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Abstract 
In this study, we assess the capacity of the BERT (Bidirectional Encoder Representations from 
Transformers) framework to predict a 12-month risk for major diabetic complications—retinopathy, 
nephropathy, neuropathy, and major adverse cardiovascular events (MACE) using a single-center EHR 
dataset. We introduce a task-oriented predictive (Top)-BERT architecture, which is a unique end-to-end 
training and evaluation framework utilizing sequential input structure, embedding layer, and encoder stacks 
inherent to BERT. This enhanced architecture trains and evaluates the model across multiple learning tasks 
simultaneously, enhancing the model's ability to learn from a limited amount of data. Our findings 
demonstrate that this approach can outperform both traditional pretraining-finetuning BERT models and 
conventional machine learning methods, offering a promising tool for early identification of patients at risk 
of diabetes-related complications. We also investigate how different temporal embedding strategies affect 
the model's predictive capabilities, with simpler designs yielding better performance. The use of Integrated 
Gradients (IG) augments the explainability of our predictive models, yielding feature attributions that 
substantiate the clinical significance of this study. Finally, this study also highlights the essential role of 
proactive symptom assessment and the management of comorbid conditions in preventing the advancement 
of complications in patients with diabetes.  
 
Introduction 
Micro and macro-vascular complications induced by diabetes can have substantial impact on diabetes 
management and patient care1,2. Early prediction of these complications allows for the identification of 
high-risk patients and active implementation of preventive measures3–7. With this motivation, researchers 
have developed models predicting diabetes-related complications, primarily emphasizing cardiovascular 
outcomes and, to a lesser extent, kidney and eye complications3,8. However, most of the prior research was 
focused on predicting risk scores using a limited number of risk factors, often curated from previous 
literature 8–14. Despite many machine learning (ML) and deep learning (DL) models that emerged in recent 
research, classical ML models dominated these studies– mostly limited to performance comparisons, with 
only a minority delving into exploring novel risk factors and discovering new knowledge15,16. 
 
Digital patient data from electronic health records (EHR) systems play a crucial role in developing clinical 
risk prediction models, thereby guiding the development of robust, evidence-based medical 
interventions13,17,18. Structured EHR systems systematically documents the timeline of patient encounters, 
encompassing elements such as demographics, vital signs, diagnoses, prescribed medications, lab test 
results, and medical procedures. Hence, feature vectors derived from EHR data can enable the use of 
traditional ML and DL techniques19,20. However, the intricate and abundant information contained within 
EHR data is often condensed to create summary features for predictive models. This process can diminish 
the temporal and contextual richness of the data. This simplification frequently neglects the complex nature 
of EHR data, such as sparsity, heterogeneity, and irregular patterns of patient visits, leading to model 
overfitting and lack of model generalizability21.  
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The resemblance between EHR sequences (time series sequences from different data modalities) and 
natural language (word sequences) has led to the adoption of advanced NLP (natural language processing) 
techniques for EHR data. Convolutional neural networks (CNN)22 and recurrent neural networks (RNN)23 
with embedding layers have enhanced the capture of sequential data but have fallen short in recognizing 
long-term dependencies, hindered by problems like gradient instability. Subsequent techniques, such as 
Long Short-Term Memory (LSTM) models, have been designed to forecast clinical events, yet they have 
been hampered by slow training processes and persistent data complexities24,25. A transformative 
breakthrough that revolutionized the learning of contextual and temporal information in language models 
is the Transformers (2017)26 architecture. The pioneering studies21,27,28 in applying Transformers to 
structured EHR data, notably BERT (Bidirectional Encoder Representations from Transformers, 201929), 
have shown their effectiveness in capturing the complex temporal patterns and navigating the intricacies of 
EHR for clinical predictions. For instance, BERT’s advanced embedding framework captures the nuanced 
semantics and context of patient timelines, addressing EHR data sparsity and varying time intervals between 
encounters. Unlike traditional ML models, BERT transforms these sequences into dense embeddings, 
preventing learning from sparse matrices of numerous zeros. Moreover, its self-attention and feed-forward 
mechanisms efficiently learn long-term dependencies and uncover complex event relationships, improving 
model transparency. 
 
Earlier studies adopted a two-stage process where pretraining on extensive multi-site EHR databases was 
followed by finetuning on a smaller, specific cohort for clinical predictions. For example, Med-BERT 
(2021)27 was pretrained on a multi-site dataset encompassing 28 million patient records for one week before 
finetuning on three smaller, distinct datasets. However, patient privacy laws and proprietary data rights 
present significant obstacles to data sharing30,31, thus impeding the distribution of EHR-based pretrained 
models, deviating from a common practice in the NLP field. This leads us to the question: Could BERT’s 
unique ability to manage EHR-specific complexities still provide valuable and interpretable predictions 
when applied to data from a single medical center?  
 
Therefore, in this study, we investigated BERT’s potential in predicting a 12-month risk of developing 
significant complications, including retinopathy (RET), chronic kidney disease (CKD), neuropathy 
(NEUR), and major adverse cardiovascular events (MACE) in diabetes patients from a single-center EHR 
data. Shifting from the conventional pretraining-finetuning paradigm, we introduced an end-to-end training 
and evaluation method called task-oriented-predictive (Top)-BERT. This innovative approach concurrently 
optimizes the model for multiple specific prediction tasks––enhancing its effectiveness particularly in 
settings constrained by limited data.  
 
In Top-BERT, we utilized the sequential input structure, embedding layer, and encoder stacks inherent to 
BERT to train and evaluate three tasks simultaneously: the conventional Masked Language Model (MLM), 
a binary classification for prolonged hospital stay (1 if the length of stay >7, else 0), and a multilabel 
sequence classification for the four complications mentioned above. We aggregated the loss of the three 
tasks, which was backpropagated throughout the entire network, leading to improved learning of our model 
in a limited cohort sample size. We evaluated our Top-BERT model against conventional pretraining-
finetuning experiments with sequential input. We also compared its performance with traditional ML 
techniques, such as XGBoost, using a one-hot encoded representation of the features. Our Top-BERT model 
demonstrated a more effective ability to distinguish between classes and maintained robustness in managing 
the class imbalance for multilabel outputs, outperforming both the traditional approaches of pretraining-
finetuning and XGBoost models. 
 
We also investigated into the embedding structure of BERT, which typically uses positional and segment 
embeddings, to discern the sequential order of patient histories. Prior studies implemented unique 
embeddings, such as Med-BERT’s incorporation of visit numbers27 and BEHRT’s addition of age to 
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positional and segment embeddings21. Our study evaluated the impact of integrating temporal factors as 
embeddings—such as age, visit sequence, and inter-visit intervals—to predict diabetes complications. We 
utilized AUROC (area under the receiver operating characteristics curve) and Shannon’s entropy 32 for 
performance comparison, aiming to determine the most informative temporal representation in patient 
histories for our single-center dataset. 
 
