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ABSTRACT 

INTRODUCTION: Transcriptome-wide Association Studies (TWAS) extend genome-

wide association studies (GWAS) by integrating genetically-regulated gene expression 

models. We performed the most powerful AD-TWAS to date, using summary statistics 

from cis-eQTL meta-analyses and the largest clinically-adjudicated Alzheimer’s Disease 

(AD) GWAS. 

METHODS: We implemented the OTTERS TWAS pipeline, leveraging cis-eQTL data 

from cortical brain tissue (MetaBrain; N=2,683) and blood (eQTLGen; N=31,684) to 

predict gene expression, then applied these models to AD-GWAS data (Cases=21,982; 

Controls=44,944). 

RESULTS: We identified and validated five novel gene associations in cortical brain 

tissue (PRKAG1, C3orf62, LYSMD4, ZNF439, SLC11A2) and six genes proximal to 

known AD-related GWAS loci (Blood: MYBPC3; Brain: MTCH2, CYB561, MADD, 

PSMA5, ANXA11). Further, using causal eQTL fine-mapping, we generated sparse 

models that retained the strength of the AD-TWAS association for MTCH2, MADD, 

ZNF439, CYB561, and MYBPC3. 

DISCUSSION: Our comprehensive AD-TWAS discovered new gene associations and 

provided insights into the functional relevance of previously associated variants. 
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1 BACKGROUND 

Alzheimer's disease (AD) has a strong genetic component, with heritability (h2) 

estimates ranging from h2~60-80% based on twin studies [1,2]. However, known AD risk 

variants discovered through genome-wide association studies (GWAS) explain only 

~30% of the genetic variance in disease risk while the remaining ~70% is attributed to 

undiscovered AD variants [3]. Multiple recent large-scale GWAS [4,5] have been 

conducted with varying stringency in phenotyping criteria, with some studies using AD-

by-proxy (GWAX) phenotypes [6] that may increase study heterogeneity [7] but also 

dramatically increase sample size. These GWAS have been successful at identifying 

new AD risk variants, though nearly all of these variants fall in non-coding regions 

making their roles in disease risk difficult to interpret. A key component to the translation 

of these findings into drug targets is understanding how these non-coding variants 

influence gene expression [8–10]. Transcriptomic integration with GWAS has the 

potential to both improve statistical power for discovery of novel genetic associations 

and accelerate associated drug development by mapping variants to their functional 

outcomes. 

Mirroring the advancement of GWAS, studies of expression quantitative trait loci 

(eQTLs) -- which were initially small in scale -- have now been aggregated via meta-

analysis for extremely well-powered studies [11,12]. While eQTLs generally have larger 

effects and are detectable in smaller sample sizes than variants associated with disease 

[13], prior work examining the genetic architecture of cis-regulatory variation [14] 

demonstrates that weaker eQTLs form polygenic components that complement strong, 

sparse eQTL effects [12]. While TWAS methods were originally developed to use 
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individual-level data [15], recent methodological developments have extended these 

approaches to allow for the use of summary statistics in both the creation of expression 

prediction models and for association analysis [16–25].  

Previous transcriptome-wide association studies (TWAS) for AD have utilized smaller-

scale eQTL reference datasets applied to both clinical AD and AD-by-proxy individual-

level and summary data. Methodological extensions to the original TWAS framework 

like BGW-TWAS [26], T-GEN [27], VC-TWAS [28], UTMOST [29,30], InTACT [31], and 

MR-JTI [32,33] have been developed and applied to AD, leading to improvements in 

gene discovery by incorporating trans-eQTLs, epigenetic annotations, random cis-eQTL 

effect modeling, and multi-tissue modeling [34] that leverages shared tissue expression 

profiles to boost power. While these studies have advanced our understanding of how 

heritable gene expression is associated with AD risk, they have identified varying 

numbers of significant AD TWAS associations, from 8 [35] to 415 genes [32]. However, 

there has been limited functional validation or fine mapping of the results. Despite 

methodological improvements, most of these studies have relied on Genotype-Tissue 

Expression (GTEx) [36] data for model training. While GTEx provides genetic data 

across 54 diverse tissue types, representing unparalleled tissue diversity, the sample 

size of only 838 donors restricts generalizability. 

In this study, we leverage the largest available AD GWAS summary statistics comprising 

over 65,000 individuals along with the largest blood and brain cis-eQTL summary 

statistics from published meta-analyses to identify novel AD-TWAS associations. Using 

the OTTERS approach [17], which combines diverse modeling techniques to account 

for variations in the sparseness or polygenicity of gene regulation, we generated 
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candidate TWAS associations. These candidates were then rigorously filtered and 

validated to distill the most robust TWAS signals. Additionally, we fine-mapped causal 

eQTLs and performed conditional analyses to provide deeper insights into the genetic 

architecture underlying the identified TWAS associations. 

2 METHODS 

2.1 Data Resources 

2.1.1 Sources of Summary Statistics 

We leveraged the largest available cis-eQTL meta-analysis summary statistics for two 

key AD-associated tissues: 

• Cortical brain tissue (N=2,683) from the MetaBrain study [11]  

• Blood (N=31,684) from the eQTLGen study [12] 

We performed an inverse variance-weighted fixed-effects meta-analysis across the 

MetaBrain study-specific results, excluding the GTEx study, which we used for model 

performance evaluation. Similarly, we obtained a version of the eQTLGen meta-analysis 

summary statistics that excluded GTEx. 

We used the largest clinically diagnosed AD meta-analysis from Kunkle et al. 2019 

(Stage I: AD Cases=21,982; Controls=44,944) to perform our primary analysis so our 

generated results would be most reflective of an AD phenotype (Supplementary Table 

1) [37]. However, we also performed all analyses using AD-related Dementia (ADRD) 

summary statistics from Bellenguez et al. 2022 as this is the largest GWAX study to 

date related to AD [5] and include these analyses in Supplementary Table 2. 
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We limited our analysis to European-descent populations, as all four meta-analyses 

were based on this population. 

2.1.2 Linkage Disequilibrium Reference Dataset 

Because we used summary statistics, an individual-level reference dataset was needed 

to estimate linkage disequilibrium (LD) for model building in OTTERS and fine-mapping. 

We used 503 unrelated EUR samples from the 1000 Genomes high coverage release 

[38] (Link:  

https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverag

e/working/20220422_3202_phased_SNV_INDEL_SV/) as a reference and filtered the 

dataset to only contain variants common to both the 1000 Genomes and GTEX (v8) 

(Link: https://www.gtexportal.org/home/downloads/adult-gtex/overview) . 

2.1.3 Standardization of Summary Statistics 

Both MetaBrain [11] and ADRD summary statistics [5] were available in build 38. We 

lifted eQTLGen [12] and AD summary statistics [37] from GRCh37/hg19 to 

GRCh38/hg38 using UCSC liftOver (https://hgdownload.soe.ucsc.edu/downloads.html). 

To ensure consistency in effect direction/coded allele, we aligned all variants to 

GRCh38, removing variants with a reference or alternative allele that did not match the 

GRCh38 reference and flipping direction of the effect as appropriate. After our alignment 

procedure, we also wanted to ensure that the SNPs used in expression prediction 

models were available in all other datasets, so we restricted our analysis to only include 

variants consistently available within eQTL summary statistics, AD summary statistics, 

1000 Genomes, and GTEx. Using these criteria, we examined a total of 7,859,831 
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SNPs for the brain cortex analysis and 7,653,537 SNPs for the whole blood analysis. 

When using the ADRD summary statistics, we explored a total of 7,952,002 SNPs for 

the analysis of brain cortex analysis and 7,638,319 SNPs for the analysis of whole 

blood analysis.  

2.2 OTTERS Implementation  

We extended the recently published OTTERS framework [17] in several ways. In Stage 

I: Training, we used the standard five polygenic risk score (PRS) methods for summary 

statistic data implemented in OTTERS: p-value thresholding with LD clumping (P+T) at 

two thresholds (p < 0.05 & p < 0.001) [25];  elastic net regression implemented in the 

method lassosum [19]; Bayesian regression with a continuous shrinkage (CS) prior on 

SNP effect sizes implemented in the method PRS-CS [23]; and finally a non-parametric 

Bayesian multiple Dirichlet progress regression method SDPR [24] (Figure 1). In Stage 

II: Testing, the p-values produced from each of these modeling approaches were 

subsequently aggregated using the aggregated Cauchy association test (ACAT) to 

generate an omnibus p-value (ACAT-O) [39] (Figure 1). An overview of our processing 

and results filtering workflow is shown in Figure 1. 

While the original implementation of OTTERs (https://github.com/daiqile96/OTTERS) 

used the pseudovalidate option within the lassosum (v.0.4.5) method to select the 

optimal tuning parameter between Ridge and Lasso regression, we instead used the 

validate option to generate our models with GTEX (v8) EUR normalized expression, 

covariate, and genetic data from Brain_Cortex and Whole_Blood (Link: 

https://www.gtexportal.org/home/downloads/adult-gtex) as validation sets. This 

modification increased model sparsity and had a higher predictive performance relative 
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to the pseudovalidate option (Supplemental Figure 1). As we used GTEx v8 

expression data to evaluate the performance of all imputation models, we prevented 

overfitting of the lassosum model by only including a randomly generated 50% split of 

the GTEx data (Brain: N=92/183; Blood: N=279/558) to serve as a validation testing 

dataset during model training and the remaining 50% served as an independent dataset 

for model evaluation. We also expanded the shrinkage and mixing parameters (balance 

between Ridge and Lasso regression) of the OTTERS lassosum implementation by also 

testing shrinkage penalties of 0.05, 0.1, 0.25, 0.33, 0.75, and 0.95 and mixing 

parameters of 0.05, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, and 0.95.  

