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Abstract 
Background. Electronic health records frequently contain extensive unstructured free-text data, but 
extrac�ng informa�on accurately from these data and at scale is challenging. Using free-text from 
an�bio�c prescribing data as an example, we inves�gate the performance of modern natural 
language processing methods (NLP) and large language models (LLMs) as tools for extrac�ng features 
from medical records. 

Methods. We used 938,150 hospital an�bio�c prescrip�ons from Oxfordshire, UK. The 4000 most 
frequently used free-text indica�ons jus�fying an�bio�c use were labelled by clinical researchers into 
11 categories describing the infec�on source/clinical syndrome being treated and used for model 
training. Tradi�onal classifica�on methods, fuzzy regex matching and n-grams with XGBoost, were 
compared against modern transformer models: we fine-tuned generic and domain-specific BERT 
models, fine-tuned GPT3.5, and inves�gated few-shot learning with GPT4. Models were evaluated on 
internal and external test datasets (2000 prescrip�ons each). Infec�on sources determined from 
ICD10 codes were also used for comparisons. 

Results. In internal and external test datasets, the fine-tuned domain-specific Bio+Clinical BERT 
model averaged an F1 score of 0.97 and 0.98 respec�vely across the classes and outperformed the 
tradi�onal regex (F1=0.71 and 0.74) and n-grams/XGBoost (F1=0.86 and 0.84). OpenAI’s GPT4 model 
achieved F1 scores of 0.71 and 0.86 without using labelled training data and a fine-tuned GPT3.5 
model F1 scores of 0.95 and 0.97. Comparing infec�on sources extracted from ICD10 codes to those 
parsed from free-text indica�ons, free-text indica�ons revealed 31% more specific infec�on sources. 

Conclusion. Modern transformer-based models can efficiently and accurately categorise semi-
structured free-text in medical records, such as prescrip�on free-text. Finetuned local transformer 
models outperform LLMs currently for structured tasks. Few shot LLMs match the performance of 
tradi�onal NLP without the need for labelling. Transformer-based models have the poten�al to be 
used widely throughout medicine to analyse medical records more accurately, facilita�ng beter 
research and pa�ent care.  
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Introduc�on  
Electronic health records (EHRs) offer unprecedented quan��es of structured and unstructured data 
for driving research and improving care delivery. Manually extrac�ng relevant informa�on from 
unstructured free-text EHRs is costly and laborious. Recent developments in natural language 
processing (NLP) and the advent of large language models (LLMs) offer promising and poten�ally 
transforma�onal alterna�ves that can accurately acquire relevant informa�on from unstructured text 
for pa�ent diagnosis, 1–3 as well as perform several rou�ne tasks from medical records.4,5   

As in other medical domains, studies of an�bio�c resistance, use, and stewardship have tradi�onally 
relied on manual review of clinical notes and prescrip�ons6–8 or mapping of Interna�onal 
Classifica�on of Diseases (ICD) diagnos�c codes to iden�fy acute infec�on diagnoses and chronic 
comorbidi�es.9,10 However, in studies of sepsis, ICD codes were less sensi�ve than clinical data for 
detec�ng cases,11,12 par�cularly for less common infec�ons like meningi�s,13 and had variable 
validity.14 Addi�onally, since codes are recorded only a�er pa�ent discharge, assigned infec�on 
sources may not align with individual an�bio�c prescrip�ons, par�cularly during the more uncertain 
ini�al phase of inpa�ent care. Conversely, manual chart review has higher sensi�vity and can detect 
indica�ons evolving over �me, but �me and cost constraints mean that case numbers are o�en 
limited. 

For research, applying LLMs to en�re medical records can effec�vely make predic�ons and generate 
new medical content.4,5 However, there is also a clear need for research and service applica�ons to be 
able to extract specific individual features from EHRs reliably and efficiently whilst also mee�ng 
informa�on governance requirements. As an example of this targeted approach, we inves�gated 
several methods using electronic prescribing data to classify the source of an infec�on/infec�ous 
syndrome being treated, analysing free-text indica�ons documented by clinicians15 jus�fying the 
reason for an�bio�c prescrip�ons. We compared state-of-the-art NLP models, Bidirec�onal Encoder 
Representa�ons from Transformers (BERT),16 LLMs, and Genera�ve Pretrained Transformer (GPT),17 to 
tradi�onal ICD code-based approaches, classical NLP methods and regular expression-based text 
searches. We show modern approaches have poten�al to accurately extract key informa�on from 
medical records at scale, poten�ally opening opportuni�es for new epidemiological and interven�on 
studies across all of medicine, as well as possibili�es for improving care delivery. 

Methods 
Study design and popula�on 
We used EHRs from two dis�nct hospital sites, Oxford and Banbury, with Oxford serving as our training 
and internal test set, and Banbury as our external test set. These sites collec�vely provide 1100 beds, 
serving 750,000 residents in Oxfordshire, ~1% of the UK popula�on. Deiden�fied data were obtained 
from Infec�ons in Oxfordshire Research Database (IORD), which has approvals from the Na�onal 
Research Ethics Service South Central – Oxford C Research Ethics Commitee (19/SC/0403), the Health 
Research Authority and the Confiden�ality Advisory Group (19/CAG/0144) as a deiden�fied database 
without individual consent. All pa�ents aged ≥16 years who had an�bio�c prescrip�ons were included. 