To the best of our knowledge, our study represents a novel effort to apply a modified BERT architecture for 
predicting four significant micro and macro-vascular complications in diabetes patients within a single 
research framework while navigating the complexities inherent in EHR data. Furthermore, in our study, we 
systematically evaluate feature importance across patient visits, identify highly contributing features for 
each complication, and examine age-specific feature influence variations using Integrated Gradients (IG), 
a gradient-based feature attribution method optimized for deep learning33. Unlike attention mechanisms in 
models like BERT, which offer partial insights, IG provides a comprehensive analysis by tracing the 
gradient flow from a predefined baseline to the input. This approach ensures adherence to the axioms of 
sensitivity and implementation invariance, which are not satisfied by other backpropagation methods such 
as layer-wise relevance propagation (LRP)34 or Deconvolutional networks (DeConvNets)35. This 
methodological adaptation significantly enhances the explainability of our study’s findings within the 
clinical setting, offering nuanced insights into the factors driving the model’s predictions.  
 
The remainder of this paper is structured as follows. The method section outlines our approach to model 
derivation and development, data preparation, followed by the detailed experimental setup for this study. 
The result section presents the comprehensive analysis of the study cohort, model comparison, and analysis 
of the model explanations. Finally, the discussion section elucidates the methodological advances and 
clinical implications of our findings and provides a concluding summary at the end.  
 
Methods 
Model Derivation & Development 
 
Conventional BERT framework. The architecture of BERT29, initially designed for language 
representation, is built upon a multi-layer bidirectional Transformer encoder based on Vaswani (2017)36. 
The fundamental elements of BERT encompass (i) input/output representation, (ii) the configuration of 
embedding layers, and (iii) the architecture of the Transformer encoder layers. In essence, BERT 
necessitates input sequencing, which involves tokenization using a designated vocabulary and incorporating 
special tokens like [CLS]	at the beginning of the sequence and [SEP] to denote sequence separation. After 
tokenization, the input token traverses through the embedding layers, each capturing distinct contextual 
facets of the sequence. This process yields a summed embedding comprising token, segment, and positional 
embeddings. The embedded input then passes through the Transformer Encoder stack, processing every 
token simultaneously.  
 
BERT training entails two steps: (i) pretraining tasks and (ii) finetuning tasks. Pretraining involves two self-
supervised tasks. The Masked Language Model (MLM) randomly masks a fraction of input tokens and 
subsequently predicts these masked tokens through a training head atop the encoder stack. Concurrently, 
Next Sentence Prediction (NSP), a binary classification task, further trains BERT to comprehend inter-
sequence relationships. During pretraining, contextualized embeddings are generated for each input token. 
In the finetuning phase, the pretraining weights are loaded to train the finetuning cohort for specific 
downstream prediction tasks like classification with an additional prediction head (classification layer) 
integrated over the encoder stack.  
 
Motivation for the input representation for EHR data in BERT. The patient timeline in an EHR is a 
series of visits, each documented with various health-related elements such as diagnoses, medications, and 
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lab results. Reflecting this, Li et al. (2020)21 designed BEHRT, inspired by BERT, using patient diagnoses 
information per visit to predict future diagnoses, denoting the EHR timeline of each patient 𝑝 with 𝑛! 
number of visits as, 𝑉! = {𝒗,#	𝒗,$	𝒗,%… , 𝒗&!}, where 𝒗' = {𝑣#

' , 𝑣$
' , … , 𝑣(

' } contains ordered clinical entities 
in the 𝑗th visit. Similar to the BERT model, they introduced the start of medical history (i.e., [CLS]) and the 
space between visits (i.e., [SEP]), which results in a new sequence, 𝑉! =
4[𝐶𝐿𝑆], 𝒗,#	[𝑆𝐸𝑃], 𝒗,$	[𝑆𝐸𝑃], 𝒗,%… , 𝒗&! , [𝑆𝐸𝑃]:.	However, Med-BERT(2021)27 did not use the specific 
tokens [CLS]	and [SEP] at the input layer due to differences in EHR and text input formats. In BERT, [SEP] 
serves as a separator between two adjacent sentences for the next sentence prediction task, and as reasoned 
for Med-BERT, visit embeddings effectively separate each visit in EHR, making the addition of [SEP] 
redundant. Similarly, Rao-BEHRT (2022)28 modified the BEHRT representation of EHR sequences and 
dropped the [CLS] token. In all these studies, the visit sequence for each patient, which consists of 
diagnoses/medications, is converted to sequence to represent the temporal structure of EHR.  
 
Moreover, adaptations of the embedding layer for EHR temporality representation varied in the previous 
studies. The embedding layer in BEHRT21 incorporates four types of embeddings: disease, position, age, 
and visit segment. Positional encodings enable the network to capture positional interactions among 
diseases using a pre-determined encoding addressing the imbalanced distribution of sequence length in 
EHR. Age serves as a risk factor for diseases and provides chronological information, while visit segment 
indicates the separation between visits and differentiates adjacent visits of a patient. Similarly, Med-BERT 
(2021)27 utilized diagnosis code embeddings, visit embeddings, and serialization embeddings to capture 
clinical code representations, distinguish visits, and capture code order. Additionally, Rao-BEHRT (2022)28 
used encounter (disease/medication), age, and calendar year. Moreover, Med-BERT was trained on 
structured diagnosis data using ICD codes, unlike BEHRT and Rao-BEHRT (2022)28, which used Caliber 
codes (developed by a college in London). 
 
Our proposed Top-BERT architecture. Our designed Top-BERT, leveraging the foundational 
components of BERT, serves as a versatile end-to-end training and evaluation architecture that can be 
tailored directly for a wide range of clinical predictive tasks. Top-BERT utilizes input representation, 
embedding layer, and encoder stacks like traditional BERT. The input sequence for Top-BERT represents 
the EHR sequence for each patient 𝑝	with 𝑛!	number of visits as:  𝑉! = {[𝐶𝐿𝑆], 𝒗#, 𝒗$, 𝒗%… , 𝒗&!}, where 
𝒗' = {𝑣#

' , 𝑣$
' , … , 𝑣(

' }  contains the ordered clinical entities in the 𝑗th visit . We added the [CLS] token at 
the start of every sequence, which is essential for training BERT for classification tasks. During training, 
the final hidden state of the [CLS] token becomes the summary representation of the sequence. Due to 
BERT’s self-attention layers, the [CLS] token integrates context from the full sequence, resulting in a 
complete summary by the last layer, making it suitable for sequence-level classification tasks. In Top-
BERT’s embedding architecture, we examined different temporal factors such as age, number of visits, time 
between visits, and the conventional positional and segment embeddings to best represent patient timelines 
in EHRs. The specifics of these experiments will be elaborated in our experimental design section.  
 
Figure 1 shows the modified BERT architecture used for training Top-BERT using the conventional 
terminology of the model. In the standard BERT pretraining29, the input embeddings for 𝑖th token in 𝑗th 
visit, 𝑣)

' represented as 𝒆)	 ∈ 	ℝ+),,-&_/)0- ,	passing through the 𝐵𝐸𝑅𝑇 model, get transformed into context 
vectors and then into hidden states by the BertAttention layer. These are further processed by 
BertIntermediate’s dense layer and normalized by BertOutput. The BertEncoder stack, comprising multiple 
BertLayers, yields encoded outputs for all encoder layers (all_encoded_layers). The BertModel produces 
two primary outputs: all_encoded_layers and pooled_output, the latter derived from the BertPooler function 
applied to the hidden state of the initial [CLS] token. The pooled_output is essential for training the model 
for any classification tasks by adding an appropriate dense layer to output logits.  
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In the MLM task, for a masked token 𝑣(1/2
' , the model output before the activation layer can be represented 

as:  
𝒉(1/2 = 𝐵𝐸𝑅𝑇(𝒆(1/2) and 

𝒐( = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝒉(1/2 + 𝒃), 
where 𝒆(1/2 is the embedding of the masked input, 𝒉(1/2 is the output of 𝐵𝐸𝑅𝑇 model for the masked 
token, 𝑾 is the weight matrix of the output layer, 𝒃 is the bias term, and 𝒐( is the predicted probabilities.  
 