2.2.1 Post-processing of findings from OTTERS 

In the original OTTERS implementation, invalid gene models are filtered based on a 

R2>0.01 and after models are adjusted for genomic control. We improve upon the 

existing approach by instead requiring an R>0.1 between the predicted and actual 

normalized expression of the gene based on GTEx v8 data as using only the R2 value 

masks genes models with negative correlations that are biologically nonsensical. In 

Stage II: Testing, we remove invalid models prior to adjusting for genomic control to 

keep them from skewing the adjustment (Figure 1). Overall, we used valid z-scores to 

adjust p-values for genomic control and subsequently ran the initial ACAT-O test. 

Multiple-testing was controlled by a Bonferroni-correction of the ACAT-O p-values 

identified at the end of Stage II: Testing (Figure 1). In Stage III: Filtering, we tested if z-

score direction was concordant among tested methods and replaced gene models with 

NA values if there was any discordance across the methods, effectively requiring all 

methods to agree on the direction of effect (Figure 1). After we applied this 
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concordance restriction, we applied genomic control to the concordant z-scores, and re-

ran that ACAT-O test to yield ACAT-OCON (concordance-restricted ACAT-O) p-values. By 

applying genomic control at this stage of the analysis, we reduced the overall ACAT 

inflation (Brain: λ = 1.58 > λCON = 1.17; Blood: λ = 1.27 > λCON = 1.04) (Supplementary 

Figures 2-5). 

While each of the tested methods has advantages and disadvantages that lead to 

differing SNP selection, ultimately all methods receive the same set of input eQTL 

summary statistics. By enforcing concordance among the tested methods, we can 

enrich our results for higher confidence TWAS associations. We subsequently 

annotated whether a gene fell within a known AD GWAS association based on whether 

a 1Mb window around the gene’s transcription start and end site overlapped with a 1Mb 

window around APOE or whether a 1Mb window around the gene fell within a 1Mb 

window around a known AD/ADRD GWAS association. We used a combined list of 

lifted-over AD GWAS associations [37] and ADRD GWAS associations [5] for this 

annotation of the results. Finally, we restricted our associations to genes where there 

was at least a nominally significant p-value (p < 0.01) for a minimum of two out of five 

methods tested (in addition to a Bonferroni-corrected significant ACAT-OCON p-value) 

(Figure 1). We implemented these criteria to minimize the potential for false-positive 

associations and prevent any single method from biasing our results while still allowing 

for the detection of multiple different model types.  
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2.2.2 Independent Validation of OTTERS-identified Genes 

In Stage IV: Validation, results meeting our post-processing criteria were further 

validated in an independent analysis of differential gene expression among AD cases 

and controls (Figure 1). We performed one-tailed T-tests (using the direction of effect 

predicted in our results) within a non-Hispanic white (NHW) whole-blood dataset [40] 

(AD Cases=119; Controls=117) and a partially independent brain RNA microarray 

dataset, KRONOSII [41], that was curated for high AD pathology and low secondary 

pathology (AD Cases=168; Controls=177). More specifically, we utilized the 

RNA_eQTL_residual-corrected-data_KRONOSII_Brainome.txt for the validation of brain 

cortex results (Link: 

https://drive.google.com/drive/folders/15WmJsBXIH3Feib9Vu_bU2VpYQ2pDc8WX). 

For the whole blood validation, we used residualized normalized expression data after 

covariate adjustment for sex, age-at-exam, and principal components 1-12 (PC1-12) to 

capture population substructure estimated analysis using flashpcaR [42]. Because we 

used summary statistics, it was difficult to rule out the possibility that some samples 

from the KRONOSII study were included in the MetaBrain study or the AD summary 

statistics, however we assume based on documentation of the KRONOSII study that 

any overlap would be somewhat limited [41].  We used a Bonferroni-corrected p-value 

based on the number of genes tested to determine if a TWAS hit was validated in the 

actual expression data. In the microarray expression data, multiple probes mapped to a 

single gene in some instances, and we required at least one probe to be significantly 

differentially expressed between AD Cases and Controls for that the TWAS gene model 

to be validated.  
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2.2.3 Fine-mapping Validated Associations 

In Stage V: Fine-mapping, we identify the specific eQTLs driving the significant TWAS 

results by applying the SuSiE (Sum of Single Effects) [43,44] approach (susieR 

package v.0.12.35) to the original summary statistics while also using the same LD 

reference panel used in the OTTERS analysis. Credible sets of causal eQTLs were 

generated for eight of eleven validated TWAS associations, though seven of these eight 

SuSiE analyses reported convergence issues in the model fitting, which could indicate a 

mismatch between the eQTL summary statistics and the 1000 Genomes EUR LD 

matrix. For consistency however, we used the same LD matrix for all analyses. We 

extracted the variants falling within identified credible sets and subsequently re-ran the 

modified OTTERS pipeline using only the SuSiE identified SNPs to assess how the 

sparse fine-mapped eQTLs influence TWAS model results. We only re-ran our model for 

our validated TWAS associations from blood and brain. As we only performed analyses 

on a small set of genes, we did not adjust for genomic control and instead focused on 

the overall ACAT-O p-values. We annotated the credible SNPs included in the models 

using the Functional genomics repository (FILER) [45].  

2.2.4 GWAS Conditional Analysis  

For our validated AD-TWAS associations that were proximal to known AD/ADRD GWAS 

loci, we sought to determine whether the genetically-regulated expression of the 

identified genes was driving the original GWAS association. To this end, we leveraged 

individual-level data from the Alzheimer's Disease Genetics Consortium (ADGC), 

encompassing 29,681 NHW participants across 35 cohorts. We conducted a series of 

logistic regression models that included both the predicted genetically-regulated 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


12 

 

expression of the AD-TWAS gene and the GWAS SNP dosage, along with covariates 

such as sex, age, cohort, and population substructure (PC1-3). These analyses closely 

mirrored the approach used by Kunkle et al. 2019 [37]. When the logistic regression 

results warranted further investigation, we also performed linear regression models 

using either the GWAS SNP dosage or the genetically-regulated gene expression as the 

outcome variable, in order to disentangle the significant predictors. For this conditional 

analysis, we tested the top two most significantly associated modeling methods that 

produced valid gene models, with the exception of MTCH2, where we tested all sparse 

eQTL models as this was the only gene where every approach yielded a significant AD-

TWAS association (Supplementary Table 4). Additionally, we used PLINK1.9 to 

perform linkage disequilibrium calculations (--r2 square) within this ADGC cohort to 

assess the strength of LD between AD/ADRD GWAS SNP and the causal eQTLs 

contained within the sparse genetically-regulated gene expression models.  

3 RESULTS 

3.1 OTTERS Results and Quality Filtering 

For brain-cortex, 993 models out of 9,282 were significantly associated with AD 

(Bonferroni-corrected ACAT-O p < 5.39×10-6) (Figure 1: Stage II). We applied additional 

stringent filtering criteria to these prediction models, with 505 models showing 

concordant effect among all valid model z-scores (Figure 1: Stage III) and of those 

models 80 have nominal associations among at least two methods excluding five of 

these genes that fall within a 1Mb window of APOE (Figure 1: Stage III).  For whole 

blood, 503 models out of 7,214 were significantly associated with AD (Bonferroni-

corrected ACAT-O p < 6.93×10-6) (Figure 1: Stage II). After filtering, 222 models show 
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concordant effect and of those models 42 have nominal associations amongst at least 

two individual methods excluding two of these genes that fall within a 1Mb window of 

APOE (Figure 1: Stage III).  

3.2 Annotation of Significant TWAS Associations 

We assumed significant TWAS associations from our OTTERS approach were driven by 

either 1) re-weighting and aggregating multiple sub-significant GWAS associations into 

a single TWAS gene association, or 2) identification of a TWAS-significant gene by 

either directly selecting a GWAS-associated variant in the expression prediction model 

or indirectly tagging a GWAS-associated variant through linkage disequilibrium. Thus, 

we annotated our TWAS results as either novel or GWAS-proximal, respectively, by 

creating 1Mb regions around variants identified as significant GWAS associations from 

Kunkle et al. 2019 and Bellenguez et al. 2022, and assessing whether this window 

overlaps with a 1Mb window around each TWAS gene [5,37]. Using this criterion, we 

identified 80 significant genes (excluding five genes falling within the APOE window) of 

which 50 were novel genes and 30 were GWAS association-proximal genes within brain 

cortex. Similarly, we identified 42 significant genes within blood (excluding two genes 

falling within APOE window) of which 18 were novel genes and 24 were GWAS 

association-proximal genes. Comparing results between blood and brain, there were no 

novel genes common between the two tissues. For genes that are proximal to known 

GWAS loci, we identified four genes that were identified in both whole blood and brain 

cortex, and which also had concordant effect directions in both tissues (KANSL1, 

ARL17A, LRRC37A2, and C1QTNF4) (Supplementary Table 3). 
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3.3 Validation in Expression Datasets 

To validate TWAS associations from whole blood, we examined differences in gene 

expression within an independent whole-blood RNA-seq dataset of NHW, clinically-

diagnosed AD cases (N=119) and age-and-sex-matched controls (N=117). Based on the 

direction of effect from each TWAS association, we tested if measured gene expression 

differed significantly between AD cases and controls using a one-tailed t-test. We were 

able to test 40/41 (98%) of our novel and GWAS-Proximal genes.   

