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Abstract: Rare and ultra-rare genetic conditions are estimated to impact nearly 1 in 17 people 
worldwide, yet accurately pinpointing the diagnostic variants underlying each of these conditions 
remains a formidable challenge. Because comprehensive, in vivo functional assessment of all possible 
genetic variants is infeasible, clinicians instead consider in silico variant pathogenicity predictions to 
distinguish plausibly disease-causing from benign variants across the genome. However, in the most 
difficult undiagnosed cases, such as those accepted to the Undiagnosed Diseases Network (UDN), 
existing pathogenicity predictions cannot reliably discern true etiological variant(s) from other 
deleterious candidate variants that were prioritized through N-of-1 efforts. Pinpointing the disease-
causing variant from a pool of plausible candidates remains a largely manual effort requiring extensive 
clinical workups, functional and experimental assays, and eventual identification of genotype- and 
phenotype-matched individuals. Here, we introduce VarPPUD, a tool trained on prioritized variants 
from UDN cases, that leverages gene-, amino acid-, and nucleotide-level features to discern pathogenic 
variants from other deleterious variants that are unlikely to be confirmed as disease relevant. VarPPUD 
achieves a cross-validated accuracy of 79.3% and precision of 77.5% on a held-out subset of uniquely 
challenging UDN cases, respectively representing an average 18.6% and 23.4% improvement over nine 
traditional pathogenicity prediction approaches on this task. We validate VarPPUD’s ability to 
discriminate likely from unlikely pathogenic variants on synthetic, GAN-generated candidate variants 
as well. Finally, we show how VarPPUD can be probed to evaluate each input feature’s importance and 
contribution toward prediction—an essential step toward understanding the distinct characteristics of 
newly-uncovered disease-causing variants. 
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Significance Statement: Patients with chronic, undiagnosed and underdiagnosed genetic conditions 
often endure expensive and excruciating years-long diagnostic odysseys without clear results. In many 
instances, clinical genome sequencing of patients and their family members fails to reveal known 
disease-causing variants, although compelling variants of uncertain significance are frequently 
encountered. Existing computational tools struggle to reliably differentiate truly disease-causing 
variants from other plausible candidate variants within these prioritized sets. Consequently, the 
confirmation of disease-causing variants often necessitates extensive experimental follow-up, including 
studies in model organisms and identification of other similarly presenting genotype-matched 
individuals, a process that can extend for several years. Here, we present VarPPUD, a tool trained 
specifically to distinguish likely from unlikely to be confirmed pathogenic variants that were 
prioritized across cases in the Undiagnosed Diseases Network. By evaluating the importance and 
impact of different input feature values on prediction, we gain deeper insights into the distinctive 
attributes of difficult-to-identify diagnostic variants. For patients who remain undiagnosed following 
comprehensive whole genome sequencing, our new method VarPPUD may reveal pathogenic variants 
amid a pool of candidate variants, thereby advancing diagnostic efforts where progress has otherwise 
stalled.  
 
Introduction 
Rare and undiagnosed suspected genetic conditions cumulatively affect an estimated 25-30 million 
Americans and millions more worldwide.1 These diseases are typically associated with premature 
mortality or lifelong disability.2,3 However, each specific genetic condition may impact only a handful 
of individuals or as few as a single individual or family, hindering traditional case-control statistical 
approaches to study disease. As a result, diagnosing these conditions and uncovering disease-causing 
variants and mechanisms of action is extremely difficult. Indeed, patients suffering from rare disorders 
can spend multiple years and hundreds of thousands of dollars in pursuit of a diagnosis.4 Despite a 
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steady increase in identifying the genetic aberrations that underlie rare Mendelian disorders, many 
conditions remain undiagnosed, in large part because patients’ presenting symptoms and disease-
causing variants do not match known diseases.  
 
To facilitate the diagnosis of rare and novel genetic disorders and further our collective understanding 
of the pathogenesis of these diseases, the United States’ National Institutes of Health funded the 
Undiagnosed Diseases Network (UDN) in 2014.5–7 Patients who are eventually referred to and accepted 
into the UDN undergo an extensive clinical evaluation with medical specialists at one of 12 clinical 
research sites across the country.8 The causes of undiagnosed disease are multifaceted, with genetic 
variants considered a primary factor.9 As such, in a majority of cases, UDN patients and their relevant 
affected and unaffected family members also receive whole genome sequencing. This data is 
computationally analyzed and filtered to select for variants that are rare, inherited in appropriate 
patterns, and have high functional impacts on phenotypically-relevant genes.10 Even after this process, 
not all prioritized variants are causal, and indeed most have no impact on health. Improved 
discernment of candidate variants that are eventually confirmed pathogenic is therefore of utmost 
importance.  
 
Several computational tools have been developed to differentiate deleterious and pathogenic variants 
from benign variants in various disease contexts.11–13 These in silico approaches have utilized diverse 
features based on amino acid sequence and protein structure (e.g., PolyPhen214), evolutionary 
conservation (e.g., MutationAssessor15, PROVEAN16), and phenotypic and other biomedical 
associations (e.g., SIFT17, MutationTaster18). Various underlying prediction models have also been 
explored, including hidden Markov models (e.g., FATHMM19), supervised machine learning (e.g., 
VEST20) and ensemble approaches (e.g., REVEL21, CADD22). These algorithms have been utilized 
extensively and successfully to prioritize disease-causing variants of uncertain significance (VUS) in 
clinical contexts, demonstrating the utility of predictive algorithms in diagnostic medicine. 
Nevertheless, given a set of rare, functional, and clinically plausible candidate variants uncovered in an 
undiagnosed patient, existing pathogenicity predictors cannot easily distinguish disease-causing from 
non-causal or unlikely to be confirmed causal variants. Moreover, models underlying existing 
pathogenicity predictors tend to abstract away the contribution of each individual input feature when 
producing a final classification or score, making prediction interpretability and determination of 
variants’ functional impacts impossible. 
 