Similarly, for the NSP task, for a token 𝑣)

', the model output is represented as: 
𝒉&/! = 𝐵𝐸𝑅𝑇(𝒆)	) and 
𝒐&/! = 𝜎(𝑾𝒉&/! + 𝒃), 

where 𝒆)	 is the embedding of the input, 𝒉&/! is the hidden state of [CLS] token (pooled_output), 𝑾 and 𝒃 
are the weights and biases for NSP, and 𝒐&/! is the predicted probabilities. 𝜎(∙) is the sigmoid activation 
function. 
 
As a novelty of our approach, we have augmented the BERT architecture with a sequence classification 
head, merging the pretraining and finetuning steps into one end-to-end training and evaluation process. 
While the original pretraining heads focus on BERT’s standard tasks, the new head utilizes the 
pooled_output to yield precise logits for sequence classification (dense layer to output logits). For this 
sequence classification task, we define the output as: 

𝒉/-3 = 𝐵𝐸𝑅𝑇(𝑒)	) and 
𝒐/-3 = 𝜎(𝑾ℎ/-3 + 𝒃), 

where 𝒉/-3 is the hidden state of [CLS] token (pooled_output) and 𝑜/-3 is the predicted probabilities. Thus, 
Top-BERT can be represented as: 

𝑡𝑜𝑝𝐵𝐸𝑅𝑇U𝑣)
'V = 𝑓(𝒉(1/2 , 𝒉&/!, 𝒉/-3), 

where 𝑓(∙) represents the multitask model with self-supervised (𝒉(1/2) and semi-supervised (𝒉&/!), and 
supervised (𝒉/-3)	tasks. 
 
This enhancement aligns with BERT’s original design and extends its utility by introducing multitasking 
capabilities within the pretraining phase itself. Each task’s logits undergo their respective loss functions, 
and the cumulative loss from the three tasks is backpropagated, updating the network’s weights. The 
combined loss can be represented as: 

ℒ = 	∑ ℓ4	4	 , 
where 𝑡	 ∈ {𝑀𝐴𝑆𝐾, 𝑁𝑆𝑃, 𝑆𝐸𝑄} and each ℓ4 can be represented as a summation of each task-oriented cross-
entropy loss: 

ℓ! =	−∑ 𝒚",$%
$&' log(𝒐!,$), 

where  𝐶 is the number of classes, 𝑦5 is the one-hot encoded true label, and 𝑜4,6 is the predicted probability 
for class 𝑐. 
 
This results in training and evaluating the BERT model for specific prediction tasks, refining its capability 
by simultaneously optimizing it for multiple objectives. This multitask optimization could be pivotal in 
domains with limited data or where task-specific nuances are critical, offering a more nuanced and direct 
path to task-specific model refinement. We will discuss the implementation of Top-BERT for diabetes-
related complication prediction tasks in the following subsections.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2024. ; https://doi.org/10.1101/2024.04.15.24305843doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.15.24305843
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author’s version April 2024 hikf3@mail.missouri.edu 

 6 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2024. ; https://doi.org/10.1101/2024.04.15.24305843doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.15.24305843
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author’s version April 2024 hikf3@mail.missouri.edu 

 7 

Figure 1A. This figure shows the conventional pretraining-finetuning steps in BERT framework. During pretraining, BERT employs 
two self-supervised tasks: Masked Language Model (MLM) and Next Sentence Prediction (NSP), which discerns relationships 
between sentence pairs. For finetuning, these pretrained weights initialize a model tailored to specific tasks. Figure 1B. An 
infographic showing the task-oriented predictive BERT framework using the conventional terminology in BERT models. In BERT’s 
architecture, embedded inputs pass through BertAttention layers to generate context-sensitive hidden states, further refined by a 
series of BertLayers to produce a stack of encoded outputs. The model outputs both these encoded layers and a pooled_output–the 
latter obtained from the hidden state of [CLS] token. We enhanced the BERT architecture and blended pretraining and finetuning 
into a unified process by integrating a sequence classification head. Utilizing pooled_output from the BertPooler, our adapted 
model conducts end-to-end training for sequence classification tasks. This method leverages multitasking during pretraining, 
allowing for simultaneous loss optimization across tasks and enhancing the model’s predictive performance. 

Data Preparation 
 
Data Source. Our research utilized the EHR database from the University of Missouri (MU) Hospital, 
which contains over 1.25 million patient records reflecting a wide geographic and demographic diversity 
range. MU follows the PCORnet Common Data Model (CDM) for structuring and representing their EHR 
data. This model employs standardized vocabularies such as Systematized Nomenclature of Medicine-
Clinical Terminology (SNOMED CT), Current Procedural Terminology (CPT), and the ICD (International 
Classification of Diseases) versions 9 and 10 for consistent data mapping. The deidentified version of the 
MU CDM, updated in October 2022 with altered dates and pseudo-identifiers, served as the foundation for 
our study. Database queries were executed using the Snowflake computing platform. The MU Institutional 
Review Board (IRB) approved this research. 
 
Cohort identification. We utilized the framework from Furmanchuk (2021)37 to identify the diabetes 
mellitus (DM) cohort from our MU CDM based on the SUrveillance, PREvention, and ManagEment of 
Diabetes Mellitus (SUPREME-DM) algorithm. the SUPREME-DM DataLink is one example of a 
distributed registry developed for studying Any-DM (mixed Type 1 DM and Type 2 DM codes) using a 
standardized data extraction approach based on diagnosis, labs, and medications38–40. Although 
SUPREME-DM has not focused on distinguishing adults with Type I DM vs. Type II DM, this algorithm 
has been shown to have the potential of extracting the most representative EHR-based DM cohort40. We 
defined the MU study denominator as any patient between ages 18 to 89 years at the visit with at least two 
distinct encounter days. The encounter types included ambulatory visit (AV), emergency department (ED), 
emergency department admit to inpatient hospital stay (EI), inpatient hospital stays (IP), non-acute 
institutional stay (IS), and telehealth (TH) between 01/01/2010 and 01/31/2023.  
 
We implemented the definition of SUPREME-DM on the MU denominator using the following steps (as 
detailed in Figure 2A): Exclusion based on periods of pregnancy. We first excluded pregnancy-related 
encounters using relevant ICD and CPT codes, then masked encounters within a year of each identified 
pregnancy. Diagnosis codes. We identified diabetic patients as those having two visits with diabetes-related 
ICD codes on separate days within two years, noting the date of the initial visit. Lab codes. Using LOINC 
IDs we filtered lab tests for HbA1c and glucose levels, identifying diabetic cases by two separate tests 
within two years, recording the date of the first. Medications. We identified diabetic patients through 
prescriptions for specific DM medications or non-specific medications when accompanied by a relevant 
diagnosis or lab test within two years. Finally, we combined data from diagnoses, labs, and medications to 
form the DM cohort, marking the earliest event date as an estimate for the DM onset. If a patient included 
a DM diagnosis in their first encounter, we marked that date as the DM onset estimate. 
 