From this analysis, we validated one gene (MYBPC3) that was proximal to the known 

AD/ADRD GWAS locus SPI1 (Table 1). Specifically, we found a positive association 

between MYBPC3 (myosin-binding protein C) expression and AD risk (ACAT-OCON p = 

4.43×10-8; t-test p = 6.5×10-4). 

Brain cortex associations were validated using a brain microarray-based expression 

dataset of neuropathologically curated cases that were enriched for Alzheimer's disease 

pathology and minimized co-occurring neurodegeneration markers such as Lewy 

bodies, and controls were neuropathologically confirmed as having minimal pathology 

loads [41]. Based on the microarray data, we were able to assess 40/80 of TWAS 

associations identified using the AD GWAS summary statistics. We validated ten 

associations.  Five of 23 novel AD TWAS associations were statistically significant 

(Bonferroni-corrected t-test p-value<0.001; C3orf62, LYSMD4, PRKAG1, ZNF439, 

SLC11A2). In addition, we validated five AD TWAS associations (5/17) that were located 

proximal to a known AD/ADRD GWAS loci (Bonferroni-corrected t-test p-value < 0.001 

PSMA5, ANXA11, MTCH2, MADD, CYB561). 
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3.4 Fine-mapping TWAS Associations 

We next explored whether a sparse genetic model based on fine-mapped causal eQTLs 

for each cis-regulatory region would produce a similar strength TWAS association with 

improved interpretability. To test this assumption, we analyzed eQTL meta-analysis 

summary statistics using SuSiE and subsequently re-ran our OTTERS pipeline using 

only this subset of fine-mapped eQTLs (Stage V: Fine-mapping, Figure 1). Credible 

sets of causal eQTLs were generated for eight of eleven validated TWAS associations. 

Of the eight validated associations with credible sets, five genes (MTCH2, MADD, 

CYB561, ZNF439, and MYBPC3) had equivalent or improved AD-TWAS association 

statistics when the OTTERS analysis was restricted to the fine-mapped causal eQTLs 

within these credible sets (Table 2). In contrast, the remaining three genes (C3orf62, 

LYSMD4, and ANXA11) were no longer significant, indicating that their effects rely on a 

more polygenic genetic architecture than captured by the SuSiE fine-mapping (which 

was limited to 10 credible sets). 

3.4.1 Brain: MTCH2 & MADD 

The MTCH2 OTTERS association was primarily driven by the PRS-CS approach 

modeling 1,336 SNPs (ACAT-OCON p = 3.12×10-7; pPRS-CS_CON p = 1.79×10-7; zPRS-CS = -

3.57; R2
PRS-CS = 5.7%).  This model was reduced to seven credible sets with eight 

causal eQTLs by SuSiE fine-mapping, which produced significant AD-TWAS 

associations using all strategies and each method selected between one to three causal 

eQTLs. The most parsimonious model was generated by the lassosum approach and 

contained a single eQTL that falls with active enhancer/promoter regions based on 

chromatin accessibility and histone modification data (Supplemental text). This model 
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demonstrated slightly improved model performance compared to the original (5.7% vs. 

6.3% variance in gene expression explained) and maintained a strong association to AD 

(pLassosum = 3.53×10-8; zLassosum = -5.51). This variant is located approximately 235kb 

downstream from the established SPI1 AD locus. In our analysis, a valid model for SPI1 

within brain was generated only using SDPR and was not significantly associated with 

AD (ACAT-OCON p = 0.47; zSDPR = 0.59; R2
SDPR = 1.0%). We ran a conditional analysis 

using a series of logistic regression models within a subset of cohorts analyzed by 

Kunkle et al. 2019 and confirmed that there are individually significant associations 

between the SPI1 locus and AD status (z = -3.2, p = 1.35×10-3) and the genetically-

regulated expression of MTCH2 and AD status (z = -4.6, p = 4.08×10-6). However, when 

both variables are included within the model only the genetically-regulated expression of 

MTCH2 remains significant (z = -3.3, p = 9.09×10-4) whereas the SPI1 association is no 

longer significant (z = -0.18, p = 0.86). These results suggest that the genetically-

regulated expression of MTCH2 appears to be a driving factor behind the SPI1 AD 

GWAS locus association. 

However, MADD is located approximately 90kb upstream from the SPI1 GWAS 

association [37] and 350kb upstream from MTCH2. The MADD OTTERS association 

was primarily driven by the P+T(0.001) approach modeling 307 SNPs (ACAT-OCON p = 

6.64×10-8; pP+T_0.001_CON = 2.22×10-8; zP+T_0.001 = -1.65; R2
P+T_0.001 = 4.9%).  This model 

was reduced to six credible sets with 14 potential causal eQTLs by SuSiE fine-mapping, 

which produced a six SNP SDPR model demonstrating slightly improved model 

performance to the original (4.9% vs. 6.3% variance in gene expression explained). This 

model also maintained a strong negative association to AD (pSDPR =3.01×10-8; zSDPR= -
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5.54). Based on our earlier results with MTCH2, we assessed in a series of conditional 

models whether MADD contributes to the SPI1 locus association and found that MADD 

genetically-regulated expression was not associated with AD in either the individual (z = 

-1.2, p=0.23) or combined models (z = -0.21, p = 0.83). Of note, we were able to impute 

the genetically-regulated expression of MADD using only five out of six SNPs within the 

model as the other SNP was unable to be imputed in the ADGC cohort, which may have 

slightly reduced the strength of the initial MADD association to AD. However, we 

confirmed using a linear model with imputed MTCH2 expression as the outcome that 

the genetically-regulated expression of MADD (tMADD = 10.05) and the SPI1 dosage 

(tSPI1 = 143.35) were both significantly associated predictor variables (p < 2×10-16). 

Moreover, the SPI1 locus is in moderate LD with the single causal eQTL within the 

MTCH2 expression model (r2 = 0.45) whereas the MADD SNPs are in weak LD with the 

MTCH2 eQTL(r2 < 0.09) which is reflected in the strength of their effect sizes on MTCH2 

expression. Overall, these results suggest that both the MADD AD-TWAS association 

and SPI1 locus GWAS association are driven by the cis-regulatory region surrounding 

MTCH2. 

3.4.2 Brain: CYB561 

The CYB561 OTTERS association was driven by the SDPR approach modeling 1,616 

SNPs (ACAT-OCON p = 1.99×10-33; pSDPR_CON = 3.98×10-34; zSDPR = -9.83; R2
SDPR = 

28.1%). Fine-mapping identified seven credible sets each containing a single causal 

eQTL SNP. OTTERS analysis of these SNPs identified a six SNP SDPR model with 

nearly identical performance (R2
SDPR = 24%) and produced a TWAS result of similar 

significance (pSDPR = 1.8×10-20; zSDPR = -9.3). CYB561 is located 34kb upstream to the 
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identified GWAS associations located near ACE identified in Bellenguez et al [5], and 

only 24kb upstream of the ACE association in Kunkle et al. [37]. In our analysis, all 

modeling approaches produced valid results for ACE within the brain and overall the 

ACE gene model was nominally negatively associated with AD risk (ACAT-OCON p = 

0.001; z = [-0.5, -2.6]; R2
SDPR = [6%, 10%]).  

As the ACE GWAS locus is located nearly in the middle of the promoter elements of 

ACE (~16kb) and CYB561 (~24kb), we assessed in a series of logistic regression 

models if the genetically-regulated expression of CYB561 is driven by its close proximity 

to the ACE GWAS locus. We found that while there was a significant association 

between the ACE locus and AD status (z = 2.9, p = 3.49×10-3), there was not a 

significant association between the genetically-regulated expression of CYB561 and AD 

status (z = -0.757, p = 0.449). Moreover, we confirmed using a linear model with the 

dosage of the ACE GWAS locus as the outcome variable that the genetically-regulated 

expression of CYB561 was the strongest significantly associated predictor variable (t = -

18.9, p < 2×10-16) despite being in weak LD with the ACE GWAS locus (r2 < 0.02). 

These results suggest that the regulatory architecture underlying this genomic region is 

more complex and requires further exploration in larger sample sizes to clarify the 

association between CYB561 genetically-regulated expression and AD.   

3.4.3 Brain: ZNF439 

The OTTERS association for ZNF439 was driven by the lassosum approach, which 

modeled 1,336 SNPs. This model yielded a highly significant association to AD (ACAT-

OCON p = 2.21×10-52; pLassosum _CON = 1.1×10-52; zLassosum = 9.94; R2
Lassosum = 5.7%). 

Though causal eQTL fine-mapping, we identified five credible sets each containing a 
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single causal eQTL and subsequent application of these SNPs to the OTTERS 

approach led to the generation of a four SNP lassosum model demonstrating slightly 

reduced model performance in terms of variance explained (R2
Lassosum = 5.0%) but 

further strengthened the association to AD (pLassosum = 3.79×10-97; zLassosum = 20.92). 

Functional annotation of these causal eQTLs revealed that the effect size direction of 

each SNP within the model corresponded to histone markers of active transcription or 

repressive chromatin, underscoring the additional biological complexity underlying the 

functional roles of these genetic variants (Supplemental Text).  

