

IL
−1

8
IL

−1
b

IL
−1

ra
IL

−2

IL
−2

ra
IL

−4
IL

−5
IL

−6
IL

−7
IL

−9

M
−C

SF/C
SF−1

M
IF

PDGFbb

RANTES
SCF

SCGFb

TNF−a

TNF−b

TRAIL

VEGF
0

25

50

75

100

N
um

be
r 

of
 S

N
P

s

SCALLOP

deCODE

YFS & FINRISK

deCODE

YFS & FINRISK

SCALLOP

0 25 50 75 100
Proportion replicated (%)

R
ep

lic
at

ed
 in

Reproducible 

Non-reproducible

deCODEdeCODE (SOMA

SCALLOPSCALLOP 

YFS & FINRISK (Luminex)

deCODE (SOMAscan) 

SCALLOP (Olink)

YFS & FINRISK (Luminex)

Figure 2

b

a

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.19.24306036doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306036
http://creativecommons.org/licenses/by-nc-nd/4.0/


SCGFb
SCF

M-CSF/CSF-1
PDGFbb

CXCL1/GROa
CCL11/eotaxin-1

IL−16
CXCL12/SDF-1a
CCL4/MIP-1b

TRAIL
VEGF
FGF-b

CXCL8/IL-8
HGF

G-CSF/CSF-3
IL−8

CCL3/MIP-1a
RANTES

IL−1b
IL−1ra

CCL2/MCP-1
CCL7/MCP-3
CXCL9/MIG

IFNg
CXCL10/IP-10

IL−2
IL−9
IL−4

bNGF
IL−10
IL−13
IL−2ra
IL−6
IL−7
MIF

TNF-b

Chr1

Chr2

C
hr3

4r
h

C

5rh
C

6rhC

7rhC
8rhC

9rhC

01rhC

11
rh

C

21
rh

C

31
r

h
C

C
h

r1
4

C
hr

15

C
hr

16

Chr
17

Chr1
8

Chr19
Chr20

Chr21 Chr22
Cytokines

IL-17
CCL27/CTACK

IL-5
TNF-a

Figure 3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.19.24306036doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306036
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

0.5
0.0

0.2

0.4

0.6

0.8

1.0

Mimimum allele frequency (MAF)

es
tim

at
ed

 e
ffe

ct
 o

n 
ci

rc
ul

at
in

g 
cy

to
ki

ne
 le

ve
ls

 
(s

ta
nd

ar
di

ze
d 

be
ta

, S
D

 u
ni

ts
)

cis-acting variants 
trans-acting variants

0.1 0.2 0.3 0.4

c

0.0

0.1

0.2

0.3

es
tim

at
ed

 e
ffe

ct
 o

n 
ci

rc
ul

at
in

g 
cy

to
ki

ne
 

le
ve

ls
 (s

ta
nd

ar
di

ze
d 

be
ta

, S
D

 u
ni

ts
)

trans cis

b

fre
qu

en
cy

 o
f s

ig
ni

fic
an

t l
oc

i

0

25

50
100

125

150

Number of associated cytokines

CCL7/MCP-3

CXCL10/IP-10
FGF-b CXCL1/

GROa
CCL4/
MIP-1b IL-16VEGF IL-1ra

CCL3/MIP-1aHGF

0.00.0

6+4-5321

Figure 4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.19.24306036doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306036
http://creativecommons.org/licenses/by-nc-nd/4.0/


ACRK1
PPP1R37

SKIV2L
IL1-ra

ACKR1

TRAFD1

ACKR1

FLT1P1

ACKR1

TRAFD1

CCL4L2

AC069363.1

LILRA5

LCAT

1

10

20

30

40

50

60

70

bN
GF

CCL1
1/

eo
ta

xin
−1

FGF−b

G−C
SF/C

SF−3

CXCL1
/G

ROa
HGF

IF
Ng

IL
−1

0
IL

−1
3

IL
−1

6
IL

−1
7

IL
−1

8
IL

−1
b

IL
−1

ra
IL

−2

IL
−2

ra
IL

−4
IL

−5
IL

−6
IL

−7

CXCL8
/IL

−8
IL

−9

CXCL1
0/

IP
−1

0

M
−C

SF/C
SF−1

CCL2
/M

CP−1

CCL7
/M

CP−3 M
IF

CXCL9
/M

IG

CCL3
/M

IP
−1

a

CCL4
/M

IP
−1

b

PDGFbb

RANTES
SCF

SCGF−b

CXCL1
2/

SDF−1
a

TNF−a

TNF−b

TRAIL

VEGF

Cytokine

−
lo

g1
0(

P
−

va
lu

e)
Figure 5

−0.4

1.2

0.8

0.4

0.0

Effect estimate

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.19.24306036doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306036
http://creativecommons.org/licenses/by-nc-nd/4.0/


a b

TRAFD1

NF-κB 
signaling

TNF-R

CXCL10/IP-10CXCL9/MIG TNF-bCCL7/MCP-3

rs12075

ACKR1

ACKR1 ● Elevated serum cytokine concentration
● Compensatory increased ACKR1 density