Figure 2B shows the diagnosis and procedure codes used to identify the four major complications among 
the diabetes patient cohort, including retinopathy, kidney disease (nephropathy), nerve damage 
(neuropathy), and major adverse cardiovascular events (MACE). The MACE events are acute myocardial 
infarction, stroke, heart failure, and hospitalization for revascularization procedures. For any of the four 
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major complications identified, we recorded the date of the first recorded encounter for each complication 
in the EHR as the endpoint event date. 
 

 
Figure 2 (A) shows the framework for constructing our diabetes cohort using SUPREME-DM from the MU EHR database. The 
process includes the exclusion of pregnancy-related encounters, identification of diabetes via ICD-coded visits and lab tests for 
HbA1c and glucose, and diabetic classification through specific medication prescriptions. The earliest diabetes indicator among 
diagnoses, lab results, or medications is marked as the estimated onset date for diabetes. Figure 2(B) illustrates the methodology 
for identifying major diabetic complications within the patient cohort. This includes the utilization of specific diagnosis and 
procedure codes to identify occurrences of retinopathy, chronic kidney disease, neuropathy, and MACE, with the latter 
encompassing myocardial infarction, stroke, heart failure, and revascularization hospitalizations. The initial encounter date for 
each complication is captured and recorded as the endpoint event date in the EHR data.  

Outcomes, features, and study timeline. Figure 3-[1] shows how we structured a learning period for a 
hypothetical patient timeline in our EHR. This learning period determines the cutoff point for each patient 
in the identified DM cohort. The learning period for patients with any of the four diabetic complications 
spanned from their first EHR encounter up to the visit immediately preceding their first recorded 
complication event. For those without complications, the learning period extended to their last EHR 
encounter i.e. their learning period includes the entire EHR sequence. We also excluded patients whose 
diabetes diagnosis was recorded after their complication diagnosis to ensure diabetes was reported before 
the complication occurrences in the EHR timeline. The patient cohort derived from this process (cohort A) 
was used for pretraining. For finetuning and our Top-BERT experiments, we refined the cohort (cohort B) 
to only include patients with at least 5 but no more than 100 recorded encounters on different dates and 
with a minimum of five different diagnosis codes.  
 
We defined the incidence for each complication (CKD, MACE, NEUR, and RET) within the first 12 months 
from the end of the learning period (prediction window). For instance, if a patient is diagnosed with MACE 
within the next 12 months, as shown in Figure 3-[1], after the end of its learning period, then the outcome 
is 1 else 0. Each patient can have multiple complications diagnosed in the prediction window. Thus, in the 
DM cohort, each unique patient ID is linked to four distinct labels, each binary and not mutually exclusive, 
to be used for our sequence classification task. For the binary classification task, we identified a common 
medical issue––prolonged hospital stays––assigning a value of 1 if the length of stay exceeded 7 days at 
any time during the EHR record of each patient. We extracted the labels of the four micro- and macro-
vascular complications and prolonged hospital stay for all patients in the finetuning cohort B as our 
outcomes for the study. We curated separate datasets for pretraining and finetuning (cohorts A and B, 
respectively), extracting all encounters with diagnosis codes with admit-discharge dates and date of birth 
(DOB) within their specified learning period. The diagnosis ICD 9/10 codes are mapped to Phecodes41 to 
reduce sequence dimensionality. The DOBs were used to calculate the age at each encounter date. Finally, 
we constructed a tabular representation of the EHR timeline for each patient, as shown in Figure 3-[2]. 
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Figure 3. This figure illustrates [1] the methodology for structuring a learning period based on EHR data for patients with diabetes, 
defining the time frame leading up to either the earliest complication event or the last recorded encounter. The delineation of this 
period guided the selection of patient cohorts for pretraining and finetuning, with specific inclusion criteria based on encounter 
and diagnosis code counts to ensure relevance and accuracy in predictive modeling. The incidence of complications was identified 
in a designated prediction window following the learning period, contributing to the creation of outcome vectors for sequence 
classification tasks. This approach underpins the preprocessing of features for BERT, involving [2] the conversion of the timeline 
to structured tabular data, [3] the conversion of structured tabular data into sequential formats, and [4] the development of a 
tailored dictionary for EHR-specific tokenization,[5] culminating in the embedded input sequences that drive the training of the 
BERT-based model. 

Feature preprocessing for BERT. In this study, we used both diagnoses lists and temporal features––age 
at visit, number of visits, and inter-visit time difference in days––as integral components of the input to the 
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embedding layer within our BERT-based model. To facilitate the training of BERT with EHR data, we 
initially converted the structured tabular data into a sequential format, as depicted in Figure 3-[3]. This 
entailed creating the temporal attributes as sequences, aligning each diagnosis code (in order of occurrence) 
to corresponding temporal attributes, and standardizing the sequence length for each patient’s record. 
Acknowledging the distinct nature of EHR diagnosis codes as opposed to traditional text, we constructed a 
unique dictionary. This lexicon assigns a discrete numerical identifier to each diagnosis code and each 
special token, such as [CLS], [PAD], and [MASK], thus creating a bespoke mapping system tailored for 
EHR data. Subsequently, we employed this dictionary for tokenization, transforming the list of Phecodes 
into a sequence of tokens with a [CLS] token inserted at the beginning, as illustrated in Figure 3-[4]. These 
tokenized sequences are what we leveraged as the input features for the embedding layer. Figure 3-[5] 
shows the procedure for formulating the embedded input sequences essential for training our BERT-based 
model. Each tokenized input sequence with its corresponding temporal attributes is used as input for the 
embedding layer. This layer is responsible for transforming each token into a dense vector representation, 
generating weight matrices for each layer of the model. The dimensions of the matrices are determined by 
the sequence’s length and hidden size parameter of the model. Finally, the summed embeddings are fed into 
the model’s subsequent layer to complete the training process. 
 
Experimental Design 
 
Model training details and experiments. Our experimental design involved two distinct cohorts: an 
unlabeled cohort for pretraining (cohort A) and a labeled cohort (cohort B) for finetuning, as well as training 
our Top-BERT model. We randomly allocated cohort B into training, validation, and test sets in a 7:1:2 ratio 
for use in both finetuning and Top-BERT training. We conducted experiments to train, test, and evaluate 
the Top-BERT architecture on predicting four major micro and macro-vascular complications–– CKD, 
MACE, NEUR, and RET–– and prolonged hospital stays. Furthermore, we developed a pretrained model 
using cohort A and finetuned the model using cohort B to predict these micro and macro-vascular 
complications. We implemented a PyTorch42 workflow to run our BERT-based experiments. Additionally, 
we benchmarked our model against the popular machine learning model XGBoost43.  
 