3.4.3 Blood: MYBPC3 

The original OTTERS association to MYBPC3 was driven most strongly by the P+T 

0.001 approach modeling 1,081 SNPs (ACAT-OCON p = 4.43×10-8; pP+T_0.001_CON = 

1.75×10-8; zP+T_0.001 = 1.41; R2
P+T_0.001 = 3.6%). Fine-mapping of MYBPC3 yielded four 

credible sets each containing a single causal eQTL. Restricting the OTTERS method to 

the credible causal eQTLs, the SDPR, lassosum, and PRS-CS modeling approaches 

were able to explain only a negligible proportion of gene expression, falling short of our 

R2>1 % filtering threshold. In contrast, the P+T methods used a two-SNP model and 

maintained a statistically significant positive association with AD risk (pP+T_0.001 = 

6.48×10-44, zP+T_0.001 = 13.9, R2
P+T_0.001 = 1%).  

As MYBPC3 is approximately 90kb upstream the SPI1 AD GWAS locus, we also ran a 

conditional analysis using a series of logistic regression models to determine whether 

the genetically-regulated expression of MYBPC3 within blood may be contributing to the 

SPI1 locus signal. We confirmed that the SPI1 locus was individually associated with 

AD status (z = -3.2, p = 1.35×10-3) and that there was a marginal association between 
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the genetically-regulated expression of MYBPC3 and AD status (z = 1.8, p = 0.07). 

However, when both variables were included within the model, only the SPI1 locus 

association remained significant (z = -2.73, p = 0.006), while the MYBPC3 genetically-

regulated expression association was no longer marginally significant (z = -0.66, p = 

0.51). Of note, we were only able to impute the genetically-regulated expression of 

MYBPC3 using a single-SNP, as the other SNP could not be imputed in the ADGC 

cohort, which may have reduced the strength of the initial MYBPC3 association to AD. 

Additionally, the single SNP within the MYBPC3 expression model is in moderate LD 

with the SPI1 GWAS variant (r2 = 0.49), which may explain the previously found 

marginal association to AD. Overall, these results suggest that the MYBPC3 AD-TWAS 

association in blood does not contribute to the AD-GWAS signal at the SPI1 locus. 

3.5 Conditional Analyses in polygenic AD-TWAS Associations 

We identified two genes (Brain: PSMA5 and ANXA11) that were located proximal to 

known GWAS loci and potentially driven by polygenic eQTL architectures that were 

unable to be fine-mapped.  

3.5.1 Brain: PSMA5 

Our identified PSMA5 OTTERS association was driven most strongly by the SDPR 

approach, which modeled 2,592 SNPs (ACAT-OCON p = 5.25×10-8; pSDPR _CON = 1.31×10-

8; zSDPR = -4.59; R2
SDPR = 3.7%), followed closely by the PRS-CS approach also 

modeling 2,592 SNPs (pPRS-CS _CON = 2.81×10-4; zPRS-CS = -2.48; R2
PRS-CS = 5.9%). 

However, we were unable to fine-map any causal eQTLs within PSMA5 using SuSiE. 

Given that the SORT1 ADRD GWAS locus [5] is located approximately 66kb from the 
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transcription start site of PSMA5, we assessed in a series of logistic regression models 

whether the PSMA5 AD-TWAS association was driven by its proximity to the SORT1 

locus. Importantly, in our brain analyses we did not generate a valid model to predict 

SORT1 expression.  

We found a significant association between the SORT1 locus and AD status (z = 6.44, p 

= 2.62×10-3) in the ADGC NHW cohort. While the SDPR model of PSMA5 genetically-

regulated expression was not significantly associated with AD (z = 1.40, p = 0.16), the 

PRS-CS model was significantly associated with AD (z = 2.25, p=0.024). Notably, there 

was minimal LD between the SORT1 locus and the SNPs contained with the PSMA5 

model (r2 < 0.04).  In the combined logistic regression model, both the SORT1 locus 

and PRS-CS genetically-regulated expression of PSMA5 retained their significant 

associations to AD (pSORT1 = 2.88×10-3; pPRS-CS_PSMA5 = 0.027), consistent with the slight 

LD identified between these genetic signals. Collectively, our results suggest that the 

identified TWAS association between PSMA5 and AD represents a distinct genetic 

signal, independent of the previously reported GWAS association at the nearby SORT1 

ADRD locus.  

3.5.2 Brain: ANXA11 

The ANXA11 TWAS association was driven mostly strongly by the SDPR approach, 

which modeled 3,157 SNPs (ACAT-OCON p = 3.37×10-12; pSDPR _CON = 8.42×10-13; zSDPR 

= 5.77; R2
SDPR = 1.8%). Through fine-mapping, we were able to identify six credible sets 

containing seven causal eQTLs. However, when we re-ran the OTTERS approach 

restricted to these causal eQTLs, the AD-TWAS association for ANXA11 diminished to 

nominal significance (p = [0.034, 0.044], despite the genetically-regulated expression 
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explained by the model increasing from 1.8% to 4.9%. Given that ANXA11 is located 

~343kb upstream of the TSPAN14 ADRD GWAS locus, we assessed whether TSPAN14 

locus might be driving the ANXA11 AD-TWAS association. Using a series of logistic 

regression models, we found that neither the TSPAN14 locus nor the genetically-

regulated expression of ANXA11 was associated with AD status in this cohort. 

Interestingly, we did identify several SNPs within the 3,157 SNP SDPR model that were 

within high LD (r2 > 0.9) with the TSPAN14 locus. Additionally, ANXA11 was also 

identified as a significant ADRD-TWAS association (Supplementary Table 2), 

suggesting that the initial AD-TWAS association may be driven instead by co-occurring 

forms of dementia (e.g., Fronto-temporal dementia) and/or misdiagnosis. Furthermore, 

our findings suggest that the TSPAN14 ADRD GWAS locus may be associated with a 

broader ADRD phenotype rather than a clinical AD phenotype.   

4 DISCUSSION 

In this study, we leveraged the largest available eQTL meta-analysis summary statistics 

from both cortical brain tissue and blood, and applied them to the largest clinically 

adjudicated AD case-control GWAS dataset through a summary-statistics based TWAS 

framework. This approach utilized five different methods to capture a range of sparse to 

polygenic genetic architectures underlying gene expression regulation. Using this TWAS 

framework, we identified and validated five novel genes within cortical brain tissue 

(PRKAG1, C3orf62, LYSMD4, ZNF439, SLC11A2) where the genetically-regulated 

expression of these genes was significantly associated with AD status. Additionally, we 

identified and validated six genes that were proximal to known AD/ADRD GWAS 

associations (Blood: MYBPC3; Brain: MTCH2, CYB561, MADD, PSMA5, ANXA11). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


23 

 

Finally, we fine-mapped causal eQTLs and obtained similar or improved TWAS power 

for five genes (MTCH2, MADD, CYB561, ZNF439 and MYBPC3) when using sparse 

eQTL prediction models.  

Our identified novel validated associations span a wide spectrum of functional 

understanding, with genes having limited information on function (LYSMD4, C3orf62, 

ZNF439) to genes with recognized roles in energy metabolism (PRKAG1) and iron 

homeostasis (SLC11A2). 

PRKAG1 (Protein Kinase AMP-activated Non-Catalytic Subunit Gamma 1) encodes a 

component of AMPK and is involved in sensing cellular energy. During metabolic stress, 

AMPK inhibits macromolecule biosynthesis and cell growth while activating energy-

producing pathways. In our study, we found that low levels of PRKAG1 within cortical 

brain tissue were associated with an increased AD risk (ACAT-OCON p = 1.73×10-7).  

Interestingly, a 2012 study using healthy adult human cortical slices exposed to 

sublethal doses of amyloid-beta soluble oligomers found PRKAG1 to be upregulated 

after exposure [46]. This work suggests our association may be driven by lack of proper 

biological compensation during high AD pathology and further work is needed to clarify 

the role of PRKAG1. While PRKAG1 has limited associations with Alzheimer’s disease, 

activators of AMPK are recognized for their therapeutic potential in treating AD such as 

by promoting autophagy and reducing insulin resistance [47]. For instance, researchers 

have found that moderate aerobic exercise can counteract amyloid-beta-induced 

learning and memory impairment in animal models through in part AMPK restoration 

[48].  
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SLC11A2 (Solute carrier family 11 member 2) encodes a proton-coupled divalent metal 

ion transporter that plays a critical role in iron homeostasis and has been previously 

associated with amyotrophic lateral sclerosis (ALS) and Parkinson’s disease. In our 

study, we found reduced expression of SLC11A2 within the brain was associated with 

an increased AD risk (ACAT-OCON p = 4.39×10-14). While there are limited studies 

specifically exploring the connection between SLC11A2 and AD, one prior study used 

216 AD cases and 323 controls found a nominally significant (p = 0.08) association 

between a variant (rs407135) within SLC11A2 and AD [49]. Interestingly, in a prion 

mouse model Slc11a2 expression within the hippocampus was found to be sustainably 

reduced during disease progression which is concordant with our findings [50]. 

Our TWAS associations identified as proximal to known AD/ADRD loci include PSMA5 

(component of 20S core proteasome complex), ANXA11 (calcium–dependent 

phospholipid-binding protein), MTCH2 (mitochondrial insertase and regulator of 

apoptosis and lipid homeostasis), MADD (adaptor protein regulating apoptosis through 

activation of mitogen-activated protein kinase), and CYB561 (Transmembrane 

Ascorbate-Dependent Reductase). 