Here, we present VarPPUD (Variant Post Prioritization for Undiagnosed Disorders), a random forest-
based model that classifies VUS as likely- or unlikely-to-be pathogenic based on gene-level 
functionality, nucleotide-level evolutionary constraint, physicochemical properties of amino acids, and 
existing variant deleteriousness predictions. VarPPUD is trained on a uniquely challenging set of real-
world diagnostic and candidate variants that were uncovered in patients in the UDN through 
extensive manual efforts by clinical experts. Unlike other rare disease cohorts,23 the UDN accepts 
patients with both childhood- and adult-onset conditions that span a wide range of primary symptoms. 
A predictor trained on causal variants from this cohort would thus be generalizable across disease 
contexts. We show that VarPPUD is better able to discern likely pathogenic from other candidate 
variants relative to existing methods on this real-world dataset as well as on a synthetic dataset 
produced via a Generative Adversarial Network.24–29 Finally, VarPPUD’s underlying framework 
enables us to use Shapley Additive Explanation values30 to probe the contribution of each input feature 
and identify, for each prediction, the specific lines of evidence used to designate a candidate variant as 
likely pathogenic or not. 
 
Materials and Methods 
Variant compilation and pathogenicity classification. Upon acceptance to the UDN, each patient is 
assigned to one of 12 clinical sites where a team of medical, genetic, and bioinformatic specialists works 
collaboratively to find a diagnosis. These teams perform extensive in-person clinical evaluations of 
affected patients and relevant family members and analyze patients’ medical records, clinical reports, 
and prior or newly requested sequencing data to identify candidate disease-causing genetic variants.10 
Clinical teams upload these prioritized genetic variants to the UDN Data Management and 
Coordinating Center and annotate them with a status of “solved”, “candidate”, or “rejected” and an 
interpretation of “pathogenic”, “likely pathogenic”, “uncertain significance”, “likely benign” or 
“benign” as recommended by the College of American Pathologists.31 All per-patient prioritized 
variants, standardized phenotype terms, demographic information and clinical data were subsequently 
loaded into a PIC-SURE instance for fast multi-modal querying (https://avillach-
lab.hms.harvard.edu/pic-sure). Note that only confirmed pathogenic or highly likely pathogenic 
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variants are submitted to ClinVar. From the 1733 patients evaluated in the UDN as of December 2021, 
we selected 474 SNV/indel variants with a status of “solved” or “candidate” and an available 
pathogenicity interpretation (Figure 1A). Each variant was prioritized in exactly one unique patient for 
a total of 474 patients considered. Population frequency analyses suggest that most variants annotated 
as “uncertain significance” are likely benign.32 Although some VUS may be disease causal, confirming 
their pathogenicity may be prohibitively difficult given a gene’s lack of model organism orthologs, 
patient’s exhibited phenotypes, and/or variant’s functional impact. We therefore reclassified all 
variants into two groups: 222 “likely pathogenic” variants with an original interpretation of 
“pathogenic” or “likely pathogenic”, and 252 “unlikely pathogenic” variants with an original 
interpretation of “uncertain significance”, “likely benign” or “benign”. Note that we use the phrase 
“unlikely pathogenic” to encompass both variants that are truly unlikely to be pathogenic as well as 
variants that are unlikely to be confirmed pathogenic in a short amount of time. Patient demographics 
grouped by prioritized variant category can be found in Table 1. 
 
Gene-level features. We generated 12 gene-level features for each of the 474 variants in our real-world 
UDN dataset. These include: (1) number of unique phenotype terms associated with the gene from the 
Human Phenotype Ontology33 (HPO, https://hpo.jax.org/app/), (2) number of pathways that the 
gene appears in as listed in the Comparative Toxicogenomics Database34 (CTD, http://ctdbase.org/), 
(3) number of unique chemicals known to interact with the gene from CTD, (4) number of specific 
interactions between the gene and any chemical (i.e., chemical A inhibits the enzyme reaction of gene 
X, chemical A also reduces the expression of gene X) from CTD, (5) number of unique ways in which 
any chemical can interact with the gene (e.g., increases expression, affects folding, decreases reaction) 
from CTD, (6) number of rare diseases associated with the gene as listed in GeneAnalytics35 
(https://geneanalytics.genecards.org/), (7) number of total diseases associated with the gene from 
GeneAnalytics, (8) evolutionary age of the gene from ProteinHistorian36 
(https://proteinhistorian.docpollard.org/), (9) number of non-human species with an ortholog to the 
gene from phylogenetic profiles37 in ProteinHistorian, (10) dN/dS scores indicating selective direction 
and pressure from Evola38 (http://www.h-invitational.jp/evola/search.html), (11) essentiality scores 
indicating impact if both gene copies are lost from OGEE39 (https://v3.ogee.info/#/home), and (12) 
haploinsufficiency scores40 indicating impact if only one gene copy is lost.  
 
Amino acid-level features. We selected 21 continuous-valued physicochemical and biochemical 
properties defined for each amino acid type (e.g., polarity, molecular weight) from AAindex41 
(https://www.genome.jp/aaindex/, Table S1). We determined the reference and alternate amino 
acid(s) for each prioritized variant wherever possible by retrieving their Human Genome Variation 
Society (HGVS) protein nomenclatures from LOVD (https://databases.lovd.nl/shared/variants) and 
MyGene2 (https://mygene2.org/MyGene2/genes).  
 
For each amino acid property x, we compute an amino-acid based feature as ∆x(ref, alt) = fx(alt) – fx(ref), 
where fx is the value of property x for the query amino acid, ref is the reference amino acid sequence, 
and alt is the alternate amino acid sequence. We define fx(stop) = 0 where stop is a termination codon 
and fx(A,B...,Z) = fx(A) + fx(B) + … + fx(Z) where A, B, and Z are individual amino acids. For frameshift 
variants, we set the reference amino acids to be the original protein sequence from the position of the 
first changed amino acid through the original termination codon, and the alternate amino acids to be 
the new sequence from the position of the first changed amino acid through the new termination 
codon. We did not encounter any variants that resulted in the loss of a termination codon, but for 
completeness for this case, we consider up to twenty amino acids past the original termination codon 
to be the alternate amino acids. 
 