‘Ground Truth’ Labelling  
Two clinical researchers reviewed each an�bio�c indica�on text string used for training and tes�ng 
(described below) to establish a reference or ‘ground truth’ label for the clinical syndrome being 
treated. Any discrepancies were resolved by a third researcher, a clinical infec�on specialist. 
An�bio�c indica�ons were labelled using 11 categories represen�ng infec�on source: Urinary; 
Respiratory; Abdominal; Neurological; Skin and So� Tissue; Ear, Nose and Throat (ENT); Orthopaedic; 
Other specific (i.e. another body site); Non-specific (i.e. no body site provided, e.g. “sepsis”), 
Prophylaxis, Not informa�ve (i.e. text unrelated to the source of infec�on, e.g. “as instructed by Dr 
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X”). Each category was recorded as a binary variable, such that more than one poten�al source could 
be recorded, e.g. the input string “urinary/chest” would be labelled as both urinary and respiratory. 
An addi�onal variable was used to document the presence of uncertainty expressed by the 
prescriber, e.g.  “urinary/chest” or “? UTI”.  

Comparator Classifica�on by ICD10 Codes 
As a comparator, we mapped primary and secondary ICD10 diagnosis codes from the same admission 
as the an�bio�c prescrip�on to the 11 infec�on sources using CCSR classifica�ons18 as an 
intermediate step (see Supplement and Appendix S1).  

Tradi�onal Classifica�on Methods 
Regex Rules 
The most intui�ve and determinis�c method for classifying free-text is searching for specific keywords 
from a list of predefined words for a given category. We employed fuzzy regular expression (regex) 
matching paterns with term-specific word boundaries and variable fuzziness to allow for misspellings 
and varia�ons (see Supplement and Appendix S2). 
n-grams & XGBoost 
A second approach used a separate tokeniser, embedding and classifier structure; specifically, Scikit-
learn’s n-grams & count vectorisa�on and the gradient boos�ng model architecture XGBoost.19,20 
Each free-text indica�on term was broken up into overlapping subwords of length $n$ and then 
count-vectorised, with the count represen�ng the frequency of each subword’s occurrence. The 
vectors of dimension $vocabulary size$ were then fed as input features to the classifica�on model. 
We determined the op�mal n-gram size ($n$) and hyperparameters for XGBoost during model 
training by maximising the receiver operator curve area under the curve (ROC-AUC) (details below). 

BERT Classifier 
Current state-of-the-art NLP tasks employ models built on Transformer architectures, with the 
Bidirec�onal Encoder Representa�ons from Transformers (BERT) model family well suited for many 
tasks requiring seman�c understanding. We finetuned21 pre-trained BERT models on a single GPU 
instance and used BERT for both encoding and classifica�on. We evaluated the original generic 
“uncased base BERT” model, pre-trained on the BooksCorpus and English Wikipedia and a domain-
specific “Bio+Clinical BERT”, pre-trained on biomedical and clinical text.22,23  

Few-Shot and finetuned LLM Classifier 
Compared to BERT, the GPT family enables zero- or few-shot learning, i.e. there is poten�ally minimal 
need for labelled data for task-specific training. We developed prompts for GPT4, comprised of 
instruc�ons and the target categories, asking the model to complete the categories (see Appendix S3 
for specific prompts, and Appendix S4 for details of batch sizes).24  

Similarly, a GPT3.5 model was finetuned on the training dataset and instructed to classify the free-
text. Finetuning was achieved by presen�ng the desired output alongside the training input data. We 
used the same system prompt as for the few-shot model, while providing the training examples which 
were fed in batches of ten. Addi�onal model hyperparameters, such as learning rate, and epochs, 
were chosen through grid search. 

Training, Test and External Evalua�on 
We divided the Oxford data with a 90/10 train/test split, resul�ng in a raw training set and internal 
test set. From the training data, we labelled and used the 4000 most frequently occurring unique 
indica�ons. To make labelling tractable we discarded the remaining unlabelled data from the training 
set. From the internal test data, we randomly selected and exhaus�vely labelled indica�ons present 
in 2000 prescrip�ons. For the external test set from Banbury, we also labelled 2000 randomly 
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selected entries. All models were trained on the training dataset with grid-search based 
hyperparameter tuning based on cross valida�on and tested on both the internal and external test 
sets. 

The mul�-label performance of each method was evaluated using weighted F1 scores, precision-recall 
(PR-AUC) and ROC-AUC. Weighted averages take into account the varied distribu�ons of the classes, 
such that more common classes contribute more to the overall average, producing es�mates that 
reflect the original data source and represent real-world performance. 

Results 
We obtained an�bio�c prescribing indica�on data from 826,533 prescrip�ons from 171,460 adult 
inpa�ents, ≥16 years, between 01-October-2014 and 30-June-2021 from three hospitals in Oxford, 
UK. The most commonly prescribed an�bio�cs were co-amoxiclav (n=269,945, 33%), gentamicin 
(n=70,002, 8%), and metronidazole (n=65,094, 8%) (Appendix S5), and the most common speciali�es 
were General Surgery (n=146,719, 18%), Acute General Medicine (n=98,687, 12%), and Trauma and 
Orthopaedics (n=90,719, 11%) (Appendix S6). Pa�ents were a median 56 years old (IQR 36-73), and 
94,721 (55%) were female.  