Venular endothelial cells

Basement membrane

Smooth muscle cells

CCL2/MCP-1 CXCL1/GROaCCL11/eotaxin-1 CXCL8/IL-8CCL7/MCP-3

Figure 6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.19.24306036doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306036
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

−0.5

0.0

0.5

1.0

Effect estimate

−log10(P-value)
2

5

10

b

Figure 7

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*

*

*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

CXCL1
/G

R

a

Oa

IL
−2

r

IL
−1

3

a

N

CXCL1
2/

SDF−1
a

IL
−1

r

F
TNT

MCXCL1
0/

IP
−1

0

IL
−4

C
L2

/
CP−1

IF
NgC

IL
−2

IL
−5

CCL1
1/

eo
ta

xin
−1

CSF/C
SF−3

G−

CXCL8
/IL

−8

M
IF

M
−C

SF/C
SF−1

CCL4
/M

IP
−1

b

TNF−b

HGF

IL
−7

RANTES

IL
−9

−
IL

−1
0

IL
17

bN
GF

FGF−b

CXCL9
/M

IG

−
IL

−1
8

IL
1b

CCL7
/M

CP−3

IL
−6

PDGFbb

SCF

SCGFb

CCL3
/M

IP
−1

a

TRAIL

VEGF

CCL2
7/

CTA
CK

IL
−1

6

CXCL1/GROa
IL−2ra
IL−13

CXCL12/SDF−1a
IL−1ra
TNF−a

CXCL10/IP−10
IL−4

CCL2/MCP−1
IFNg
IL−2
IL−5

CCL11/eotaxin−1
G−CSF/CSF−3

CXCL8/IL−8
MIF

M−CSF/CSF−1
CCL4/MIP−1b

TNF−b
HGF
IL−7

RANTES
IL−9

IL−10
IL−17
bNGF

FGF−b
CXCL9/MIG

IL−18
IL−1b

CCL7/MCP−3
IL−6

PDGFbb
SCF

SCGFb
CCL3/MIP−1a

TRAIL
VEGF

CCL27/CTACK
IL−16

VEGF

CXCL1/GROa

HGF

IL1ra

IL−2ra

CCL3/MIP−1a

G−CSF/CSF−3

TNF−b

RANTES

CXCL12/SDF−1a

IL−9

SCGFb

CCL11/eotaxin−1

IL−18

CCL7/MCP−3

MIF

M−CSF/CSF−1

bNGF

FGF−b

CCL2/MCP−1

IL−16

CCL4/MIP−1b

PDGFbb

TNF−a

CXCL9/MIG
CXCL10/IP−10

CXCL8/IL−8

TRAIL

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.19.24306036doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306036
http://creativecommons.org/licenses/by-nc-nd/4.0/


*

*

*

*

Allergic and Autoim
m

une disease
C

ancers
C

ardiom
etabolic diseases

48 2 8 33 14 8 8 3 8 33 12 17 4 6

G-CSF/
CSF-3

IL−18 IL−1ra IL−2ra IL−9 CXCL10/
IP-10

CCL2/
MCP-1

CXCL9/
MIG

CCL3/
MIP-1a

TNF-b TRAIL

Asthma

Crohn's disease

Multiple sclerosis

Psoriasis

Rheumatoid arthritis

Ulcerative colitis

Breast cancer

Colorectal cancer

Coronary artery
disease 

Large artery stroke

Type 2 diabetes

−2

−1

0

1

2
Effect estimate

−log10(Pval_FDR)

2

3

4

FGF-b CXCL12/
SDF-1a

RANTES

Figure 8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.19.24306036doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306036
http://creativecommons.org/licenses/by-nc-nd/4.0/


MIG
CXCL9/

RP11-128A6.2

DHCR24

MAP3K5

PTPN11

C4B

FKBPL

RNF5

CCR1

ATF6B
C4A TRAFD1

PVR

IGFBP2

PPP1R37

Risk for asthma 

RTN2

a

b Risk for Crohn's disease 

G-CSF/
CSF-3

Figure 9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.19.24306036doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24306036
http://creativecommons.org/licenses/by-nc-nd/4.0/