Nucleotide-level features. For each prioritized variant, we queried its impacted gene, transcript, and 
annotated cDNA change in LOVD, MyGene2 and ClinVar of UDN at NIH 
(https://www.ncbi.nlm.nih.gov/clinvar/submitters/505999/) to determine the variant’s chromosome, 
genomic position, reference nucleotide(s) and alternate nucleotide(s) with respect to human genome 
build hg19/GRCh37. With variants in this format, we then computed deleteriousness or pathogenicity 
prediction scores for five other methods—SIFT17 (https://sift.bii.a-star.edu.sg/), VEST420 
(http://cravat.us/CRAVAT/), PROVEAN16 (http://provean.jcvi.org/index.php), FATHMM19 
(http://fathmm.biocompute.org.uk/) and CADD22 (https://cadd.gs.washington.edu/)—using their 
default, recommended parameters. Note that the first two predictors score only missense variants, 
PROVEAN also scores in-frame indels, and the last two predictors additionally score frameshift indels, 
nonsense and non-coding splice-altering variants. 
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Training the random forest classifier. We randomly split our 222 likely pathogenic and 252 unlikely 
pathogenic prioritized variants into training and validation sets in a 9:1 ratio, preserving the relative 
proportion of each variant type across the two sets. We then used Python’s Scikit-learn42 package to 
train a random forest classifier on the training set using 5-fold cross validation with bootstrapping to 
optimize model hyperparameters and reduce overfitting. Specifically, we randomly sampled with 
replacement from the training data to generate five folds—each with equivalent numbers of strongly 
and weakly pathogenic prioritized variants—and used each fold in turn as a held-out test set while 
training the model on the remaining four folds; we repeated this process 10 times. We also specified 
that each decision tree in the random forest model considered at most seven input features, minimized 
Gini impurity for each node split, had a maximum depth of five, had internal nodes with at least 30 
samples, and had leaf nodes with at least 10 samples.  
 
Imputing missing feature values. Values for the 12 gene-based, 21 amino acid-based and 5 nucleotide-
based features are missing in up to 37.6% of prioritized variants (Table 2). Because missing feature 
values may cause performance degradation in predictive models, we utilize Multivariate/Multiple 
Imputation in Chained Equations (MICE) to fill these in.43,44 Briefly, missing values for each feature are 
initialized with the mean of the non-missing values for that feature. Then, for each feature at a time, we 
fit a linear regressor using all other features as input (utilizing both the true observed and filled-in 
missing values) and the selected feature as output. We apply this fitted regressor to predict and fill in 
missing values for the selected feature. We then iteratively repeat this process over all features with 
missing values until convergence where values are no longer updated using the LinearRegression 
and IterativeImputer functions in Python’s Scikit-learn package. Imputing missing feature values 
boosted VarPPUD’s classification accuracy by 18.6%, precision (with respect to likely pathogenic 
variants) by 23.4%, and F-score by 14.5% during five-fold cross validation on the training set. Imputing 
missing values improved the performance of VarPPUD on the held-out validation set as well (Table 3). 
The final VarPPUD random forest model trained with imputed feature values had 340 individual 
decision trees.  
 
Generating synthetic testing data. We utilized the generative adversarial network-based method 
CTGAN28 to generate additional synthetic variants from the unimputed feature vectors of UDN 
prioritized variants. We specified that all feature values for synthesized data must be within their 
appropriate ranges and of the correct data type (i.e., integer or float, Table 2) with reasonable constraint 
design due to the correlation between features. For example, the number of associated rare diseases 
cannot be greater than the number of total associated diseases. Just like the real-world data they were 
based on, the resulting 10,000 synthetic variants had some missing feature values, so we randomly 
selected 250 likely pathogenic and 250 unlikely pathogenic synthetic variants with no missing feature 
values. We then randomly divided these variants into five groups with 50 likely pathogenic and 50 
unlikely pathogenic synthetic variants each, and evaluated VarPPUD’s predictive performance on each 
of these five synthetic test sets.   
 
Testing alternate pathogenicity predictors. We compared VarPPUD to nine related variant 
pathogenicity predictors, five of which were used as input features in our model (i.e., SIFT, VEST4, 
PROVEAN, FATHMM, and CADD). We also retrieved variant pathogenicity predictions from 
PolyPhen-2 (HumDiv and HumVar)14 (http://genetics.bwh.harvard.edu/pph2/bgi.shtml), Mutation 
Taster45 (https://www.mutationtaster.org/) and Mutation Assessor15 
(http://mutationassessor.org/r3/). We considered likely and unlikely pathogenic variants to be 
positive and negative examples respectively to compute predictive accuracy, precision, recall, F1 score, 
and area under the receiver operating characteristic curve (AUROC) for each method on the held-out 
validation set. We also evaluated our model through area under the precision–recall curve (AUPRC) 
for the external validation with synthetic dataset. 
 
Measuring feature contribution. We measure how each of our 38 input features contributes toward 
prediction on our real-world validation set in two ways. First, we randomly shuffled the values for 
each feature in turn and measured how much overall accuracy on the validation set dropped using the 
permutation_importance function from Python’s Scikit-learn package. Then, we utilized the 
Shapley Additive exPlanations (SHAP) package to compute and visualize Shapley values for each 
individual prediction.30,46 Negative Shapley values indicate a feature’s contribution toward predicting a 
variant to be unlikely pathogenic, whereas positive Shapley values indicate a feature’s contribution 
toward predicting a variant to be likely pathogenic. To determine the overall (rather than per-
prediction) contribution of each feature, we computed the mean of the absolute values of each feature’s 
SHAP values across all variants in the validation set. Finally, we computed SHAP interaction values, 
capturing how pairs of feature values contribute to prediction.  
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Incorporating patient demographic features. Each of the starting 222 likely pathogenic and 252 
unlikely pathogenic variants from real-world UDN patients are associated with additional patient 
information, including age at first symptom onset, “current” age at evaluation, self-identified gender, 
self-identified ethnicity (Hispanic/Latino or otherwise), and self-identified race. For each of these 
features, we retrained VarPPUD ten times using the original 38 features and the new demographic 
feature. Each retraining used a different random seed to split the starting variants into training and 
validation sets in a 9:1 ratio. Changes to predictive performance was measured as the change in area 
under the receiver-operator curve compared to the version of VarPPUD with no demographic features.  
 