We also used an independent external test dataset to assess classifier performance further, from the 
Horton Hospital, Banbury (~30 miles from Oxford). This dataset comprised 111,617 prescrip�ons 
from 25,924 pa�ents between 01-December-2014 and 30-June-2021, with 13,650 unique free-text 
indica�ons. An�bio�cs prescribed (Appendix S5) and speciali�es (Appendix S6) were broadly similar 
to the Oxford training set. Pa�ents were a median 67 years old (IQR 47-80), and 13,853 (53%) were 
female. 

Prescrip�on indica�ons 
From the 826,533 Oxford prescrip�ons, 86,611 unique free-text indica�ons were recorded. The top 
10 accounted for 41% of all prescrip�ons; these included “Periopera�ve Prophylaxis” (20%), “UTI” 
(4%), “LRTI” (3%), “Sepsis” (3%), and “CAP” (3%). The most commonly occurring 4000 unique 
indica�ons, used for model training, accounted for 84% (692,310) of prescrip�ons (Appendix S7). 

As expected, different wording was used to reflect similar concepts, e.g. “CAP [community acquired 
pneumonia]”, “LRTI [lower respiratory tract infec�on]”, “chest infec�on”, and “pneumonia”. 
Addi�onally, misspellings were common, e.g. “infc�on”, “c. dififcile”. Mul�ple examples expressed 
uncertainty, or mul�ple poten�al sources of infec�on, e.g. “sepsis ?source”, “UTI/Chest”, etc. 
Reflec�ng the complexity of prescribing, there were mul�ple poten�ally informa�ve, but rarely 
occurring indica�ons, e.g., “transplant pyelonephri�s”, “Ludwig’s angina”, and “deep neck infec�on”, 
which were only seen 51 (<1%), 27 (<1%), and 13 (<1%) �mes respec�vely (Appendix S8). 

‘Ground truth’ labels 
Following labelling by clinical experts, the 4000 most commonly occurring free-text indica�ons were 
classified into 11 categories, with a separate variable capturing the presence of uncertainty. The most 
commonly assigned sources were “Prophylaxis” (267,788/692,310 prescrip�ons, 39%), “Respiratory” 
(125,744, 18%) and “Abdominal” (61,670, 9%). 50% (n=344,773) prescrip�ons had “No Specific 
Source”. The most uncertainty was expressed in “Neurological” and ENT cases at 38% and 33%, 
respec�vely (Figure 1A). Although “Respiratory” was the most common category overall a�er 
“Prophylaxis”, there were more dis�nct text strings associated with “Abdominal” infec�ons, with 
“Skin and So� Tissue” infec�on also having a dispropor�onately larger number of unique text strings 
(Figure 1B). Most ‘mul�-source’ prescrip�ons were a combina�on of “Prophylaxis” and a source 
(>90%). Excluding prophylaxis, the most common combina�ons of sources were “No Specific source” 
and “Not Informa�ve”, “Urinary” and “Respiratory”, and “Skin & So� Tissue” and ENT, in 1.6%, 0.58%, 
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0.41% prescrip�ons, respec�vely (Figure 1C-D). The former two reflected diagnos�c uncertainty and 
the later reflected infec�ons of the face, head and neck frequently involving skin/so� �ssue. 

Classifier performance 
We trained classifiers using the labelled training data from three Oxford hospitals (Figure 2). 
Compared to clinician-assigned labels, within the internal Oxford test dataset (n=2000), the weight-
averaged F1 score across classes was highest using Bio+Clinical BERT (Average F1=0.97 [worst 
performing class F1=0.84, best performing F1=0.98]) followed by finetuned GPT3.5 (F1=0.95 [0.77-
0.99]), base-BERT (F1=0.93 [0.23-0.98]) and tokenisa�on+XGBoost (F1=0.86 [0.64-0.96]). Nearly all 
approaches exceeded tradi�onal regular expression-based matching (F1=0.71 [0.00-0.93]). The few-
shot GPT4 model which did not require labelled data performed similarly to this baseline (F1= 0.71 
[0.30-0.98]). Similar performance characteris�cs were achieved on the external valida�on dataset 
from Banbury (n=2000; weight-averaged F1 scores: Bio+Clinical BERT 0.98 [0.87-1.00], finetuned 
GPT3.5 0.97 [0.70-1.00],  Base BERT 0.97 [0.63-0.99], XGBoost 0.84 [0.63-1.00], Regex 0.74 [0.00-
0.96], GTP4 0.86 [0.25-1.00]) (Table 1, also shows classifica�on run �mes). 

Classifier Performance by Class 
Using the best performing classifier, Bio+Clinical BERT, we assessed performance within each 
category. The best-performing categories within our internal test set were “Respiratory”, “No Specific 
Source” and “Prophylaxis” (F1 score=0.98), followed by “Urinary” (0.97), “Abdominal” (0.96), 
“Orthopaedic” (0.90), “Not Informa�ve” (0.89) and “Neurological” (0.88). The worst performing 
category was Orthopaedic (0.84), likely due to the high variety of terms used and low number of 
training samples (n=14, Appendix S9). Uncertainty was also well detected (0.96) (Figure 3A, Appendix 
S10). 

In the external test data, scores varied slightly, with all source categories except for “Not Informa�ve” 
having F1 scores on average 0.02 higher compared to the internal test set. These small differences 
likely arose from different composi�ons of categories and the amount of shared vocabulary between 
the training and test datasets. 