Top-BERT training and evaluation: We trained our Top-BERT model using three tasks simultaneously, 
namely, mask language model (MLM), binary classification for prolonged hospital stay, and a sequence 
classification for the 12-month prediction of the four major diabetic complications. For the MLM task, we 
masked 15% of the tokens in each input sequence, following a strategy where 80% of the masked tokens 
were replaced with a special [MASK] token (denoted as -1), 10% were replaced with a random token from 
the vocabulary, and the remaining 10% were left unchanged. The masked tokens were augmented with the 
processed input features to train the model. This masking strategy introduces noise and variability into the 
input data, encouraging the model to learn robust and context-dependent representations of the EHR data. 
The primary objective of the MLM task is to accurately predict the original tokens at the masked positions. 
During training, a cross-entropy loss function is utilized, which ignores the masked tokens to concentrate 
on the contextual learning of unmasked tokens. For evaluation, the model’s performance is exclusively 
assessed on its capacity to predict the masked positions correctly.  
 
Simultaneously, the binary task tokens were generated, indicating prolonged hospital stays (greater than 7 
days) during the input feature-augmentation process for model training. For the prediction process, the 
logits from the model’s output —derived from the pooled output and, subsequently, a dense layer— are 
processed through a softmax layer to calculate predictive probabilities. Binary cross-entropy loss function 
was used to minimize the prediction error. The third task, focused on sequence classification, predicts four 
types of micro and macro-vascular complications (CKD, MACE, NEUR, and RET). In this component, the 
model channels the pooled output through a dense layer to generate logits. These logits are then transformed 
into probabilities using the sigmoid activation function. The model is fine-tuned with a weighted binary 
cross-entropy loss function to optimize the predictive accuracy. The combined loss from all three tasks is 
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backpropagated through the layers to learn the weights. We used the AUROC metric to evaluate model 
performance as the primary evaluation metric like previously established frameworks27,28. We employed 
the best-performing trained model for evaluation against our test data and report all results on it. 
 
Pretraining-finetuning: During the pretraining phase, we employed conventional MLM and binary tasks 
(prolonged hospital stay) utilizing cohort A. Post-training, the model demonstrating optimal performance 
was further finetuned on cohort B. Loading the pretrained weights, two finetuning variations were 
employed, each utilizing different encoder output strategies. Finetuning-A employed conventional [CLS] 
token embeddings. Finetuning-B innovated with a custom prediction head utilizing the last encoder layer’s 
embeddings refined through three dense layers and ReLU activations, with the final layer producing logits. 
We implemented a weighted random sampler during batch training to address class imbalance in the four 
label predictions. 
 
Comparison with an ML model: XGBoost was employed as a time and context unaware benchmark for 
comparison with our time and context aware BERT-based models. We transformed the diagnosis codes into 
one-hot encoded features across our training, validation, and test datasets. Each Phecode was denoted by a 
binary flag, and we also included the age at the last visit as an additional feature. We utilized a multioutput 
strategy with XGBoost to predict the four complications simultaneously.  
 
Metrics for model comparison: To assess the performances of the four classification tasks (CKD, MACE, 
NEUR, and RET) in BERT-based models and XGBoost, we computed micro-averaged AUROC 
(mAUROC). The mAUROC pools the individual true positives, false positives, false negatives, and true 
negatives across all classes and then computes the AUROC from these combined totals, which indicates the 
overall performances of the models in distinguishing between both majority and minority classes across 
various thresholds44. Additionally, to gain insights on the differences and similarities of Top-BERT and 
XGBoost in handling class imbalance, we compared the model performance for each classification task 
using precision, recall, F1-score, Mathew’s correlation coefficient (MCC) and confusion matrix computed 
at varying threshold values (10%, 30%, 50%, and 80%). 
 
Temporal representation comparison using embeddings. In our investigation, we explored the impact 
of temporal factors—patient age, visit order, and inter-visit time differences—when integrated into the 
embedding process of predictive models for diabetic complications. We conducted ablation studies to 
comprehensively evaluate the utility of various temporal embeddings.  
 
In our Top-BERT experiments, we compared 15 distinct models, each featuring a distinct embedding layer 
architecture that integrated various temporal components. The distinct models we compared also include 
the three pioneering frameworks of BERT in EHR data– BEHRT21 and Med-BERT27. The mAUROC 
metric served as our primary performance indicator, reflecting each model’s discriminative power in 
predicting diabetic complications. Concurrently, we utilized Shannon’s entropy32—a measure of the 
unpredictability or complexity of information content—to gauge the informativeness of the embeddings 
generated by each model. We obtained the embeddings from the final encoder layer for each model, 
transformed them into probabilities via softmax, and then calculated their total entropy using the formula 
𝐻(𝑋) = 	−	∑ 𝑝(𝑥) log 𝑝(𝑥).7	∈9 	A higher Shannon’s entropy value indicates a richer, more complex 
embedding representation, suggesting that the model captures a greater amount of information from the 
input data. Information gain was calculated by comparing the entropy values of each model to that of a 
comprehensive model inclusive of all temporal factors–– incorporating input, visit number, inter-visit time 
difference, age, and positional and segmental embeddings––providing a metric for the relative improvement 
in predictive power. 
 
Furthermore, we performed ablation studies across different embedding layer architectures within our 
pretraining and finetuning workflow, creating 15 unique pretrained models. Subsequently, we executed 15 
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finetuning experiments each for scenarios A and B. By juxtaposing mAUROC scores with information gain 
values; we aimed not only to identify the model with the highest predictive accuracy but also to discern 
which embedding design best encapsulates the complexity of patient history in our single-center dataset. 
This dual assessment allowed us to balance the trade-off between model simplicity and the depth of 
temporal understanding necessary to accurately depict the progression towards diabetic complications. 
 
Model Explanations. We have tailored the Integrated Gradients45 methodology for application on our Top-
BERT model to discern feature-level attributions that influence our predictive models on both an individual 
patient and a global level. Integrated Gradients is a feature attribution method that assigns an importance 
score to each input feature of a neural network by integrating the gradients of the model’s output with 
respect to the input features, tracing a path from a given baseline to the actual input. This method is designed 
to satisfy two fundamental axioms: sensitivity and implementation invariance, ensuring reliable and 
consistent attributions.  
 
Formally, for a given input 𝑥 and a baseline  𝑥′, the integrated gradient along the 𝑖-th dimension is defined 
as:  

IntegratedGradients) 	(𝑥) = (𝑥)	 −	𝑥):) ×	 r
𝜕𝐹(𝑥: + 	𝛼 ×	(𝑥 − 𝑥′))

𝜕𝑥)

#

;<=

	𝑑𝛼 

Here, 𝐹:	ℝ& 	→ [0,1] is the model, 𝑥 is the input, 𝑥′ is the baseline, 𝑥)	 is the 𝑖-th feature of 𝑥, and >?
>7"

 is the 
gradient of 𝐹 with respect to 𝑥)	. The integral accumulates the gradient for feature 𝑖 at all points interpolated 
between the baseline and the input. A practical baseline for language models is the all-zero input embedding 
vector. We approximate the integral via a summation called the Reimann approximation. To apply 
Integrated Gradients to Top-BERT, we consider the model function 𝐹(𝑥) as the output logit resulting from 
the input sequence 𝑥 after transformation through the model’s embedding and subsequent BERT layers: 
𝐹(𝑥) → 𝐻𝑒𝑎𝑑 *𝐵𝑒𝑟𝑡𝐿𝑎𝑦𝑒𝑟𝑠1𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝐿𝑎𝑦𝑒𝑟(𝑥)89, which is 𝒉!"# for Top-BERT. We divide the linear path 
between the baseline and the input into α increments to calculate the gradients at each step, which are then 
aggregated and normalized to determine the contribution of each feature to the prediction for each outcome. 
Additionally, to identify the global-level feature attributions, we averaged attribution scores for each feature 
in each patient and then calculated a sum over these feature-level attributions across all patients for each 
outcome. Furthermore, we computed mean attribution scores within distinct age groups to identify age-
specific patterns of feature importance for each outcome, thereby enhancing the explainability and 
transparency of our model in the clinical domain. 
 