Results 
Patient demographics. We trained a new variant pathogenicity predictor, VarPPUD, on 474 unique 
variants impacting 413 genes that were originally prioritized through extensive manual and 
computational efforts in 474 patients enrolled in the Undiagnosed Diseases Network (UDN).10 These 
patients’ symptoms began at age 6.1 on average, and they endured multiple failed diagnostic attempts 
for nearly 9 years on average before being accepted into and evaluated by the UDN (Table 1). As 
expected, the genetic variants eventually prioritized in their cases are extremely unique and often had 
never been previously identified as disease-causing.9 The candidate and solved genetic variants from 
these patients were designated by clinical teams as likely pathogenic (n=222) or otherwise (called 
unlikely pathogenic [n=252] herein); VarPPUD was trained to discriminate between these two classes 
(see Methods for details). Our cohort of patients included an equivalent number of female and male 
patients (232 [48.9%] vs. 242 [51.1%]) with a majority classified as white (356 [76.1%]). Patients’ primary 
symptoms in both the likely and unlikely pathogenic sets were mostly neurologic (118 [53.9%] vs. 107 
[43.1%], respectively) or musculoskeletal (38 [17.4%] vs. 34 [13.7%], respectively). Variants in patients 
with primarily rheumatologic (10), oncologic (2) or craniofacial (2) symptoms were exclusively in the 
unlikely pathogenic class. Overall, patients’ primary symptom categories between the two variant 
classes were evenly distributed, with an average ratio of 1:1.2 between the likely and unlikely 
pathogenic variant classes across all primary symptom categories. 
 
VarPPUD’s predictive ability on real-world and synthetic variants. We held out 10% of the real-
world prioritized variants as a validation set, and used the remaining 90% of the data to train and test 
VarPPUD. Our model achieved an overall classification accuracy of 0.793 and a precision in detecting 
likely pathogenic variants of 0.775 on the validation set (Table 3). Due to the small number of variants 
in our validation set, we also generated five sets of synthetic variants using a GAN-based technique 
(see Methods for details); each synthetic test set contained 50 likely and 50 unlikely pathogenic 
variants. VarPPUD achieved an area under the receiver-operator characteristic curve (AUROC) of 0.826 
to 0.891 (0.860 on average) across these synthetic test sets, and an area under the precision-recall curve 
(AUPRC) of 0.807 to 0.887 (0.848 on average) with respect to likely pathogenic variants (Figure 2). 
These results suggest that VarPPUD can stably discriminate between likely and unlikely pathogenic 
variants in both real-world and synthetic datasets.  
 
Comparison to related pathogenicity predictors. VarPPUD is trained on a unique set of variants that 
were all initially prioritized due to their potential to cause disease; discriminating between likely and 
unlikely pathogenic variants within this set is a goal that existing pathogenicity predictors were not 
specifically designed nor optimized for. Moreover, some existing pathogenicity predictors only 
generate predictions for specific variant types (e.g., PolyPhen-2, SIFT), and therefore could not generate 
predictions for two (CADD) to 22 (PolyPhen-2) variants in our validation set. Nevertheless, we sought 
to compare VarPPUD’s ability to distinguish likely from unlikely pathogenic variants across all variant 
types—including large protein-coding indels, nonsense and synonymous variants—to the ability of 
nine related pathogenicity predictors to perform this same task. Estimating the pathogenicity of all 
variant types is especially desirable in still-undiagnosed cases where known, disease-causing, protein-
altering SNV/indel variants were not uncovered. To this end, we computed pathogenicity or 
deleteriousness predictions for all variants in our validation set, where possible, using SIFT,17 VEST4,20 
PROVEAN,16 FATHMM,19 CADD,22 Mutation Taster,45 Mutation Assessor,15 and two versions of 
PolyPhen-2 (i.e., disease variants are differentiated from variants at divergent sites across close 
mammalian homologs [HumDiv] or from common human polymorphisms unassociated with disease 
[HumVar]).14 We found that VarPPUD achieved higher overall prediction accuracy, higher precision in 
identifying likely pathogenic variants, a higher F-score, and a higher AUROC than all other methods 
on the held-out validation set of real-world prioritized variants (Table 3). However, all but two 
methods (PROVEAN and Mutation Assessor) achieved higher recall of likely pathogenic variants than 
VarPPUD, with Mutation Taster achieving the highest recall across all methods. As previously 
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mentioned, these alternate predictors were trained to distinguish pathogenic from benign (rather than 
from unlikely pathogenic) variants across the whole genome, rather than within a prioritized variant 
list, and therefore would predict nearly all the variants in our validation set to be likely pathogenic. As 
such, it is expected that they would have higher recall of likely pathogenic variants within this set. 
Nevertheless, VarPPUD achieved a comparably high recall of 0.829 on our validation set. Moreover, we 
found that although the imputation of missing feature values improved VarPPUD’s predictive 
performance, even the version of VarPPUD without feature value imputation better identified likely 
pathogenic variants relative to other existing tools on nearly all evaluation metrics. These results 
demonstrate the relatively superior ability of VarPPUD to distinguish likely from unlikely pathogenic 
variants within a set of prioritized, candidate disease-causing variants.  
 
Importance and contribution of VarPPUD features. We next wanted to evaluate the importance of 
each of VarPPUD’s features. VarPPUD incorporates 12 gene-level features (e.g., number of associated 
diseases or pathways, evolutionary age, essentiality and haploinsufficiency), 21 features capturing 
putative physicochemical changes due to amino acid substitutions, and five deleteriousness scores 
from existing in silico methods (see Methods for details). Although some amino acid-based features 
were highly correlated with each other as expected (e.g., polarity decreases as number of hydrogen 
bonds increases, Pearson Correlation Coefficient [PCC] > 0.9, Figure 3a), most features showed low 
correlations with each other, particularly between features from different categories (-0.1 < PCC < 0.1). 
The five in silico deleteriousness features tended to be most highly correlated with each other, with 
CADD, FATHMM, and VEST4 showing the lowest relative correlations amongst each other and SIFT 
and PROVEAN showing the highest relative correlations. Overall, most of VarPPUD’s input features 
are uncorrelated and thus have the potential to contribute complementary information relevant for 
variant pathogenicity prediction.   
 