Misclassifica�ons 
Most misclassifica�ons were spread evenly across classes for single indica�ons. The two most 
common misclassifica�ons occurred for “Orthopaedic” and “Other Specific” cases, with 12% being 
misclassified as “Prophylaxis” and 8% as “Skin and So� Tissue”, respec�vely on the internal test set. 
On the external test set, most misclassifica�ons were predicted to be “Other Specific” or 
“Prophylaxis” (Figure 3C).  

Training Dataset Size 
We examined the effect of training size on model performance using randomly selected training 
dataset subsets of 250, 500, 750, 1000, 1500, 2000, 3000, and 4000 unique indica�ons, tested using 
both internal/external test sets. There was a notable increase in performance (AUC-ROC and F1 
scores) when the training size increased from 250 to 1000 samples, sugges�ng a minimum of 1000 
training samples for adequate performance. However, we saw limited improvement as training 
dataset size rose to 4000, indica�ng there may be only marginal gains to expanding the training data 
beyond 4000 samples (Appendix S11).  

Comparing free-text indica�ons to ICD10 codes 
We also compared infec�on sources from manually labelled ‘ground truth’ free-text indica�ons to 
sources inferred from ICD10 diagnos�c codes. 31% of sources classified as “unspecific” using 
diagnos�c codes could be resolved into specific sources using free-text. Rarer infec�on sources such 
as “CNS” and “ENT” (<1% and no occurrence in diagnos�c codes) were represented beter by sources 
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extracted from free-text (4% and 4% respec�vely). Overall, where defined, sources listed in clinical 
codes generally concurred with the ‘ground truth’ free-text sources (Figure 4).  

Discussion 
We show that modern NLP methods can extract clinically relevant details from semi-structured free-
text fields. In our example applica�on, a finetuned Bio+Clincal BERT transformer model classified the 
infec�on source being treated using clinician-writen an�bio�c indica�on text with an F1 score of 
0.97 (harmonic mean of sensi�vity and posi�ve predic�ve value). Although this required manual 
labelling of several thousand text strings, exhaus�ve labelling of all possible prior strings was not 
required to achieve this performance. The accuracy of the Bio+Clinical BERT model was substan�ally 
beter than a sophis�cated regular expression-based approach, despite the later being the solu�on 
that many healthcare ins�tu�ons and researchers might choose at present. 

We also explored what performance might be possible using LLMs without having to label data, e.g. 
where this is not possible or too resource intensive. However, few-shot learning with GPT4 only 
achieved modest performance, but it was s�ll similar to the baseline regex method and more 
consistent across classes. Using LLMs with labelled training data, i.e. a fine-tuned GPT3.5 variant 
achieved results comparable to the Bio+Clinical BERT approach when correctly specified and tuned 
but showed more limited poten�al for deployment as responses can vary greatly in forma�ng, 
making it difficult to parse correctly into a rigid format required for most downstream tasks or EHR 
systems. In environments with limited compu�ng resources where the deployment of deep-learning 
models is not feasible, regex and XGBoost-based models provide possible alterna�ves with a reduced 
run�me of 6.4 and 1.2 seconds/10k indica�ons vs 82.2 seconds/10k for Bio+Clinial BERT. 

Currently, research or clinical use of free-text may be limited by concerns that personal data may be 
included. Here, by homogenising and categorising sensi�ve free-text data, we present a privacy-
aware solu�on that enables researchers to u�lise the depth of free-text data without direct access or 
the possibility of iden�fying specific pa�ents.  

Our study has several limita�ons, including that we only used a subset of the available training data, 
through the non-exhaus�ve labelling of a subset of an�bio�c indica�on text strings. However, 
labelling the 4000 most common unique terms, accoun�ng for 84% of the data, achieved very high 
performance, with sensi�vity analyses sugges�ng that labelling more examples would not have 
improved performance substan�ally. This is likely possible because the underlying Bio+Clinical BERT 
model is already pre-trained on medical terms and capable of inferring similar words. Of note, many 
of the remaining 17% of text strings were different combina�ons of already labelled words, 
sugges�ng fewer “new” or unseen keywords than might be expected. Not fully labelling the training 
data also makes it more difficult to compare class distribu�ons with the test data sets. We also only 
used a subset of the test data to evaluate performance; however the 2000 randomly selected 
samples are likely representa�ve. Although the labelling process was somewhat subjec�ve, 
independent labelling by two clinical researchers with a third adjudica�ng any discrepancies was 
designed to minimise this.  

Future enhancements could op�mise computa�onal efficiency while maintaining comparable 
performance. While XGBoost offers faster training and inference �mes, its performance was poorer 
than Bio+Clinical BERT. Therefore, smaller, more efficient NLP models might balance computa�onal 
demands and performance. Techniques such as model pruning, quan�sa�on, and knowledge 
dis�lla�on could reduce model size and computa�onal requirements while preserving 
performance.25–27 While GPT4 deployments can comply with data governance requirements, its use 
presents challenges in some se�ngs, as it is usually accessed via third-party cloud compute providers 
rather than healthcare ins�tu�ons. Where data need to remain on site, open-source, locally-deployed 
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language models, such as LLAMA, ALPACA or Mistral 7B, may be alterna�ves that could be further 
inves�gated.28–30 

Our approach has several possible applica�ons; for example, it could be used to monitor and evaluate 
prescribing prac�ce across different condi�ons, it provides classifica�on of possible infec�on sources 
for epidemiological research,31 and is also a mechanism for extrac�ng standardised features from 
medical records for use in predic�ve algorithms being developed to improve pa�ent care. Although 
we demonstrate excellent performance for an�bio�c indica�ons, it could also be applied to other 
short strings of free-text, for example descrip�ons of surgical procedures, pa�ent func�onal states, or 
presen�ng complaints in emergency department and hospital admission data. Across all these 
domains, refined pa�ent stra�fica�on could improve both research and care delivery. 