Algorithm 1. Adaptation of Integral Gradients Algorithm for Sequence Classification using Top-BERT Input:   
𝑀: Top-BERT model trained for the sequence classification task,  
𝑁: number of classification tasks, 
𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔: embedding layer of model 𝑀, 
𝐵𝑒𝑟𝑡𝐿𝑎𝑦𝑒𝑟𝑠: encoder layers of model 𝑀 
𝒉$:	prediction head for sequence classification in model 𝑀, 
𝐹%: output logits for 𝑘&' outcome of the classification tasks,  
𝑋()): input sequence of length 𝑙 for 𝑀,  
𝑋+()): baseline input sequence of length 𝑙,  
𝛼: number of steps for Reimann 
Output: 
𝐼𝐺%: Attribution Sequence of length 𝑙 for 𝑘&' Outcome 
Load Model 𝑀 
IntegratedGradient:  
     for 𝑘	 = 	1	to	𝑁: 
             Initialize attribution sequence 𝐼𝐺% to zero vector of length 𝑙 
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              for each token position 𝑖 = 1	to	𝑙: 
                       for steps = 1	to	𝛼 ∶ 
                            𝛼!&", = step	/	𝛼	 
                            𝑋-./012345/06 = 𝑋+()) + 𝛼!&", 	× 	(𝑋()) − 𝑋+())) 
                            𝐸-./012345/06 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑋78&"9,:);&"<)   
                            𝐹%,-./012345/06 	→ 	𝒉$(𝐵𝑒𝑟𝑡𝐿𝑎𝑦𝑒𝑟𝑠(𝐸78&"9,:);&"<)) 

                            gradient = 	 >?!,#$%&'()*+%&,
>@#$%&'()*+%&,

 at position 𝑖 

                            𝐼𝐺%[𝑖] 	±	1𝑋())[𝑖] − 𝑋+())[𝑖]8 × 	gradient	 ×	
A
B
 

                       end for 
                      Normalize 𝐼𝐺%[𝑖] by dividing by the sum of 𝐼𝐺%[𝑖]	across all α steps 
              end for 
              output 𝐼𝐺% 
     end for 
end IntegratedGradient 

 
Results 
 
Data summary 
Figure 4 provides a detailed demographic and clinical profile of the diabetes patient cohort used in this 
study. Table 4A contrasts two subsets: the initial pretraining group (Cohort A), comprising 50,993 patients, 
and the subsequent finetuning/Top-BERT group (Cohort B), which includes 36,539 patients. The average 
number of visits per patient for pretraining cohort A (~31 visits) is higher than cohort B (~27 visits). Both 
subsets exhibit similar averages in number of diagnoses per patient (~44 diagnoses per patient). The average 
age for both cohorts is about 60 years and primarily white (~89% white), the cohorts maintain a consistent 
gender ratio. Prolonged length of stay was approximately 19.4% for both cohorts. Figures 4B through 4E 
show further insights into Cohort B, shedding light on healthcare interaction patterns and the prevalence of 
specific health complications within this group. Specifically, Table 4D indicates high occurrences of 
hypertension (69%), hyperlipidemia (51.7%), obesity (34.1%), and tobacco use disorder (33.53%) within 
the cohort, which are predominantly categorized under endocrine/metabolic and circulatory system 
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disorders. Furthermore, approximately 10.7% of patients had neuropathy, 10.9% had MACE, 7.4% had 
CKD, and 2.7% had retinopathy. 
 

 
Figure 4: This figure provides a comprehensive summary of the cohort’s demographic and health status, the distribution of 
healthcare interactions, and the prevalence of significant health conditions, which are critical for the subsequent analysis of the 
study. Table 4A outlines the characteristics of the study cohorts, revealing a pretraining cohort (A) size of 50,993 and a 
finetuning/Top-BERT cohort (B) size of 36,539. Figure B illustrates the distribution of the number of visits per patient for cohort 
4B, which shows a right-skewed distribution, indicating that most patients have fewer visits, with the number tapering off as the 
visit number increases. Figure C depicts the distribution of the number of diagnoses per patient for cohort B, which is also right-
skewed, with more patients having diagnoses number in the mid-range of 100. Table 4D lists the most frequently occurring 
diagnoses in cohort B, with type 2 diabetes, essential hypertension, and hyperlipidemia being the most common. These conditions 
are predominantly categorized under endocrine/metabolic and circulatory system disorders, reflecting the health concerns 
prevalent in the cohort. Figure E depicts the relative distribution of the four primary study outcomes, indicating a higher frequency 
of neuropathy and major adverse cardiovascular events (MACE) within the patient cohort.  

Model Performance 
In evaluating the performances of the three distinct architectures for predicting four major complications 
within Cohort B, our Top-BERT model outperformed the finetuning adaptations of pretrained models and 
the time and context unaware approach using XGBoost. Our test data consisted of 7.25% of CKD labels, 
11.6% of MACE, 10.9% of NEUR, and 2.7% of RET. As shown in Figure 5A, the highest mAUC was 
achieved by the Top-BERT design input+visit+time_diff (mAUC of 0.7125), while the same embedding 
configuration in the finetuning experiments had lower mAUCs (0.6786 and 0.689, respectively). In contrast, 
XGBoost yielded an mAUC of 0.5208. Moreover, Figure 5C highlights the ROC of the best-performing 
model configuration (input+visit+time_diff) with the finetuning frameworks at various thresholds.  
 
We observed (Figure 5B) that an embedding incorporating input features with temporal elements, such as 
visit number and inter-visit time difference, alongside positional and segmental embeddings, yielded a 
higher information gain than the more complex, feature-rich embedding design 
(input+visit+time_diff+age+pos+seg). Within Top-BERT, the embedding approach utilized in BEHRT 
(input+age+pos+seg)21 demonstrated a lower information gain, whereas the Med-BERT (input+visit)27 
embedding configuration showed higher information gain, while with AUCs of 0.6753 and 0.7105, 
respectively.  
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Table S2 in the supplementary document compares the five Top-BERT embedding configurations (having 
comparable mAUROCs) and XGBoost using various metrics at varying thresholds to gain insights on their 
differences and similarities in handling class imbalance. We observed that higher precision values and lower 
recall values obtained by XGBoost were consequences of conservatively predicting fewer number of 
positive cases (both true positives and false positives) in all classification tasks. On the other hand, Top-
BERT showed better measure of separability, as indicated by higher mAUROC values, and higher 
efficiency in accurately predicting the positive classes compared to XGBoost (details in supplementary 
document).  
 