We first investigated how individual features contribute to VarPPUD’s overall discriminatory power. 
To this end, we trained ablated versions of VarPPUD using subsets of input features and evaluated the 
resulting models’ performance using precision, accuracy, F-score and recall of likely pathogenic 
variants. Specifically, we increasingly included each feature one by one, starting with gene-based 
features, then also including amino acid-based features, and finally including the nucleotide variant-
based features in the same order as listed in Table 2. Each new predictor was evaluated using synthetic 
test sets as before. As expected, we found that the best performance was achieved by the version of 
VarPPUD that utilized all 38 features (accuracy of 0.813, Figure 3b). Intriguingly, although the 
inclusion of more features resulted in a general trend of better performance, we found that iteratively 
including new features individually did not always result in improved performance. For instance, 
including the total number of gene–chemical interactions for a gene as a feature resulted in a worse-
performing predictor than including only the total number of phenotypes associated with the gene, the 
number of pathways the gene is a part of, and the number of unique chemicals the gene interacts with. 
We hypothesized that the interdependency of some features may require pairs or groups of features to 
be present to be exploited for a discriminatory advantage by our random forest model.  
 
Since the version of VarPPUD that utilized all 38 features had the best performance, we next excluded 
each feature one-by-one to better understand the relative importance of each feature based on the 
overall drop in predictive performance. Specifically, we permuted the values for each feature in turn 
across all variants in the synthetic test sets and measured VarPPUD’s predictive accuracy (Figure 3c). 
We found that values for nucleotide-level CADD and VEST4 features and values for the number of 
total and rare diseases associated with the gene were most important for accurately determining 
whether a prioritized variant was likely or unlikely to be pathogenic.  
 
Asymmetric influence of features to model prediction. Certain values of some features may strongly 
implicate a variant as likely pathogenic, but certain values for an entirely different set of features may 
strongly indicate that a variant is unlikely pathogenic. To assess these potential differences and 
evaluate how and whether specific feature values impact the directionality of VarPPUD’s predictions, 
we next generated and analyzed Shapley Additive exPlanations (SHAP) values (Figure 3d). Briefly, for 
each individual prediction, a negative SHAP value for a specific feature suggests that the value of that 
feature contributed to a prediction of unlikely pathogenic, whereas a positive SHAP value for a specific 
feature suggests that that feature’s value contributed to a prediction of likely pathogenic. By overlaying 
SHAP values with feature values, we can see whether high or low feature values contribute to a likely 
or unlikely pathogenic prediction. As expected, we found that high and low CADD scores respectively 
corresponded to likely and unlikely pathogenic predictions. In contrast however, we found that 
although a small number of associated gene phenotypes often strongly contributed to a prediction of 
unlikely pathogenic, many associated gene phenotypes did not necessarily indicate a prediction of 
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likely pathogenic. The number of rare and total diseases had a similarly asymmetric impact; small 
numbers of associated diseases with a gene resulted in a strong prediction of unlikely pathogenic, but a 
relatively large number of total and rare associated diseases did not indicate a prediction of likely 
pathogenic. It is well established that larger numbers of annotated phenotypes and associated diseases 
with a gene contribute to the likelihood of variants within that gene being pathogenic overall. 
However, once a set of candidate variants across the genome has been prioritized for a particular 
patient, these features are no longer as important for selecting the exact disease-causing variant from 
the other candidates. Our analysis of VarPPUD’s feature importance in this manner illustrates how 
distinguishing likely from unlikely pathogenic variants within a set of prioritized, candidate variants is 
an inherently different task from identifying pathogenic variants genome-wide, and some unique 
features with counterintuitive values may be leveraged for this specific task. We did not find striking 
examples of asymmetric contributions to prediction when looking at products of feature values (Figure 
S1).  
 
Finally, we assessed the mean absolute values of SHAP values per feature across all predictions as 
another measure of overall feature importance. We found that ranking features by importance using 
this metric differed from ranking features by overall accuracy drop when feature values were 
randomized (Figure 3e). Changes to amino acid hydrophobicity and the number of side chain 
interactions, for instance, had relatively high average SHAP values, yet these features did not appear to 
result in a large performance drop when their values were randomized. Indeed, many of the features 
uniquely ranked by the average SHAP value procedure appear to correspond to features where certain 
values can be informative for predicting one variant class, but less informative for the other variant 
class. Although several individual features and pairwise combinations of features contribute strongly 
to prediction, it is possible that some features utilized by VarPPUD were not particularly useful in 
distinguishing between the pathogenicity classes described here. In general, physicochemical features 
of amino acid substitutions influenced pathogenicity prediction to a lesser extent than gene- and 
nucleotide-level features.  
 
Patient demographics are not predictive of pathogenicity. We explored whether VarPPUD’s ability to 
discern likely from unlikely pathogenic variants could be improved by incorporating patient 
demographic information alongside the gene-, amino acid- and nucleotide-level features used (Figure 
4). Although the age at first symptom onset, current age, and patient-recorded race showed promise in 
marginally increasing predictive capability, these values did not consistently improve model 
performance. Incorporating the age at first symptom onset resulted in the highest fluctuation in 
performance, and incorporating ethnicity and patient-recorded gender reduced overall predictive 
performance. Although we did not pursue further incorporation of patient-level features, it is possible 
that a more systematic and extensive effort to this end beyond the scope of this paper could be fruitful. 
 
Pathogenicity predictions for variants in the same genes. Candidate variants impacting the same gene 
across unrelated patients showing similar symptoms can sometimes be upgraded from uncertain 
significance to definitively causing disease. For example, three different variants in the gene CACNA1A 
(c.1360C>T, c.4055G>T, c.5018G>C) found in UDN patients within the UDN with primarily 
neurological symptoms were eventually confirmed as disease-causing. Similarly, three variants in 
MECP2 gene (c.538C>T, c.316C>T, c.352C>T) identified in unrelated patients with symptoms akin to 
Rett syndrome and severe encephalopathy were reclassified as pathogenic by the overseeing clinical 
teams. Our tool, VarPPUD, correctly predicted these variants as likely pathogenic. However, it is 
important to note that not all candidate variants in the same gene are necessarily relevant to disease in 
every patient. For instance, two variants in the NOD2 gene (c.2104C>T and c.2798+158C>T) were 
initially categorized as uncertain despite being found in two unrelated UDN patients with 
rheumatosis, an immune-related condition impacting the joints, muscles and ligaments. Another UDN 
patient with primarily immunological symptoms had a different NOD2 variant, c.1292C>T. VarPPUD 
predicted all three NOD2 variants as pathogenic. These variants have since been reclassified as likely 
pathogenic or pathogenic, showcasing VarPPUD’s potential as a supportive tool in reevaluating the 
pathogenicity of variants of uncertain significance.  
 