In summary, we show that state-of-the-art NLP can be used to efficiently and accurately categorise 
semi-structured free-text in medical records. This has the poten�al to be applied widely to analyse 
medical records more accurately. 
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Figures and Tables 
 

 

Figure 1: Infection source distributions within labelled training data from three Oxford hospitals. Bar charts A) and B) 
show the distribution of the sources and the uncertainty relative to the infection source. The up-set plots C) and D) show the 
occurrence of multiple sources within the same prescription. Panels A) & C) show distributions across the entire labelled 
indications training set, panels B) & D) across a distinct set of 4000 most common indications. *Indications falling into ENT 
such as “neck abscess” were often also labelled with Skin & Soft Tissue. 
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Figure 2: Data processing flow chart for training and internal and external test data sets. Prescribing data was fetched 
from EHR databases and filtered for complete data. The 4000 most frequent indications within the training split were 
labelled, all remaining training data was discarded. 2000 entries were randomly sampled from both the internal and 
external test datasets and exhaustively labelled, resulting in a total of three datasets (training set, internal test set, external 
test set).  
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Figure 3: Performance metrics for Bio+Clinical BERT on both internal and external test sets. Bar charts A) and B) show the 
per-class prediction performance. Confusion matrices C) and D) are single indication test cases and show model prediction 
errors across the sources for given ground truths (clinician assigned sources). Panels A) and C) show evaluations performed 
on the internal test set from three Oxford hospitals, B) and D) on the external test set from the Banbury hospital. 
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Figure 4: Comparing infection sources between clinician assigned free-text indications (left) and diagnostic codes (right) in 
the training and internal and external test sets. Clinician assigned categories were extracted from prescribing data and 
manually labelled, diagnostic codes sources calculated from procedure and discharge codes.  
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Table 1: Model performance metrics for the internal (Oxford) and external (Banbury) test sets. Each score is listed with the weighted average across the classes (sources), with the lowest and 
highest performing class. Overall Accuracy refers to the score calculated for a sample treated as a whole. The finetuned Bio+Clinical BERT outperforms all other methods on both internal and 
external test sets. 

Internal Oxford test set 

Model F1 Score ROC AUC  PR AUC  Per Class Accuracy Accuracy Training 
Runtime 

Test 
Runtime 

Aggregation Average Lowest Highest Average Lowest Highest Average Lowest Highest Average Lowest Highest Overall Per 4k Per 10k  

Regex 0.71 0.00 0.93 - - - - - - 0.82 0.32 0.99 0.14 - 6.4s 
XGBoost 0.86 0.64 0.96 0.96 0.87 0.99 0.9 0.62 0.99 0.95 0.92 1.00 0.72 6s 1.2s 

Base BERT 0.93 0.23 0.98 0.99 0.91 1.00 0.97 0.69 0.99 0.98 0.97 0.99 0.88 282s0F

1 82.2s 

Bio+Clinical BERT 0.97 0.84 0.98 0.99 0.96 1.00 0.98 0.88 1.00 0.99 0.98 1.00 0.94 
279sError! 

Bookmark not 

defined. 
83.1s 

Fine-Tuned OpenAI GPT3.5 0.95 0.77 0.99 - - - - - - 0.98 0.97 1.00 0.91 ~3500s2 ~3000s1F

2 
Few-Shot OpenAI GPT4 0.71 0.30 0.98 - - - - - - 0.87 0.64 1.00 0.50 - ~3000s2 

 

External Banbury test set 

Model F1 Score ROC AUC  PR AUC  Per Class Accuracy Accuracy 

Aggregation Average Lowest Highest Average Lowest Highest Average Lowest Highest Average Lowest Highest Overall 

Regex 0.74 0.00 0.96 - - - - - - 0.82 0.41 0.99 0.24 
XGBoost 0.84 0.63 1.00 0.94 0.86 1.00 0.87 0.57 1.00 0.94 0.88 1.00 0.68 

Base BERT 0.97 0.63 0.99 0.99 0.95 1.00 0.98 0.75 1.00 0.99 0.99 1.00 0.95 
Bio+Clinical BERT 0.98 0.87 1.00 0.99 0.97 1.00 0.98 0.87 1.00 0.99 0.99 1.00 0.97 

Fine-Tuned OpenAI GPT3.5 0.97 0.70 1.00 - - - - - - 0.99 0.98 1.00 0.95 
Few-Shot OpenAI GPT4 0.86 0.25 1.00 - - - - - - 0.95 0.81 1.00 0.73 

 

 

 
1 Using one Nvidia V100 GPU 
2 OpenAI’s cloud service 
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Supplementary methods 
Comparator Classifica�on by ICD10 Codes 
We first summarised all ICD10 codes into broader concepts using the CCSR classifica�on tool, 
grouping >70,000 ICD10 codes into 544 categories. Two independent clinical researchers then 
developed a custom lookup table mapping CCSR categories to our 11 infec�on source groups 
(Appendix S1), with a third clinician resolving discrepancies. 