 
Figure 5. This figure shows a comprehensive depiction of the performance comparison of our proposed Top-BERT framework with 
the two finetuning frameworks adapted for this study for predicting the four major complications within Cohort B. Figure 5A 
displays a table comparing various embedding layer designs based on micro-averaged AUROC scores for three different model 
training scenarios: Finetuning A, Finetuning B, and the final Top-BERT model. The highest-performing design in the Top-BERT 
model is highlighted, suggesting it has the best trade-off between complexity and performance. Figure 5B visualizes the information 
gain in entropy for the Top-BERT model across different embedding designs. Each point represents a different design, with its 
position on the x-axis indicating the amount of information gain using the most complex model 
(input+visit+time_diff+age+pos+seg) as a baseline for comparing the gain. This graph helps assess which design captures the 
most relevant information from the data. Figure 5C compares the micro-averaged AUROC curves of the Top-BERT model and the 
two finetuning phases, illustrating the true positive rate (TPR) against the false positive rate (FPR) for highest-performing design. 
The area under the curve (AUC) for each model is annotated, allowing for a direct comparison of their predictive performance. 

Model Explanations 
Figure 6 highlights the aggregated global-level feature importance for the four outcomes of this study: 
CKD, MACE, NEUR, and RET. In Figure 6, the left panel shows the common diagnoses predictive of all 
four outcomes, while the right panel shows the significant features contributing (positively) to each outcome 
separately. In the figure, the color intensity representing the attribution score for each diagnosis reflects the 
combined influence of the average attribution score per patient and the prevalence of that diagnosis within 
each respective outcome cohort. 
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Common Predictive Features 
Metabolic abnormalities such as vitamin-D deficiency, hypopotassemia, magnesium metabolism disorders, 
and disorders of fluid, electrolyte, and acid-base balance emerged as common important predictors for all 
studied outcomes. Additionally, circulatory system conditions, including hypertension, tachycardia, and 
peripheral vascular disease, alongside respiratory system disorders and hematopoietic conditions, such as 
chronic anemia, were found as shared predictive features for increased risk of all four outcomes (Figure 6, 
left panel).  
 

 
Figure 6. Global-level feature attributions for four major diabetes-related complications. The top panel (A) shows the common 
feature attributions across all outcomes, while the bottom panel (B) details the top contributing features for each specific 
complication: chronic kidney disease (CKD), Major Adverse Cardiac Events (MACE), Neuropathy (NEUR), and Retinopathy 
(RET). In Figure 6A, each column represents a diagnosis with its corresponding aggregated mean attribution score, represented in 
color-coded heatmaps, indicating the strength of prediction with the complication outcomes. In Figure 6B, each row is the 
aggregated mean scores for the diagnosis and categories of diagnoses are color-coded, as indicated in the legend, facilitating a 
comparative visualization of feature importance across the different diagnostic classifications. Note that the mean attribution scales 
vary for each complication to optimize the visual representation of the data, facilitating the comparison of influential predictive 
diagnoses within each respective outcome.  
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Outcome-Specific Feature Importance 
Edema and cardiac conduction disorders highly indicated increased risk for CKD and MACE. Similarly, 
disorders of lipoid metabolism had high attribution for predicting both MACE and NEUR. Hyperlipidemia 
had high attribution scores for CKD, MACE, and NEUR. Additionally, obesity was highly predictive for 
both CKD and RET.  
 
Symptoms such as swelling of limbs, low blood pressure (hypotension), and urinary system conditions such 
as disorders of kidney/ureter and frequency of urination were found to be notable for their contribution to 
CKD risk. For MACE, various circulatory system disorders such as abnormal electrocardiogram, coronary 
atherosclerosis, chest pain, cardiac dysrhythmias, and heart valve disorders– were identified as critical 
indicators. NEUR risk was closely linked with early neurological manifestations from Type 2 diabetes, 
peripheral nerve disorders, coordination issues, and chronic pain accompanied by abnormal findings related 
to the brain or nervous system. Interestingly, mental health disorders, including anxiety and alcohol-related 
disorders, also had high attribution for predicting NEUR. Furthermore, metabolic conditions such as 
hypercalcemia with early onset of eye-related symptoms such as infection, glaucoma, cataracts attributed 
significantly to increased risk of RET.  

 
Figure 7. Heatmap illustrating age-specific global-level attributions of the common predictive features for four major complications 
in diabetes patients (each diagnosis is present in at least one age group). Each row represents a distinct diagnosis, while columns 
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denote the patient age groups and the complications—chronic kidney disease (CKD), major adverse cardiovascular events 
(MACE), neuropathy (NEUR), and retinopathy (RET). Color intensity reflects the mean attribution value for each feature, with 
warmer colors indicating higher attribution (with higher incidence) and cooler colors indicating lower attribution, signifying the 
relative importance of each feature in the model’s predictions across different age brackets. 

Age-specific Feature Importance 
Figure 7 shows the age-specific predictive features common across all outcomes (each diagnosis was 
present in at least one age group) of this study. Hypertension was shown to be a predictive factor for all 
outcomes for all age groups. In the 18-35 age group, the presence of hypertension, hyperlipidemia, and 
obesity attributed to an increased risk for all four outcomes. For individuals aged 35-55, abnormal glucose 
levels, alcoholism, hypoglycemia, and respiratory disorders were highlighted as significant predictive 
indicators. Among those in the 55-75 age range, obesity, disorders of lipoid metabolism, and diabetes 
diagnoses stood out as key common predictors of high risk for all outcomes. In the population over 75, 
hyperlipidemia and the prolonged use of anticoagulants were identified as common indicators across the 
studied outcomes. 
 

 
Figure 8. Heatmaps of patient-level attribution scores for four randomly chosen patients within our study cohort who developed 
major diabetic complications within a year following their last recorded visit. The visualizations present individualized feature 
attributions within each patient’s EHR timeline for chronic kidney disease (CKD), major adverse cardiovascular events (MACE), 
retinopathy, and neuropathy. Each row represents a specific diagnosis, while columns represent the encounter dates, showcasing 
how attribution scores vary throughout the patient’s medical history. Color gradients indicate the magnitude of the feature’s 
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attribution to the respective complication, with warmer colors denoting higher attribution scores. This patient-centric analysis 
highlights the differential and time-related impact of various medical conditions on the risk of each complication. 

Patient-specific Feature Importance 
Figure 8 illustrates the attribution scores of various conditions diagnosed, computed using IG, for each visit 
recorded in the EHR. The figure provides a visual narrative of patient-specific features contributing to 
increased risk for the four outcomes examined, as determined for four randomly selected patients. For 
example, the timeline for a patient at elevated risk for Major Adverse Cardiac Events (MACE) (top-right 
quadrant) reveals atrial fibrillation and cardiac dysrhythmia as consistent predictive features across visits 
from November 2016 to January 2018, preceding a MACE diagnosis within the subsequent year. Notably, 
hyperlipidemia and hypertension emerged as indicative features of MACE risk in later visits. In another 
case, a patient at high risk for chronic kidney disease (CKD) (top-left quadrant) showed predictive features 
such as kidney or bladder cancer, along with hypertension, hyperlipidemia, and disorders of lipoid 
metabolism in visits leading up to the CKD diagnosis. 
 