 
Discussion 
Identifying a set of putative disease-causing variants in patients with undiagnosed genetic conditions 
is a challenging, multi-step process.10 Variant prioritization often involves the genome-wide application 
of in silico pathogenicity and deleteriousness predictors to exclude common, likely benign variants 
from downstream consideration. Even after filtering out likely benign variants and restricting to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 20, 2024. ; https://doi.org/10.1101/2024.04.15.24305876doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.15.24305876
http://creativecommons.org/licenses/by-nc-nd/4.0/


variants in genes that seem relevant to a patient’s phenotypic presentation, variant prioritization 
pipelines can still return dozens of variants of uncertain significance.47,48 In practice, these candidate 
variants are manually investigated by clinical experts and confirmed or rejected as causal through 
extensive functional analyses and variant matchmaking services.49 In our work, we accessed a unique 
dataset of uncertain candidate variants originally prioritized through genomic analysis of patients 
enrolled in the Undiagnosed Diseases Network (UDN) and eventually reclassified as benign or 
pathogenic. We trained a binary classifier, VarPPUD, to categorize whether any strong candidate 
variants were likely to be truly disease-causing or not based on nucleotide-, amino acid-, and gene-
level properties. VarPPUD achieved superior performance on this classification task on both real and 
GAN-generated synthetic data compared to existing methods that were developed to distinguish 
deleterious from otherwise benign variants. Our results show that the task of selecting the single 
disease-causing variant from a set of already compelling variants is different from the first-pass, 
genome-wide prioritization task that most pathogenicity predictors have been developed for. Our 
model analysis revealed that some features existing utilized for a discriminatory advantage by 
VarPPUD, including numbers of rare or total disorders associated with specific genes, are used 
counter-intuitively compared to traditional predictors trained to distinguish pathogenic from benign 
variants genome wide. VEST, for instance, is another random forest model trained on 45,000 disease 
mutations from the Human Gene Mutation Database and 45,000 common, likely neutral missense 
variants from the Exome Sequencing Project.50 Despite its substantially larger training set size, VEST 
was less suited to distinguish likely from unlikely pathogenic variants relative to VarPPUD when 
applied to strong candidate variants from UDN patients.  
 
The diagnosis rate for new patients with suspected but elusive genetic conditions hovers around 30%.9 
Once patients have had inconclusive clinical sequencing, reanalysis or reinterpretation of their 
sequencing data is rarely automated, and even patients with strong candidate variants can remain in 
an undiagnosed limbo for many years. As the numbers of sequenced rare disease patients continues to 
grow, automated reanalysis and reinterpretation of variant findings will be essential for improving 
diagnostic rates. We propose that VarPPUD can be applied as a second-line pathogenicity predictor to 
select for disease-causing variants from among the sets of prioritized candidate variants in patients 
where progress has otherwise stalled.  
 
We acknowledge several limitations of the work we present here. Although VarPPUD successfully 
makes predictions on indel variants where other missense-only predictors such as PolyPhen2 or SIFT 
fall short, the amino acid feature values we compute for indels may not be as biologically interpretable 
as those computed for SNVs. For instance, inserting an amino acid into a protein alpha-helix structure 
may more severely disrupt protein secondary structure than would be captured by our scoring 
technique. Nevertheless, we find that being able to score indel variants in this manner leads to better 
overall performance and enables VarPPUD to score a more realistic set of strong candidate variants 
that would be prioritized for a rare disease patient. Moreover, although VarPPUD makes predictions 
for variant types beyond SNVs, it does not score certain disease-causing genetic aberrations such as 
large structural rearrangements, gene duplication events, or expansions of repeat regions.  
 
We impute feature values such as per-gene haploinsufficiency or gene essentiality for variants where 
those values are missing. Although imputed values are logically constrained and their inclusion 
improves the overall predictive performance of our model, imputed values may be incorrect and 
generally detract from our ability to meaningfully interpret specific predictions. Even if independent 
empirical data could be used to predict missing feature values instead of the MICE approach employed 
here, resulting values may still be misleading or clinically irrelevant.51,52 Independently confirming the 
accuracy of imputed feature values is beyond the scope of this work. Some of the most informative 
features used by VarPPUD are nucleotide-level deleteriousness scores produced by other variant effect 
predictors including CADD and PROVEAN. Meaningfully interpreting specific predictions is further 
hindered in cases where these ensemble scoring metrics are used to distinguish likely from unlikely 
pathogenic variants. 
 
Finally, we trained VarPPUD on a relatively small set of 474 candidate variants across 413 unique 
genes. We show high discriminatory performance on an independent, held-out validation set and 
GAN-generated synthetic variant datasets, but recognize that candidate variants prioritized by other, 
non-UDN frameworks might be sufficiently or critically different from the UDN-based training data 
used here. However, the UDN is composed of 12 independent clinical research sites employing 
distinct, in-house prioritization pipelines, so the variants prioritized network-wide used here are likely 
to be generally representative of the types of variants that would be uncovered by state-of-the-art 
prioritization pipelines. 
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Data availability. Deidentified sequencing data is regularly deposited in dbGaP (accession 
phs001232.v5.p2). Candidate genes and variants are submitted to MatchmakerExchange. Variant-level 
data, clinical significance and supporting evidence, demographic information, and phenotype 
information for all diagnostic variants are regularly submitted to ClinVar. Other candidate variants 
used to train VarPPUD are available to authorized investigators of the Undiagnosed Diseases Network. 
 