Tradi�onal Classifica�on Methods 
Regex Rules 
The regex paterns for each category were built using the 50 most common indica�ons for that 
infec�on source in the training data, with individually assigned error-rate thresholds for inexact 
matching and specified word boundaries for each string. This allowed for strict exact matching on 
abbrevia�ons while permi�ng spelling mistakes for longer words. Word boundaries ensured that 
abbrevia�ons were not matched when part of a longer word (e. g. avoiding finding UTI in roUTIne 
post-op, cUTIbacterium). Our tool, designed to automate the crea�on of complex regex queries based 
on a given reference set and user specifica�ons, can be found in Appendix S2. The assisted regex 
builder simplified crea�ng complex matching rules for infec�on sources, extrac�ng the most common 
indica�ons for each category and expor�ng them into a pre-populated table with parsing op�ons for 
addi�onal user input. Users can then modify these rules: adding word boundaries for precise 
matches, se�ng error rates (e.g., zero for abbrevia�ons), and excluding redundant words. The edited 
table is then read back and converted into complex regex-matching strings for each category. This 
allows for medical experts to build and modify complex matching rules without needing to 
understand and debug error-prone regular expressions. 

BERT Classifier 
We evaluated the performance of the original generic “uncased base BERT” model, pre-trained on 
the BooksCorpus and English Wikipedia and a domain-specific “Bio+Clinical BERT”, pre-trained on 
biomedical and clinical text sourced from PubMed, PubMed Central and MIMIC-III v1.4 notes.22,23 
Both pre-trained models were fetched from the HuggingFace model hub (uploaded on the 18-June-
2019 and 28-February-2020), and finetuned using the HuggingFace “transformers” library with 
indica�ons as input and the source categories as output.21 

Few-Shot and finetuned LLM Classifier 
We developed prompts for GPT4, comprised of instruc�ons and the target categories, asking the 
model to complete the categories (specific prompt in Appendix S3).24 We made several itera�ons to 
the prompt on a subset of the training data, aiming to increase the model’s understanding of the task. 
Given the model’s genera�ve nature, we accessed GPT4 through the API and supplied inputs to 
create more structured, determinis�c and less crea�ve answers. Specifying a rigid output format is 
crucial for a mul�-label task. We therefore instructed the model to present its predic�on output in 
JSON format, using the original indica�on as the key and the categories as a list of values. To prevent 
the model from crea�ng new categories, we penalised it for returning new tokens not seen in the text 
(i.e. the prompt) by se�ng a higher `presence penalty’. A fixed `seed’ and lower `temperature’ were 
chosen to coerce the model into returning more determinis�c and reproducible answers.32 The same 
hyperparameters were used for predic�on with the fine-tuned GPT3.5 model, aiming to increase 
determinism and reproducibility. 
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Appendix S1 Code and LUTs Repository 
ICD10 to Infec�on Source Mapping Table 

https://github.com/kevihiiin/EHR-Indication-
Processing/blob/main/00_Data/LUTs/icd10_ccsr_mapping.csv  
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Appendix S2 Regex Rule Builder 

 

Figure S2: Regex Rule Builder user specifications. Specify a non-default error rate for abbreviations, set left and right word 
boundaries and exclude duplicated words. One sheet per category. 
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Appendix S3 GPT4 Predic�on Prompt (API) 
System prompt: 

You are a helpful and precise UK medical expert; you have been given a list of indications describing why antibiotics were 
prescribed to patients in a hospital. You have been asked to **label** these indications into categories. 

You can only choose from these categories which are: Urinary, Respiratory, Abdominal, Neurological, Skin Soft Tissue, Ent, 
Orthopaedic, Other Specific, No Specific Source, Prophylaxis, Uncertainty, Not Informative 

Multiple categories are allowed. 
When returning your answer, please return a json 

User prompt: 

This is the list of indications, return a json with the categories (multiple allowed) for each indication. 

“abdo pathology”, 
“sepsis ?hap”, 
“artholin abscess”, 
[…] 

The results are then parsed from the JSON-formated response. 
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Appendix S4 GPT4 Token Limits 
The number of supplied indica�ons per request is limited by the number of output tokens. We 
determined that 300 input indica�ons result in ~3800 return tokens, leaving a 10% safety margin for 
the 4k return limit. 

 

Figure S4: Token consumption (prompt and model output) depending on input size (number of indications.) Providing a 
higher number of supplied indications (input to classify) per round is more cost-effective, as the system and user instruction 
prompts are only submitted once. However, the number of output tokens is limited to 4k or 16k (depending on the model).  
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Appendix S5 Prescribed Drugs 
Table S5: Ten most commonly prescribed drugs.  

 

 

  

Drug [Oxford] Number Percentage 

Co-amoxiclav 269945 33% 

Gentamicin 70002 8% 

Metronidazole 65094 8% 

Ce�riaxone 58763 7% 

Flucloxacillin 47537 6% 

Amoxicillin 32151 4% 

Ciprofloxacin 25145 3% 

Vancomycin 23250 3% 

Piperacillin + Tazobactam (Tazocin equivalent) 21666 3% 

Clarithromycin 18607 2% 

Drug [Banbury] Number Percentage 

Co-amoxiclav 39114 35% 

Ce�riaxone 11369 10% 

Gentamicin 10251 9% 

Amoxicillin 7297 7% 

Clarithromycin 6525 6% 

Flucloxacillin 5630 5% 

Metronidazole 4851 4% 

Doxycycline 4416 4% 

Nitrofurantoin 3204 3% 

Piperacillin + Tazobactam (Tazocin equivalent) 2862 3% 
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Appendix S6 Prescribing Speciali�es 
Table S6: Specialties of the prescribing clinicians, ordered to show the ten most active specialties.  