Several previous AD TWAS studies have identified MTCH2 as being associated with AD 

status, and our work further supports the notion that the genetically-regulated 

expression of MTCH2 appears to drive the GWAS association at the SPI1 locus [34,35]. 

Notably, we were able to retain the strength of this association using only a single 

causal eQTL for MTCH2 genetically-regulated expression. This result builds upon prior 

work by Gockley et al. 2021 as they also identified MTCH2 genetically-regulated 

expression as significantly negatively associated with AD using six neo-cortical brain 
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tissues (N_RNA-seq = 888) [35]. Through joint-conditional probability analysis and 

colocalization analysis, these researchers identified that MTCH2 likely shares a single 

causal variant with the SPI1 locus [35]. However, their best performing models for 

MTCH2 expression contained 260 SNPs, none of which overlapped with the SNPs 

identified as causal eQTLs through fine-mapping and/or retained in our OTTERS 

models, which highlights the importance of fine-mapping causal eQTLs using the largest 

available eQTL resource (Supplementary Text). MADD is also located near SPI1 and 

has been found to be negatively associated AD status and our results support that this 

association may be driven by MTCH2. Critically, we cannot exclude the possibility that 

other nearby genes contribute to AD risk at this locus, and SPI1 has been functionally 

validated with extensive modeling within myeloid cells, especially microglia, for its role in 

AD risk [51].  

Interestingly, ANXA11 has been found in prior work to be associated with amyotrophic 

lateral sclerosis (ALS) with or without frontotemporal dementia (FTD) and our work 

further supports the role of ANXA11 in neurodegeneration [52]. PSMA5 has also been 

associated with AD based on several in vivo animal models that have identified PSMA5 

downregulation is involved in APP-induced inhibition of cell proliferation, and our work 

further motivates additional studies to clarify how PSMA5 expression modulation 

impacts AD pathogenesis [53–55] 

There are several considerations to our study. First, we examined only cis-regulatory 

variants, as the OTTERS framework was designed for cis-eQTLs, and prior work has 

found that trans-eQTL effects tend to be relatively weaker [56].  While we used a 

standard 1 Mb window around the transcription start and end sites, we acknowledge 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


26 

 

that regions outside of this window may also harbor relevant eQTLs due to the complex 

3D architecture of chromatin interactions.  

Additionally, we conducted our analysis on cortical brain tissue, as it had the largest 

brain sample size available, in order to maximize statistical power for detecting tissue-

specific effects, which can be challenging to disentangle using multi-tissue modeling. 

Prior work has suggested that approximately 8,000 samples are optimal for imputation 

model training in TWAS, while 56,000 samples are needed in the GWAS summary 

statistics to achieve maximal power [57]. Given these recommendations, we recognize 

that while our study represents the most well-powered AD TWAS to date through the 

integration of brain eQTL meta-analyses and multiple modeling approaches, larger brain 

sample sizes will be critical for fully elucidating the underlying genetic mechanisms of 

AD risk.  

Although we performed fine-mapping of our TWAS associations, our results suggest 

only a small portion of TWAS associations are explained by fine-mapped causal eQTLs. 

While we propose that models not amenable to fine-mapping are likely driven by more 

polygenic gene expression models, it is also possible that these are explained by other 

effects unmeasured in our analysis, like long-range linkage disequilibrium, haplotype 

effects, or the tagging of structural variants or other unobserved genetic variants. 

Additionally, using our stringent validation criteria, we may have missed TWAS 

associations that are driven by gene expression changes that do not persist into later 

stages of the disease captured by our differential expression association analyses. 

However, as these results represent the best independent evaluation of our TWAS 

effects, we have chosen to specifically highlight genes meeting this validation criterion.   
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Finally, our study was limited to individuals of European descent, as the eQTL meta-

analysis summary statistics were generated predominantly using European-descent 

samples. Ongoing studies capturing greater genomic diversity will hopefully soon 

produce resources for similar analyses in African American and Hispanic/Latino 

populations. 

Overall, by combining multiple large scale eQTL summary statistics with AD GWAS 

results, we have performed a TWAS that identified several new gene associations to AD 

and provided functional insights for several previously associated GWAS loci. 

REFERENCES 

[1] Karlsson IK, Escott-Price V, Gatz M, Hardy J, Pedersen NL, Shoai M, et al. 

Measuring heritable contributions to Alzheimer’s disease: polygenic risk score analysis 

with twins. Brain Commun 2022;4:fcab308. 

https://doi.org/10.1093/braincomms/fcab308. 

[2] Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. 

Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 

2006;63:168–74. https://doi.org/10.1001/archpsyc.63.2.168. 

[3] Ridge PG, Hoyt KB, Boehme K, Mukherjee S, Crane PK, Haines JL, et al. 

Assessment of the genetic variance of late-onset Alzheimer’s disease. Neurobiol Aging 

2016;41:200.e13-200.e20. https://doi.org/10.1016/j.neurobiolaging.2016.02.024. 

[4] Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, Holland D, et al. A 

genome-wide association study with 1,126,563 individuals identifies new risk loci for 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


28 

 

Alzheimer’s disease. Nat Genet 2021;53:1276–82. https://doi.org/10.1038/s41588-021-

00921-z. 

[5] Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et 

al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. 

Nat Genet 2022;54:412–36. https://doi.org/10.1038/s41588-022-01024-z. 

[6] Liu JZ, Erlich Y, Pickrell JK. Case-control association mapping by proxy using 

family history of disease. Nat Genet 2017;49:325–31. https://doi.org/10.1038/ng.3766. 

[7] Escott-Price V, Hardy J. Genome-wide association studies for Alzheimer’s 

disease: bigger is not always better. Brain Commun 2022;4:fcac125. 

https://doi.org/10.1093/braincomms/fcac125. 

[8] Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, et al. The support 

of human genetic evidence for approved drug indications. Nat Genet 2015;47:856–60. 

https://doi.org/10.1038/ng.3314. 

[9] Gallagher MD, Chen-Plotkin AS. The Post-GWAS Era: From Association to 

Function. Am J Hum Genet 2018;102:717–30. 

https://doi.org/10.1016/j.ajhg.2018.04.002. 

[10] King EA, Davis JW, Degner JF. Are drug targets with genetic support twice as 

likely to be approved? Revised estimates of the impact of genetic support for drug 

mechanisms on the probability of drug approval. PLoS Genet 2019;15:e1008489. 

https://doi.org/10.1371/journal.pgen.1008489. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


29 

 

[11] de Klein N, Tsai EA, Vochteloo M, Baird D, Huang Y, Chen C-Y, et al. Brain 

expression quantitative trait locus and network analyses reveal downstream effects and 

putative drivers for brain-related diseases. Nat Genet 2023;55:377–88. 

https://doi.org/10.1038/s41588-023-01300-6. 

[12] Võsa U, Claringbould A, Westra H-J, Bonder MJ, Deelen P, Zeng B, et al. Large-

scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic 

scores that regulate blood gene expression. Nat Genet 2021;53:1300–10. 

https://doi.org/10.1038/s41588-021-00913-z. 

[13] Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future. 

Philos Trans R Soc Lond B Biol Sci 2013;368:20120362. 

https://doi.org/10.1098/rstb.2012.0362. 

[14] Wheeler HE, Shah KP, Brenner J, Garcia T, Aquino-Michaels K, Consortium Gte, 

et al. Survey of the Heritability and Sparse Architecture of Gene Expression Traits 

across Human Tissues. PLOS Genetics 2016;12:e1006423. 

https://doi.org/10.1371/journal.pgen.1006423. 

[15] Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll 

RJ, et al. A gene-based association method for mapping traits using reference 

transcriptome data. Nat Genet 2015;47:1091–8. https://doi.org/10.1038/ng.3367. 

[16] Melton HJ, Zhang Z, Wu C. SUMMIT-FA: a new resource for improved 

transcriptome imputation using functional annotations. Hum Mol Genet 2023:ddad205. 

https://doi.org/10.1093/hmg/ddad205. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


30 

 

[17] Dai Q, Zhou G, Zhao H, Võsa U, Franke L, Battle A, et al. OTTERS: a powerful 

TWAS framework leveraging summary-level reference data. Nat Commun 

2023;14:1271. https://doi.org/10.1038/s41467-023-36862-w. 

[18] Zhang Z, Bae YE, Bradley JR, Wu L, Wu C. SUMMIT: An integrative approach for 

better transcriptomic data imputation improves causal gene identification. Nat Commun 

2022;13:6336. https://doi.org/10.1038/s41467-022-34016-y. 

[19] Mak TSH, Porsch RM, Choi SW, Zhou X, Sham PC. Polygenic scores via 

penalized regression on summary statistics. Genet Epidemiol 2017;41:469–80. 

https://doi.org/10.1002/gepi.22050. 

[20] Lloyd-Jones LR, Zeng J, Sidorenko J, Yengo L, Moser G, Kemper KE, et al. 

Improved polygenic prediction by Bayesian multiple regression on summary statistics. 

Nat Commun 2019;10:5086. https://doi.org/10.1038/s41467-019-12653-0. 

[21] Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. 

Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. The 

American Journal of Human Genetics 2015;97:576–92. 

https://doi.org/10.1016/j.ajhg.2015.09.001. 