Code availability. The source code for testing VarPPUD’s performance on the training set, real-world 
validation set, and synthetic validation set can be found at https://github.com/hms-dbmi/VarPPUD.  
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Tables and Figures 
Table 1. Demographic and clinical characteristics of patients grouped by the category of their 
prioritized variant. Prioritized genetic variants are assigned to either the “weakly pathogenic” or 
“strongly pathogenic” categories based on their provided clinical interpretation. Each prioritized 
variant corresponds to a single affected patient.  
 

Category Missing Overall Weakly  
pathogenic 

Strongly 
Pathogenic 

Number of patients, n - 474 252 222 

Age in years at evaluation, mean (SD) 14 15.0 (15.6) 15.4 (16.1) 14.6 (15.0) 

Age in years at symptom onset, mean (SD) - 6.1 (13.3) 6.7 (13.7) 5.5 (12.8) 

Ethnicity, n (%) 

Hispanic or Latino 

1 

88 (18.6) 47 (18.7) 41 (18.6) 

Not Hispanic or Latino 351 (74.2) 188 (74.6) 163 (73.8) 

Unknown or Not Reported 34 (7.2) 17 (6.7) 17 (7.7) 

Gender, n (%) 
Female 

- 
232 (48.9) 127 (50.4) 105 (47.3) 

Male 242 (51.1) 125 (49.6) 117 (52.7) 

Race, n (%) 

American Indian/Alaska Native 

6 

5 (1.1) 2 (0.8) 3 (1.4) 

Asian 42 (9.0) 19 (7.7) 23 (10.5) 

Black or African American 26 (5.6) 13 (5.2) 13 (5.9) 

Other 39 (8.3) 24 (9.7) 15 (6.8) 

White 356 (76.1) 190 (76.6) 166 (75.5) 

Primary symptom 
category, n (%) 

Allergies / disorders of the 
immune system 

7 

21 (4.5) 16 (6.5) 5 (2.3) 

Cardiology and vascular 
conditions 16 (3.4) 11 (4.4) 5 (2.3) 

Dentistry & craniofacial 2 (0.4) 2 (0.8) - 

Dermatology 5 (1.1) 2 (0.8) 3 (1.4) 

Endocrinology 12 (2.6) 5 (2.0) 7 (3.2) 

Gastroenterology 20 (4.3) 14 (5.6) 6 (2.7) 

Gynecology & reproductive 1 (0.2) 1 (0.4) - 

Hematology 5 (1.1) 2 (0.8) 3 (1.4) 

Musculoskeletal / orthopedics 72 (15.4) 34 (13.7) 38 (17.4) 

Nephrology 5 (1.1) 2 (0.8) 3 (1.4) 

Neurology 225 (48.2) 107 (43.1) 118 (53.9) 

Oncology 2 (0.4) 2 (0.8) - 

Ophthalmology 9 (1.9) 3 (1.2) 6 (2.7) 

Other 50 (10.7) 31 (12.5) 19 (8.7) 

Psychiatry 2 (0.4) 1 (0.4) 1 (0.5) 

Pulmonology 10 (2.1) 5 (2.0) 5 (2.3) 

Rheumatology 10 (2.1) 10 (4.0) - 
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Table 2. Feature value properties for UDN-prioritized variants. Ranges for integer feature values are 
denoted by “#” and listed with a “..” separator between minimum and maximum allowed values, and 
ranges for float feature values are listed with a “,” separator instead. Percent missing values are 
calculated out of all 474 prioritized variants. Amino acid-based features are computed as the change in 
values between reference and alternate alleles; see Methods for further details. 
 

Type Feature Range Missing Mean Standard 
Deviation 

gene-based # phenotypes associated with gene {0 .. +∞} 0 (0%) 172 169 
# pathways gene is part of {0 .. +∞} 0 (0%) 13.7 25.8 
# unique chemicals gene interacts with {0 .. +∞} 0 (0%) 36.4 34.2 
# total chemical-gene interactions {0 .. +∞} 0 (0%) 47.1 66.9 
# chemical-gene interaction types {0 .. +∞} 0 (0%) 11.4 10.6 
# rare diseases associated with gene {0 .. +∞} 0 (0%) 21.3 24.4 
# total diseases associated with gene {0 .. +∞} 0 (0%) 30 36.9 
evolutionary age  [0, +∞) 42 (8.9%) 989 837 
# species with an ortholog {0 .. +∞} 42 (8.9%) 2.51 3.07 
dN/dS [0, 1] 68 (14.3%) 0.18 0.162 
gene essentiality {0 .. 2} 45 (9.5%) 0.455 0.543 
gene haploinsufficiency [0, 1] 142 (30.0%) 0.496 0.251 

amino acid-
based 

polarity [-2.54, 2.54] 32 (6.8%) -0.261 0.948 
net charge {-2 .. 2} 32 (6.8%) 0.0566 0.712 
hydrophobicity [-3.37, 3.37] 32 (6.8%) -0.181 1.16 
Van der Waals volume [-8.08, 8.08] 32 (6.8%) -0.185 2.54 
polarizability [-0.409, 0.409] 32 (6.8%) -0.0112 0.122 
pK-COOH [-1.2, 1.2] 32 (6.8%) -0.245 0.721 
pK-NH2 [-2.29, 2.29] 32 (6.8%) -0.526 2.32 
hydration [-5.2, 5.2] 32 (6.8%) -0.266 1.68 
molecular weight [-129.17, 129.17] 32 (6.8%) -7.41 49.4 
optical rotation [-100.8, 100.8] 32 (6.8%) 5.11 31.3 
secondary structure {-2 .. 2} 32 (6.8%) -0.219 1.13 
free energy solution [-7.15, 7.15] 32 (6.8%) -0.284 2.08 
# hydrogen bonds {-4 .. 4} 32 (6.8%) 0.299 1.78 
residue volume [-169.7, 169.7] 32 (6.8%) -6.06 63.8 
transfer free energy [-2.7, 2.7] 32 (6.8%) -0.203 0.929 
side chain interaction [-5.64, 5.64] 32 (6.8%) -0.622 2.36 
# vertices {-10 .. 10} 32 (6.8%) -0.233 3.11 
# edges {-12 .. 12} 32 (6.8%) -0.258 3.36 
eccentricity [-11.1, 11.1] 32 (6.8%) -0.221 3.52 
diameter [-14, 14] 32 (6.8%) -0.0475 5.02 
atomic number [-61, 61] 32 (6.8%) -2.64 18 