 

 

  

Clinician Main Specialty [Oxford] Number Percentage 

General Surgery 146719 18% 

Acute General Medicine 98687 12% 

Trauma and Orthopaedics 90719 11% 

Acute Geratology 72371 9% 

Clinical Haematology 46928 6% 

Obstetrics 36431 4% 

Neurosurgery 34666 4% 

Infec�ous Diseases 30584 4% 

Plas�c Surgery 29334 4% 

Urology 29258 4% 

Clinician Main Specialty [Banbury] Number Percentage 

Acute General Medicine 41312 37% 

Acute Geratology 14912 13% 

Gastroenterology 9128 8% 

Cardiology 8682 8% 

Infec�ous Diseases 7870 7% 

Trauma and Orthopaedics 7642 7% 

General Surgery 6803 6% 

Emergency Medicine 4924 4% 

Urology 2885 3% 

Gynaecology 2287 2% 
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Appendix S7 Labelling Coverage 

 

Figure S7: Total coverage of data given a set of labelled data. Labelling the most common 4000 samples covers 84% of the 
entire data set. 
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Appendix S8 Uncommon Indica�ons 
Table S8: Example list of uncommon indications. Randomly sampled from all indications occurring more than 5 and less 
than 100 times. Occurrences less than 10 are truncated to <10 for statistical disclosure control. 

Uncommon Indication Occurrence Percentage 

sep�c le� knee <10 <1% 

abdo contamina�on <10 <1% 

infected femur 10 <1% 

flu prophylaxis 63 <1% 

forearm celluli�s <10 <1% 

mesenteric panniculi�s <10 <1% 

intra-abdo inf 14 <1% 

?dental infec�on 14 <1% 

cap curb1 41 <1% 

sep�c unknown source <10 <1% 
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Appendix S9 Class Distribu�ons 
Table S9: Distributions of the classes within the different data sets. 

 Urinary Respiratory Abdominal Neurological Skin & Soft 
Tissue ENT Orthopaedic Other 

Specific 
No Specific 

Source Prophylaxis Not 
Informative 

Training 6.26% 
(n=54882) 

12.91% 
(n=113211) 

6.33% 
(n=55486) 

0.76% 
(n=6641) 

4.43% 
(n=38843) 

1.47% 
(n=12902) 

1.66% 
(n=14522) 

2.30% 
(n=20177) 

35.40% 
(n=310479) 

27.50% 
(n=241201) 

0.98% 
(n=8598) 

Oxford 
Test 

5.79% 
(n=160) 

13.53% 
(n=374) 

8.64% 
(n=239) 0.83% (n=23) 4.74% 

(n=131) 1.84% (n=51) 1.99% (n=55) 3.18% (n=88) 32.77% 
(n=906) 

25.46% 
(n=704) 1.23% (n=34) 

Banbury 
Test 

12.51% 
(n=305) 

28.95% 
(n=706) 

4.84% 
(n=118) 0.74% (n=18) 7.59% 

(n=185) 0.57% (n=14) 0.98% (n=24) 1.03% (n=25) 26.65% 
(n=650) 

14.72% 
(n=359) 1.44% (n=35) 
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Appendix S 4 Per Class Predic�on Scores 
Table S10.1: Per class prediction scores on the internal Oxford test set. Values are reported in F1 score, Precision Recall AUC and ROC AUC where applicable.  