[22] Privé F, Arbel J, Vilhjálmsson BJ. LDpred2: better, faster, stronger. Bioinformatics 

2021;36:5424–31. https://doi.org/10.1093/bioinformatics/btaa1029. 

[23] Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW. Polygenic prediction via Bayesian 

regression and continuous shrinkage priors. Nat Commun 2019;10:1776. 

https://doi.org/10.1038/s41467-019-09718-5. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


31 

 

[24] Zhou G, Zhao H. A fast and robust Bayesian nonparametric method for prediction 

of complex traits using summary statistics. PLOS Genetics 2021;17:e1009697. 

https://doi.org/10.1371/journal.pgen.1009697. 

[25] International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, 

Visscher PM, O’Donovan MC, et al. Common polygenic variation contributes to risk of 

schizophrenia and bipolar disorder. Nature 2009;460:748–52. 

https://doi.org/10.1038/nature08185. 

[26] Luningham JM, Chen J, Tang S, De Jager PL, Bennett DA, Buchman AS, et al. 

Bayesian Genome-wide TWAS Method to Leverage both cis- and trans-eQTL 

Information through Summary Statistics. Am J Hum Genet 2020;107:714–26. 

https://doi.org/10.1016/j.ajhg.2020.08.022. 

[27] Liu W, Li M, Zhang W, Zhou G, Wu X, Wang J, et al. Leveraging functional 

annotation to identify genes associated with complex diseases. PLoS Comput Biol 

2020;16:e1008315. https://doi.org/10.1371/journal.pcbi.1008315. 

[28] Tang S, Buchman AS, De Jager PL, Bennett DA, Epstein MP, Yang J. Novel 

Variance-Component TWAS method for studying complex human diseases with 

applications to Alzheimer’s dementia. PLoS Genet 2021;17:e1009482. 

https://doi.org/10.1371/journal.pgen.1009482. 

[29] Sun Y, Zhu J, Zhou D, Canchi S, Wu C, Cox NJ, et al. A transcriptome-wide 

association study of Alzheimer’s disease using prediction models of relevant tissues 

identifies novel candidate susceptibility genes. Genome Med 2021;13:141. 

https://doi.org/10.1186/s13073-021-00959-y. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


32 

 

[30] Hu Y, Li M, Lu Q, Weng H, Wang J, Zekavat SM, et al. A statistical framework for 

cross-tissue transcriptome-wide association analysis. Nat Genet 2019;51:568–76. 

https://doi.org/10.1038/s41588-019-0345-7. 

[31] Bae YE, Wu L, Wu C. InTACT: An adaptive and powerful framework for joint-

tissue transcriptome-wide association studies. Genet Epidemiol 2021;45:848–59. 

https://doi.org/10.1002/gepi.22425. 

[32] Wang YH, Luo PP, Geng AY, Li X, Liu T-H, He YJ, et al. Identification of highly 

reliable risk genes for Alzheimer’s disease through joint-tissue integrative analysis. 

Frontiers in Aging Neuroscience 2023;15. 

[33] Zhou D, Jiang Y, Zhong X, Cox NJ, Liu C, Gamazon ER. A unified framework for 

joint-tissue transcriptome-wide association and Mendelian randomization analysis. Nat 

Genet 2020;52:1239–46. https://doi.org/10.1038/s41588-020-0706-2. 

[34] Chen H-H, Petty LE, Sha J, Zhao Y, Kuzma A, Valladares O, et al. Genetically 

regulated expression in late-onset Alzheimer’s disease implicates risk genes within 

known and novel loci. Transl Psychiatry 2021;11:618. https://doi.org/10.1038/s41398-

021-01677-0. 

[35] Gockley J, Montgomery KS, Poehlman WL, Wiley JC, Liu Y, Gerasimov E, et al. 

Multi-tissue neocortical transcriptome-wide association study implicates 8 genes across 

6 genomic loci in Alzheimer’s disease. Genome Med 2021;13:76. 

https://doi.org/10.1186/s13073-021-00890-2. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


33 

 

[36] THE GTEX CONSORTIUM. The GTEx Consortium atlas of genetic regulatory 

effects across human tissues. Science 2020;369:1318–30. 

https://doi.org/10.1126/science.aaz1776. 

[37] Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic 

meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates 

Aβ, tau, immunity and lipid processing. Nat Genet 2019;51:414–30. 

https://doi.org/10.1038/s41588-019-0358-2. 

[38] Byrska-Bishop M, Evani US, Zhao X, Basile AO, Abel HJ, Regier AA, et al. High-

coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort 

including 602 trios. Cell 2022;185:3426-3440.e19. 

https://doi.org/10.1016/j.cell.2022.08.004. 

[39] Liu Y, Chen S, Li Z, Morrison AC, Boerwinkle E, Lin X. ACAT: A Fast and Powerful 

p Value Combination Method for Rare-Variant Analysis in Sequencing Studies. Am J 

Hum Genet 2019;104:410–21. https://doi.org/10.1016/j.ajhg.2019.01.002. 

[40] Griswold AJ, Sivasankaran SK, Van Booven D, Gardner OK, Rajabli F, 

Whitehead PL, et al. Immune and Inflammatory Pathways Implicated by Whole Blood 

Transcriptomic Analysis in a Diverse Ancestry Alzheimer’s Disease Cohort. J Alzheimers 

Dis 2020;76:1047–60. https://doi.org/10.3233/JAD-190855. 

[41] Petyuk VA, Chang R, Ramirez-Restrepo M, Beckmann ND, Henrion MYR, 

Piehowski PD, et al. The human brainome: network analysis identifies HSPA2 as a 

novel Alzheimer&rsquo;s disease target. Brain 2018;141:2721–39. 

https://doi.org/10.1093/brain/awy215. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


34 

 

[42] Abraham G, Qiu Y, Inouye M. FlashPCA2: principal component analysis of 

Biobank-scale genotype datasets. Bioinformatics 2017;33:2776–8. 

https://doi.org/10.1093/bioinformatics/btx299. 

[43] Zou Y, Carbonetto P, Wang G, Stephens M. Fine-mapping from summary data 

with the “Sum of Single Effects” model. PLoS Genet 2022;18:e1010299. 

https://doi.org/10.1371/journal.pgen.1010299. 

[44] Wang G, Sarkar A, Carbonetto P, Stephens M. A simple new approach to variable 

selection in regression, with application to genetic fine mapping. J R Stat Soc Series B 

Stat Methodol 2020;82:1273–300. https://doi.org/10.1111/rssb.12388. 

[45] Kuksa PP, Leung YY, Gangadharan P, Katanic Z, Kleidermacher L, Amlie-Wolf A, 

et al. FILER: a framework for harmonizing and querying large-scale functional genomics 

knowledge. NAR Genom Bioinform 2022;4:lqab123. 

https://doi.org/10.1093/nargab/lqab123. 

[46] Sebollela A, Freitas-Correa L, Oliveira FF, Paula-Lima AC, Saraiva LM, Martins 

SM, et al. Amyloid-β oligomers induce differential gene expression in adult human brain 

slices. J Biol Chem 2012;287:7436–45. https://doi.org/10.1074/jbc.M111.298471. 

[47] Yang L, Jiang Y, Shi L, Zhong D, Li Y, Li J, et al. AMPK: Potential Therapeutic 

Target for Alzheimer’s Disease. Curr Protein Pept Sci 2020;21:66–77. 

https://doi.org/10.2174/1389203720666190819142746. 

[48] Azimi M, Gharakhanlou R, Naghdi N, Khodadadi D, Heysieattalab S. Moderate 

treadmill exercise ameliorates amyloid-β-induced learning and memory impairment, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


35 

 

possibly via increasing AMPK activity and up-regulation of the PGC-1α/FNDC5/BDNF 

pathway. Peptides 2018;102:78–88. https://doi.org/10.1016/j.peptides.2017.12.027. 

[49] Jamieson SE, White JK, Howson JMM, Pask R, Smith AN, Brayne C, et al. 

Candidate gene association study of solute carrier family 11a members 1 (SLC11A1) 

and 2 (SLC11A2) genes in Alzheimer’s disease. Neurosci Lett 2005;374:124–8. 

https://doi.org/10.1016/j.neulet.2004.10.038. 

[50] Spiers JG, Cortina Chen H-J, Barry TL, Bourgognon J-M, Steinert JR. Redox 

stress and metal dys-homeostasis appear as hallmarks of early prion disease 

pathogenesis in mice. Free Radic Biol Med 2022;192:182–90. 

https://doi.org/10.1016/j.freeradbiomed.2022.09.025. 

[51] Huang K-L, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC, et al. A 

common haplotype lowers PU.1 expression in myeloid cells and delays onset of 

Alzheimer’s disease. Nat Neurosci 2017;20:1052–61. https://doi.org/10.1038/nn.4587. 

[52] Wang Y, Duan X, Zhou X, Wang R, Zhang X, Cao Z, et al. ANXA11 mutations are 

associated with amyotrophic lateral sclerosis–frontotemporal dementia. Front Neurol 

2022;13:886887. https://doi.org/10.3389/fneur.2022.886887. 

[53] Wu Y, Zhang S, Xu Q, Zou H, Zhou W, Cai F, et al. Regulation of global gene 

expression and cell proliferation by APP. Sci Rep 2016;6:22460. 

https://doi.org/10.1038/srep22460. 

[54] Mirzaei M, Pushpitha K, Deng L, Chitranshi N, Gupta V, Rajput R, et al. 