nucleotide- 
based 

SIFT [0, 1] 42 (8.9%) 0.154 0.311 
VEST [0, 1] 129 (27.2%) 0.671 0.291 
PROVEAN (-∞, +∞) 178 (37.6%) -3.39 2.68 
FATHMM [0, 1] 67 (14.1%) 0.696 0.38 
CADD (-∞, +∞) 42 (8.9%) 3.17 2.18 
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Table 3. Performance in distinguishing strongly (positive) from weakly (negative) pathogenic 
variants in real-world validation set. Performance comparison between two versions of VarPPUD (i.e., 
with and without feature value imputation) and previous methods for distinguishing strongly from 
weakly pathogenic variants in real-world patients from the UDN. The number of “missing” variants 
indicates the number of variants in the validation test that the given method could not generate a 
prediction for. 
 

Method Accuracy Precision Recall F-score AUROC # Missing 

VarPPUD 0.793 (0.031) 0.775 (0.034) 0.829 (0.045) 0.800 (0.030) 0.795 (0.039) 0 (0.0) 

VarPPUD (no 
imputation) 0.779 (0.003) 0.753 (0.039) 0.823 (0.058) 0.786 (0.035) 0.779 (0.037) 0 (0.0) 

PROVEAN 0.677 (0.081) 0.567 (0.125) 0.802 (0.132) 0.661 (0.120) 0.697 (0.114) 11 (4.9) 

VEST 0.641 (0.054) 0.617 (0.077) 0.835 (0.076) 0.704 (0.050) 0.641 (0.038) 10 (3.5) 

CADD 0.637 (0.066) 0.571 (0.081) 0.874 (0.052) 0.687 (0.066) 0.654 (0.059) 2 (1.6) 

Mutation Assessor 0.614 (0.048) 0.553 (0.095) 0.776 (0.076) 0.642 (0.069) 0.615 (0.071) 18 (3.9) 

SIFT 0.613 (0.080) 0.502 (0.124) 0.887 (0.064) 0.636 (0.114) 0.657 (0.044) 11 (4.5) 

FATHMM 0.585 (0.074) 0.514 (0.081) 0.845 (0.104) 0.637 (0.085) 0.609 (0.084) 9 (1.7) 

PolyPhen-2 
(HumVar) 0.574 (0.103) 0.517 (0.108) 0.831 (0.105) 0.632 (0.096) 0.597 (0.105) 22 (3.1) 

Mutation Taster 0.566 (0.098) 0.517 (0.083) 0.898 (0.073) 0.655 (0.081) 0.591 (0.082) 5 (3.7) 

PolyPhen-2 
(HumDiv) 0.554 (0.103) 0.505 (0.100) 0.882 (0.093) 0.636 (0.087) 0.586 (0.093) 22 (3.1) 
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Figure 1. The workflow construction of the VarPPUD and its validation process for identifying strong 
pathogenic variants in UND patients. (A) Procedure for patient inclusion in our study. UDN patients 
lacking information about candidate genes, variants responsible for undiagnosed disorders, and 
unknown variant interpretations were excluded. Patients with long insertion/deletion (>5 nucleotides) 
or complicated variants on candidate genes were also filtered from the cohort. (B) Feature generation. 
We leveraged three categories i.e., gene-level functionality and evolutionary constraint, 
physicochemical properties of amino acids, and existing variant deleteriousness predictions, for feature 
generation. These features were acquired using various databases and tools based on the category of 
input data.  The variables generated through distinct approaches were concatenated into a matrix for 
and fed into machine learning models. (C) Model construction. Filtered and processed samples were 
divided into training (90%) and testing (10%) datasets. Five-fold cross-validation was performed on the 
training set with a random forest classifier. The final performance estimated for the VarPPUD was 
quantified by metrics such as accuracy, precision, and recall, on the held-out testing test. (D) GAN-
based validation. To validate the robustness of VarPPUD on potential new undiagnosed cases, we 
constructed a constraint-based generative adversarial network to produce synthetic testing data. We 
used the area under the Receiver Operator Characteristic (ROC) and Precision-Recall (PR) curves to 
evaluate the model's performance. 
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Figure 2. VarPPUD’s predictive performance on five GAN-synthesized variant datasets. Performance 
of the proposed model at identifying strong pathogenic variants on five different GAN-based synthetic 
testing sets evaluated by Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves. 
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Figure 3. Feature correlation and contribution toward prediction. (a) Correlations between feature 
values were computed for all variants in the real-world training dataset using Pearson’s Correlation 
Coefficient. Feature names are grouped by category: gene-based, amino acid-based, and nucleotide-
based (in silico deleteriousness predictions) and separated by black lines in the heatplot. (b) Features 
were eliminated in the same order as Table 2 and the model was retrained with five-fold cross 
validation on the training set; accuracy (red), precision (green), recall (blue), and F-score (yellow) were 
computed from performance on the held-out test set. (c) Feature importance measured as the drop in 
accuracy on the test set when values for that feature were randomly permuted in the training set. 
Feature names highlighted in green indicate importance by this measure and not by the measure in (e). 
(d) SHAP values for each feature in each individual prediction on the real-world test set. Negative 
SHAP values indicate contribution toward predicting a variant to be weakly pathogenic, whereas 
positive SHAP values indicate a feature’s contribution toward predicting a variant to be strongly 
pathogenic. Points are colored by their linearly normalized (between 0 and 1) feature value, organized 
from low (blue) to high (red). (e) Feature importance measured as the average of the absolute values of 
the SHAP values computed for all variants in the test set; feature names highlighted in blue indicate 
importance by this measure and not be the measure described in (d).  
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Figure 4. Change in performance when including patient demographics as features. We retrain 
VarPPUD five times, including one new demographic feature each time. We compute the area under 
the ROC curve (∆AUROC) ten times for each retrained model. Horizontal lines within each boxplot 
indicate the median value, green triangles indicate the mean value, and white circles indicate outliers.  
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