Model Metric Urinary Respiratory Abdominal Neurological 
Skin & Soft 

Tissue ENT Orthopaedic 
Other 

Specific 
No Specific 

Source Prophylaxis Uncertainty 
Not 

Informative 

Regex F1 0.87 0.63 0.63 0.68 0.76 0.54 0.3 0.11 0.78 0.93 0.20 0.00 
XGBoost F1 0.64 0.81 0.9 0.76 0.83 0.83 0.7 0.71 0.91 0.96 0.66 0.9 
Base_BERT F1 0.97 0.98 0.94 0.23 0.94 0.27 0.59 0.63 0.98 0.98 0.95 0.67 
Bio_ClinicalBERT F1 0.98 0.98 0.96 0.88 0.93 0.91 0.93 0.84 0.98 0.98 0.96 0.85 
Fine-Tuned GPT3.5 F1 0.98 0.97 0.95 0.93 0.83 0.8 0.95 0.77 0.97 0.97 0.92 0.99 
Few-Shot GPT4 F1 0.98 0.96 0.83 0.88 0.87 0.79 0.87 0.30 0.34 0.94 0.78 0.30 
Regex PR  - - - - - - - - - - - - 
XGBoost PR  0.62 0.87 0.91 0.68 0.89 0.82 0.65 0.72 0.97 0.99 0.69 0.83 
Base_BERT PR  0.98 0.99 0.97 0.69 0.95 0.85 0.94 0.77 0.99 0.99 0.97 0.92 
Bio_ClinicalBERT PR  0.99 1.00 0.97 0.91 0.98 0.93 0.96 0.88 0.99 1.00 0.99 0.94 
Fine-Tuned GPT3.5 PR  - - - - - - - - - - - - 
Few-Shot GPT4 PR  - - - - - - - - - - - - 
Regex ROC  - - - - - - - - - - - - 
XGBoost ROC 0.9 0.96 0.97 0.92 0.98 0.96 0.91 0.92 0.97 0.99 0.87 0.94 
Base_BERT ROC 0.98 1.00 0.98 0.97 0.99 0.96 0.99 0.91 0.99 0.99 1.00 0.98 
Bio_ClinicalBERT ROC 0.99 1.00 0.98 1.00 0.99 0.98 0.99 0.96 0.99 1.00 1.00 0.99 
Fine-Tuned GPT3.5 ROC - - - - - - - - - - - - 
Few-Shot GPT4 ROC - - - - - - - - - - - - 
Regex Accuracy 0.98 0.79 0.89 0.99 0.97 0.96 0.89 0.36 0.76 0.96 0.32 0.97 
XGBoost Accuracy 0.96 0.94 0.98 1.00 0.98 0.99 0.99 0.98 0.92 0.97 0.95 1.00 
Base_BERT Accuracy 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.97 0.98 0.98 0.99 0.99 
Bio_ClinicalBERT Accuracy 1.00 0.99 0.99 1.00 0.99 1.00 1.00 0.99 0.98 0.98 0.99 1.00 
Fine-Tuned GPT3.5 Accuracy 1.00 0.99 0.99 1.00 0.97 0.99 1.00 0.98 0.97 0.98 0.99 1.00 
Few-Shot GPT4 Accuracy 1.00 0.98 0.96 1.00 0.98 0.99 0.99 0.94 0.64 0.96 0.97 0.96 
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Table S10.2: Per class prediction scores on the external Banbury test set. Values are reported in F1 score, Precision Recall AUC and ROC AUC where applicable.  

Model Metric Urinary Respiratory Abdominal Neurological 
Skin & Soft 

Tissue ENT Orthopaedic 
Other 

Specific 
No Specific 

Source Prophylaxis Uncertainty 
Not 

Informative 

Regex F1 0.96 0.73 0.35 0.78 0.90 0.30 0.25 0.03 0.81 0.95 0.30 0.00 
XGBoost F1 0.67 0.8 0.86 1.00 0.91 0.87 0.76 0.63 0.92 0.98 0.72 0.87 
Base_BERT F1 0.99 0.99 0.92 0.76 0.96 0.73 0.63 0.65 0.98 0.98 0.99 0.79 
Bio_ClinicalBERT F1 0.99 0.99 0.95 1.00 0.96 0.92 0.91 0.92 0.99 0.97 0.99 0.87 
Fine-Tuned GPT3.5 F1 0.98 0.98 0.95 1.00 0.91 0.81 0.90 0.70 0.98 0.96 0.95 1.00 
Few-Shot GPT4 F1 0.99 1.00 0.85 1.00 0.96 0.88 0.91 0.25 0.6 0.96 0.88 0.59 
Regex PR  - - - - - - - - - - - - 
XGBoost PR  0.67 0.87 0.83 1.00 0.91 0.91 0.77 0.57 0.95 0.98 0.73 0.83 
Base_BERT PR  1.00 1.00 0.96 1.00 0.98 0.9 0.88 0.75 0.98 0.99 0.99 0.92 
Bio_ClinicalBERT PR  1.00 1.00 0.95 1.00 0.98 1.00 0.96 0.87 0.98 0.98 0.99 0.94 
Fine-Tuned GPT3.5 PR  - - - - - - - - - - - - 
Few-Shot GPT4 PR  - - - - - - - - - - - - 
Regex ROC  - - - - - - - - - - - - 
XGBoost ROC 0.86 0.93 0.94 1.00 0.96 0.96 0.90 0.93 0.97 0.99 0.87 0.94 
Base_BERT ROC 1.00 1.00 0.98 1.00 0.99 0.99 1.00 0.95 1.00 0.99 1.00 0.98 
Bio_ClinicalBERT ROC 1.00 1.00 0.98 1.00 0.99 1.00 0.98 0.97 0.99 0.99 1.00 0.99 
Fine-Tuned GPT3.5 ROC - - - - - - - - - - - - 
Few-Shot GPT4 ROC - - - - - - - - - - - - 
Regex Accuracy 0.99 0.75 0.84 0.99 0.98 0.97 0.95 0.41 0.85 0.98 0.41 0.97 
XGBoost Accuracy 0.92 0.88 0.98 1.00 0.98 1.00 0.99 0.99 0.95 0.99 0.94 1.00 
Base_BERT Accuracy 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.99 1.00 0.99 
Bio_ClinicalBERT Accuracy 1.00 0.99 0.99 1.00 0.99 1.00 1.00 1.00 0.99 0.99 1.00 1.00 
Fine-Tuned GPT3.5 Accuracy 0.99 0.99 0.99 1.00 0.98 1.00 1.00 0.99 0.99 0.99 0.99 1.00 
Few-Shot GPT4 Accuracy 1.00 0.98 0.96 1.00 0.98 0.99 0.99 0.94 0.64 0.96 0.97 0.96 
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Appendix S11 Training Set Size Effects 

 

Figure S11: Training set size effect on the performance of Bio+Clinical BERT, evaluated on both F1-Score and ROC AUC. The 
training was run on randomly sampled subsets of the training dataset of size [500, 1000, 1500, 2000, 3000, 4000] and 
evaluated on the same internal and external test sets (2000 samples each). 
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