Upregulation of Proteolytic Pathways and Altered Protein Biosynthesis Underlie Retinal 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


36 

 

Pathology in a Mouse Model of Alzheimer’s Disease. Mol Neurobiol 2019;56:6017–34. 

https://doi.org/10.1007/s12035-019-1479-4. 

[55] Chocron ES, Munkácsy E, Kim HS, Karpowicz P, Jiang N, Van Skike CE, et al. 

Genetic and pharmacologic proteasome augmentation ameliorates Alzheimer’s-like 

pathology in mouse and fly APP overexpression models. Sci Adv n.d.;8:eabk2252. 

https://doi.org/10.1126/sciadv.abk2252. 

[56] Liu X, Li YI, Pritchard JK. Trans Effects on Gene Expression Can Drive 

Omnigenic Inheritance. Cell 2019;177:1022-1034.e6. 

https://doi.org/10.1016/j.cell.2019.04.014. 

[57] He R, Xue H, Pan W. Statistical power of transcriptome‐wide association studies. 

Genet Epidemiol 2022;46:572–88. https://doi.org/10.1002/gepi.22491. 

 

 

ACKNOWLEDGEMENTS 

We would like all the authors who contributed to the summary statistics from the eQTL 

datasets (MetaBrain, eQTLGen) and AD/ADRD GWAS as these resources were 

invaluable to our work. We are also grateful to the authors of the OTTERS pipeline for 

their clear published methodology. The conditional analyses utilized data from the 

Alzheimer’s Disease Genetics Consortium (ADGC) (https://www.adgenetics.org/). The 

researchers associated with the ADGC (Collaborators Appendix) contributed to the 

planning and execution of the ADGC, and/or provided data, but were not involved in the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


37 

 

analysis or writing of this article. The full acknowledgement statement for the 

Alzheimer’s Disease Genetics Consortium can be found here: 

https://www.adgenetics.org/content/acknowledgements. We are grateful to the 

contributors who gathered the samples utilized in this study, as well as the patients and 

their families, whose assistance and participation enabled this work to be carried out. 

CONFLICT OF INTEREST STATEMENT 

All authors declare that the research was conducted in the absence of any financial or 

commercial relationships that could be construed as a potential conflict of interest.  

SOURCES OF FUNDING 

This work was funded by the National Institute on Aging (NIA) (Grant: RF1AG061351; 

PIs: Adam C. Naj, PhD, Jennifer E. Below, PhD, and William S. Bush, PhD & Grant: 

RF1AG070935; PIs: Anthony J. Griswold, PhD and William S. Bush, PhD). Our funding 

sources had no role in the preparation or submission of this manuscript.  

CONSENT STATEMENT 

All study procedures were approved by the institutional review boards at each 

corresponding study center and written informed consent was obtained either from the 

study participant or legal guardian.  

Keywords: TWAS, eQTL, AD, GWAS, gene expression 

Collaborators Appendix 

The collaborators associated with the Alzheimer’s Disease Genetics Consortium 

(ADGC) include the following individuals:  Erin Abner, PhD; Perrie M. Adams, PhD; 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


38 

 

Alyssa Aguirre, LCSW; Marilyn S. Albert, PhD; Roger L. Albin, MD; Mariet Allen, PhD; 

Lisa Alvarez, Howard Andrews, PhD; Liana G. Apostolova, MD; Steven E. Arnold, MD; 

Sanjay Asthana, MD; Craig S. Atwood, PhD; Gayle Ayres, DO; Robert C. Barber, PhD; 

Lisa L. Barnes, PhD; Sandra Barral, PhD; Jackie Bartlett, PhD; Thomas G. Beach, MD 

PhD; James T. Becker, PhD; Gary W. Beecham, PhD; Penelope Benchek, PhD; David 

A. Bennett, MD; John Bertelson, MD; Sarah A. Biber, PhD; Thomas D. Bird, MD; 

Deborah Blacker, MD; Bradley F. Boeve, MD; James D. Bowen, MD; Adam Boxer, MD, 

PhD; James B. Brewer, MD; James R. Burke, MD PhD; Jeffrey M. Burns, MD MS; 

William S. Bush, PhD; Joseph D. Buxbaum, PhD; Goldie Byrd, PhD; Laura B. Cantwell, 

MPH; Chuanhai Cao, PhD; Cynthia M. Carlsson, MD; Minerva M. Carrasquillo, PhD; 

Kwun C. Chan, PhD; Scott Chasse, PhD; Yen-Chi Chen, PhD; Marie-Francoise 

Chesselet, PhD; Nathaniel A. Chin, MD; Helena C. Chui, MD; Jaeyoon Chung, PhD; 

Suzanne Craft, PhD; Paul K. Crane, MD MPH; Marissa Cranney, BS; Carlos Cruchaga, 

PhD; Michael L. Cuccaro, PhD; Jessica Culhane, PhD; C. Munro Cullum, PhD; Eveleen 

Darby, MA MS; Barbara Davis, MA; Philip L. De Jager, MD PhD; Charles DeCarli, MD; 

John C. DeToledo, MD; Dennis W. Dickson, MD; Nic Dobbins, PhD; Ranjan Duara, MD; 

Nilufer Ertekin-Taner, MD PhD; Denis A. Evans, MD; Kelley M. Faber, MS; Thomas J. 

Fairchild, PhD; Daniele Fallin, PhD; Kenneth B. Fallon, MD; David W. Fardo, PhD; 

Martin R. Farlow, MD; John Farrell, PhD; Lindsay A. Farrer, PhD; Victoria Fernandez-

Hernandez, Tatiana M. Foroud, PhD; Matthew P. Frosch, MD PhD; Douglas R. Galasko, 

MD; Adriana Gamboa, BS; Kathryn M. Gauthreaux, PhD; Tamar Gefen, PhD; Daniel H. 

Geschwind, MD PhD; Bernardino Ghetti, MD; John R. Gilbert, PhD; Alison M. Goate, 

D.Phil; Thomas Grabowski, MD; Neill R. Graff-Radford, MD; Anthony R. Griswold, PhD; 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


39 

 

Jonathan L. Haines, PhD; Hakon Hakonarson, MD PhD; Kathleen Hall, PhD; James R. 

Hall, PhD; Ronald L. Hamilton, MD; Kara L. Hamilton-Nelson, MPH; Xudong Han, PhD; 

Oscar Harari, PhD; John Hardy, PhD; Lindy E. Harrell, MD PhD; Elizabeth Head, PhD; 

Victor Henderson, MD MS; Michelle Hernandez, BS; Lawrence S. Honig, MD PhD; 

Ryan M. Huebinger, PhD; Matthew J. Huentelman, PhD; Christine M. Hulette, MD; 

Bradley T. Hyman, MD PhD; Linda Hynan, PhD; Laura Ibanez, BS; Gail P. Jarvik, MD 

PhD; Suman Jayadev, MD; Lee-Way Jin, MD PhD; Kimberly Johnson, MSW PhD; Leigh 

Johnson, PhD; Bruce Jones, PhD; Gyungah Jun, PhD; M. Ilyas Kamboh, PhD; Moon Il 

Kang, PhD; Anna Karydas, BA; Mindy J. Katz, MPH; John S.K. Kauwe, PhD; Jeffrey A. 

Kaye, MD; C. Dirk Keene, MD PhD; Benjamin Keller, PhD; Aisha Khaleeq, MD; Ronald 

Kim, MD; Janice Knebl, DO; Neil W. Kowall, MD; Joel H. Kramer, PsyD; Walter A. 

Kukull, PhD; Brian W. Kunkle, PHD MPH; Amanda P. Kuzma, MS; Frank M. LaFerla, 

PhD; James J. Lah, MD PhD; Eric B. Larson, MD MPH; Melissa Lerch PhD; Alan J. 

Lerner MD; Yuk Ye Leung, PhD; James B. Leverenz, MD; Allan I. Levey, MD PhD; 

Andrew P. Lieberman, MD PhD; Richard B. Lipton, MD; Oscar L. Lopez, MD; Kathryn L. 

Lunetta, PhD; Constantine G. Lyketsos, MD MHS; Douglas Mains, DrPH; Jennifer 

Manly, PhD; Logue Mark, PhD; David Marquez,PhD; Daniel C. Marson, JD PhD; Eden 

R. Martin, PhD; Eliezer Masliah, MD; Paul Massman, PhD; Arjun V. Masurkar, MD PhD; 

Richard Mayeux, MD; Wayne C. McCormick, MD MPH; Susan M. McCurry, PhD; Stefan 

McDonough, PhD; Ann C. McKee, MD; Marsel Mesulam, MD; Jesse Mez, PhD; Bruce 

L. Miller, MD; Carol A. Miller, MD; Charles Mock, PhD; Abhay  Moghekar, MD; Thomas 

J. Montine, MD PhD; Edwin Monuki, Sean D. Mooney, PhD; John C. Morris, MD; 

Shubhabrata  Mukherjee, PhD; Amanda J. Myers, PhD; Adam C. Naj, PhD; Trung 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


40 

 

Nguyen, PhD; James Noble, PhD; Kelley Nudelman, PhD; Sid E. O’Bryant, PhD; Kyle 

Ormsby, PhD; Marcia Ory, PhD MPH; Raymond Palmer, PhD; Joseph E. Parisi, MD; 

Henry L. Paulson, MD PhD; Valory Pavlik, PhD; David Paydarfar, MD; Victoria Perez, 

BS; Margaret A. Pericak-Vance, PhD; Ronald C. Petersen, MD PhD; Marsha Polk, BS; 

Liming Qu, MS; Mary Quiceno, MD; Joseph F. Quinn, MD; Ashok Raj, MD; Farid 

Rajabli, PhD; Vijay Ramanan, PhD; Eric M. Reiman, MD; Joan S. Reisch, PhD; 

Christiane Reitz, MD PhD; John M. Ringman, MD; Erik D. Roberson, MD PhD; Monica 

Rodriguear, MA; Ekaterina Rogaeva, PhD; Howard J. Rosen, MD; Roger N. Rosenberg, 

MD; Donald R. Royall, MD; Mary Sano, PhD; Andrew J. Saykin, PsyD; Gerard D. 

Schellenberg, PhD; Julie A. Schneider, MD; Lon S. Schneider, MD; William W. Seeley, 

MD; Richard M. Sherva, PhD; Dean K. Shibata, PhD; Scott Small, MD; Amanda G. 

Smith, MD; Janet Smith, BS; Yeunjoo Song, PhD; Salvatore Spina, MD; Peter St 

George-Hyslop, MD FRCP; Robert A. Stern, PhD; Alan Stevens, PhD; Stephen 

Strittmatter, MD PhD; David Sultzer, BS; Russell H. Swerdlow, MD; Andrew Teich, PhD; 

Jeffrey Tilson, PhD; Giuseppe Tosto, MD; John Q. Trojanowski, MD PhD; Juan C. 

Troncoso, MD; Debby W. Tsuang, MD; Otto Valladares, MS; Vivianna M. Van Deerlin, 

MD PhD; Christopher Van Dyck, MD; Linda J. Van Eldik, PhD; Jeffery M. Vance, MD 

PhD; Badri N. Vardarajan, MS; Robert Vassar, PhD; Harry V. Vinters, MD; Li-San Wang, 

PhD; Sandra Weintraub, PhD; Kathleen A. Welsh-Bohmer, PhD; Nick Wheeler, PhD; 

Ellen Wijsman, PhD; Kirk C. Wilhelmsen, MD PhD; Benjamin Williams, MD; Jennifer 

Williamson, MS; Henrick Wilms, MD; Thomas S. Wingo, MD; Thomas Wisniewski, MD; 

Randall L. Woltjer, MD PhD; Martin Woon, PhD; Steven G. Younkin, MD PhD; Lei Yu, 

PhD; Yi Zhao, MS; Xiongwei Zhou, PhD; Congcong Zhu, PhD.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


41 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


42 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305737doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305737


 

FIGURE 1. OTTERS Workflow. OTTERS uses eQTL summary data and a LD reference 

panel to train five imputation models (P+T 0.001, P+T 0.05, lassosum, SDPR, PRS-CS) 

(Stage I). These models are subsequently applied to AD GWAS summary data and the 

p-values of valid models are combined using ACAT-O (Stage II). We filter the results 

based on concordant z scores and validate the AD-TWAS associations using RNA-seq 

data (Stage III & IV). Finally, we further explore the AD-TWAS association using fine-
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mapping and re-running of the OTTERS workflow using only credible eQTLs to assess 

whether a sparse or polygenic architecture is needed for the TWAS association (Stage 

V). Created in BioRender.com. Abbreviations: LD, Linkage Disequilibrium; GReX, 

genetically-regulated gene expression; TWAS, Transcriptome-wide association study; 

GWAS, Genome-wide association study; AD, Alzheimer’s Disease; eQTL, expression 

quantitative trait loci; OTTERS, Omnibus Transcriptome Test using Expression 

Reference Summary data; SuSiE, Sum of Single Effects model 
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OTTERS Association OTTERS Components Validation 

Chr Gene Tissue Type* 
ACAT-OCON 

p† lassosum: z (p) SDPR: z (p) PRS-CS: z (p) P0.001: z (p) P0.05: z (p) T-test: t-value (p)‡ 

11 MYBPC3 Blood GWAS-Proximal 4.43e-08 1.19 (0.0286)  14.62 (5.1e-06)  1.94 (0.0493)  1.41 (1.75e-08)  1.41 (1.8e-08)  3.25 (6.54e-04) 

3 C3orf62 Brain Novel 2.25e-59 10.63 (4.5e-60)  11.5 (4.13e-46)  1.12 (0.103)  0.49 (0.0986)  0.5 (0.0951)  3.41 (3.7e-04) 

12 SLC11A2 Brain Novel 4.39e-14 -4.97 (2.19e-14)  -  -  -1.21 (4.17e-05)  -  -3.75 (1.06e-04) 

12 PRKAG1 Brain Novel 1.73e-07 -  -3.32 (3.84e-05)  -0.65 (0.341)  -1.61 (4.34e-08)  -0.59 (0.0506)  -6.12 (1.36e-09) 

15 LYSMD4 Brain Novel 5.58e-26 -2.28 (4.48e-04)  -8.63 (1.12e-26)  -2.23 (1.11e-03)  -0.06 (0.84)  -0.06 (0.829)  -4.19 (1.79e-05) 

19 ZNF439 Brain Novel 2.21e-52 9.94 (1.1e-52)  -  2.45 (3.47e-04)  -  -  3.28 (5.73e-04) 

1 PSMA5 Brain GWAS-Proximal 5.25e-08 -  -4.59 (1.31e-08)  -2.48 (2.81e-04)  -0.97 (9.54e-04)  -0.45 (0.132)  -7.19 (2.16e-12) 

10 ANXA11 Brain GWAS-Proximal 3.37e-12 -  5.77 (8.42e-13)  2.13 (1.8e-03)  0.37 (0.214)  0.31 (0.305)  3.54 (2.31e-04) 

11 MTCH2 Brain GWAS-Proximal 3.12e-07 -  -  -3.57 (1.79e-07)  -1.51 (2.71e-07)  -1.41 (2.98e-06)  -5.37 (7.48e-08) 

11 MADD Brain GWAS-Proximal 6.64e-08 -  -  -2.68 (8.89e-05)  -1.65 (2.22e-08)  -1.31 (1.27e-05)  -6.07 (1.77e-09) 

17 CYB561 Brain GWAS-Proximal 1.99e-33 -0.51 (0.429)  -9.83 (3.98e-34)  -2.95 (1.62e-05)  -0.05 (0.863)  -0.07 (0.808)  -5.15 (2.26e-07) 

 

TABLE 1. Validated TWAS associations using AD GWAS summary statistics. 
* Whether an association is deemed novel or GWAS-Proximal is based on whether a 1 
Mb window around the transcription start and end site overlaps with a 1 Mb window 
around a known AD/ADRD GWAS loci.  
† ACAT-OCON p derived from p-values generated during Stage III (Brain Cortex: 
Bonferroni-corrected p<5.39×10-6; Blood: Bonferroni-corrected p<6.93×10-6) (see Figure 
1) 
‡ One-tailed t-test statistics and p-values, direction of effect determined based on 
direction of AD-TWAS association 

Bold text indicates p-values significant after Bonferroni correction 

Abbreviations: TWAS, Transcriptome-wide association study; GWAS, Genome-wide 
association study; AD, Alzheimer’s Disease; ADRD, Alzheimer’s Disease and Related 
Dementias; OTTERS, Omnibus Transcriptome Test using Expression Reference 
Summary data
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OTTERS Association OTTERS Components 

Chr Gene Tissue Type* ACAT-O p
† lassosum: z (p) SDPR: z (p) PRS-CS: z (p) P0.001: z (p) P0.05: z (p) 

11 MYBPC3 Blood GWAS-Proximal 6.48e-44 - - - 13.90 (6.48e-44)  13.90 (6.48e-44)  

19 ZNF439 Brain Novel 3.79e-97 20.92 (3.79e-97)  -  - -  -  

11 MTCH2 Brain GWAS-Proximal 1.81e-13 -5.51 (3.53e-08) -7.57 (3.62e-14) -6.54 (6.04e-11)  -5.54 (3.05e-08)  -6.24 (4.43e-10)  

11 MADD Brain GWAS-Proximal 1.51e-07 -0.72 (0.474) -5.54 (3.01e-08) -3.09 (1.99e-03)  -0.16 (0.875)  -0.36 (0.716)  

17 CYB561 Brain GWAS-Proximal 8.81e-20 -2.05 (0.040)  -9.28 (1.76e-20)  -1.90 (0.057)  -0.66 (0.511)  -0.66 (0.509)  

 

TABLE 2. Validated TWAS associations using fine-mapped causal eQTLs applied to AD 
GWAS summary statistics. 
* Whether an association is deemed novel or GWAS-Proximal is based on whether a 1 
Mb window around the transcription start and end site overlaps with a 1 Mb window 
around a known AD/ADRD GWAS loci.  
† ACAT-O p derived from p-values generated during Stage V: Fine-mapping (Brain 
Cortex: Bonferroni-corrected p<5.39×10-6; Blood: Bonferroni-corrected p<6.93×10-6) 
(see Figure 1) 

Bold text indicates p-values significant after Bonferroni correction 

Abbreviations: TWAS, Transcriptome-wide association study; GWAS, Genome-wide 
association study; AD, Alzheimer’s Disease; ADRD, Alzheimer’s Disease and Related 
Dementias; eQTL, expression quantitative trait loci; OTTERS, Omnibus Transcriptome 
Test using Expression Reference Summary data
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