 
Figure 9. The diagram outlines the Top-BERT Implementation Framework, integrating various technological platforms for model 
development and training. The process begins with data extraction from MU EHR using Snowflake, then preprocessing in AWS’s 
secure environment. Tokenized features and labels are then transferred to the HyperCluster environment facilitated by Nautilus 
Jupyter to access GPU resources. Model training is initiated in this environment via persistent volumes and pods, leveraging 
Kubernetes orchestration. The PyTorch workflow incorporates configuration of BERT’s parameters, vocabulary loading, and 
dataset preparation for training 75 models across 3 BERT-based architectures. Training efficiency is exemplified by the reduction 
of actual training time to approximately 65 days, achieved in just 2 days due to parallel computing. This streamlined process 
underpins our study’s robust analytical capability. 

Implementation Details 
Figure 9 outlines the computational framework employed in our study, utilizing Snowflake, AWS 
Workbench, the Nautilus HyperCluster, and PyTorch(2.0). Our process began with executing SQL queries 
within Snowflake for cohort identification from our EHR database. Subsequent data preprocessing and 
feature generation for model training were conducted within AWS’s secure environment.  
 
The tokenized features and labels were transferred to the HyperCluster environment called NRP (National 
Research Platform) Nautilus, a nationwide cyberinfrastructure led by the Greater Plains Network. Figure 9 
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further illustrates the use of Jupyter IDE to implement model training across multiple experiments. We 
allocated persistent volumes to store datasets and orchestrated containerized jobs with the necessary docker 
image and GPU support. Specifically, NVIDIA A10 GPUs with 25 GB each were employed to facilitate 
parallel execution of tasks. Figure 9 also presents the workflow of our PyTorch-based implementation. It 
details the hyperparameters selected for our experiments and lays out the sequential steps in training the 
models. This systematic approach underpins the rigorous development and validation of our predictive 
models. We customized the Transformers library’s BERT model for model training to construct our unique 
Top-BERT architecture. Monitoring and managing training progress were achieved through Weights and 
Biases (wandb.ai). Using Nautilus’ parallel computing capabilities drastically reduced our total training 
duration for all experiments from an estimated 65 days to just 2 days, leading to significant efficiency gains. 
 
Additionally, we implemented XGBoost to predict four micro and macro-vascular complications, utilizing 
the xgboost library, scikit learn’s MultiOutputClassifier, and the Optuna library for hyperparameter 
optimization. Model evaluation metrics were computed using scikit learn. 
 
Discussion  
 
Methodological and Technical Advancement 
Our study demonstrates a notable advancement in the application of BERT’s architecture for clinical 
predictions from EHR data, particularly when constrained by the sample size typical of single-center 
datasets. Through the innovative implementation of task-oriented predictive (top)-BERT, we have 
demonstrated the adaptability and strength of the BERT architecture in facilitating an end-to-end training 
and evaluation approach. Top-BERT, utilizing the sequential input structure, embedding layer, and encoder 
stacks inherent to BERT adopts a multitask approach that integrates the conventional Masked Language 
Model (MLM), a binary classification for prolonged hospital stays, and multilabel sequence classification 
for micro and macro-vascular complications in diabetic patients. Our findings showed that Top-BERT can 
outperform both standard pretraining-finetuning BERT applications and traditional machine learning 
models such as XGBoost. 
 
The inclusion of a binary classification task for prolonged hospital stays was inspired by Med-BERT 
(2021)27 suggestion to substitute the generic Next Sentence Prediction (NSP) task with more contextually 
relevant tasks for EHR data. Moreover, in our approach, we adopted the strategy of including a [CLS] 
token––following the work of Li et al. (2020)21 ––at the beginning of each input sequence, leveraging its 
role as a summarizing representation of the sequence. The [CLS] token’s aggregated representation 
provides a distilled feature vector that encapsulates the contextual information from the entire sequence, 
which is pivotal for downstream classification tasks. Additionally, the differing embedding layer designs in 
earlier BERT models for EHR data emphasize the necessity to investigate how these designs affect the 
model’s ability to accurately represent EHR temporality. By conducting ablation experiments, we evaluated 
the impact of integrating temporal factors—patient age, visit sequence, patient age at encounter, and inter-
visit durations —on the predictive accuracy for diabetic complications.  
 
We combined AUROC scores with Shannon’s information entropy to evaluate model performance, 
optimizing a balance between model simplicity and performance accuracy. We found that simpler temporal 
embeddings, such as visit number and inter-visit durations, offered an optimal trade-off, achieving high 
predictive accuracy, which is likely attributable to the information gain rooted in its representation. 
Combining input with visit number and inter-visit durations achieved the highest micro-averaged AUROC 
of 0.713 in predicting the four outcomes. This represents an improvement of 4.8% and 3.3% over the 
respective finetuning frameworks and a substantial 27.0% over the AUROC achieved by XGBoost. 
Notably, within Top-BERT, this embedding combination surpassed the AUROCs of BEHRT’s and Med-
BERT’s distinct embedding designs by 5.22% and 0.28%, respectively. Top-BERT also showed improved 
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performance over the finetuning frameworks of BEHRT and Med-BERT (enhancing AUCs by margins of 
9.6% & 6.6% and 5.83% & 0.55%, respectively). Furthermore, Top-BERT showed consistent capability in 
handling the class imbalance with higher predictive true positive rates than XGBoost- further underscoring 
the potential of Top-BERT in discriminating between clinical tasks, especially in limited sample cases.  
 
The combined use of self-supervised and supervised learning methods within Top-BERT utilizes the distinct 
benefits of multitask approach. Unsupervised learning methods identify underlying patterns in large 
volumes of unlabeled data, while supervised learning refines this understanding by directing the model’s 
focus toward accurately predicting designated clinical outcomes. This approach gives Top-BERT the unique 
ability to derive generalized insights from data and perform clinical task predictions independent of any 
pre-established knowledge base from pretrained models. Multitask learning has been shown to obtain a 
more robust shared representation of the tasks that effectively can mitigate the sparsity of labeled data, 
enhancing model performance, faster model convergence, and reducing overfitting risks46. This accounts 
for the case that Top-BERT outperformed the two finetuning frameworks without relying on class balancing 
techniques to address label sparsity in the dataset, whereas the finetuning frameworks required weighted 
batch samplers to improve their learning. Moreover, Top-BERT’s unified multitask learning approach 
achieves time efficiency and optimized performance, reaching convergence within 350 epochs (20-24 hours 
of training), compared to the pretraining-finetuning framework to our single-center EHR data which 
required approximately 28-30 hours for pretraining (epochs = 500) and an additional 8-10 hours for fine-
tuning. This increase in efficiency, especially with limited data, further underscores the effectiveness of our 
approach.  
 
Common Predictive Risk Factors and Clinical Relevance 
The insights from our model explanations reveal the significant predictive diagnoses used by our model to 
make predictions for each diabetes-related complications, including chronic kidney disease, major adverse 
cardiac events (MACE), retinopathy, and neuropathy. Hypertension, prevalent in approximately 69% of our 
cohort, was found to be a key predictive factor for all studied outcomes across all age groups (Figures 6 
and 7). Our findings resonate with established clinical evidence linking hypertension to an escalated risk of 
diabetic complications47,48. Furthermore, hypertension with diabetes is associated with a 6-fold increase in 
the risk of cardiovascular events, a risk that escalates further with the coexistence of chronic kidney 
diseases48. Additionally, our study identified hyperlipidemia and obesity as contributory to organ damage–
–reinforcing their role in the pathogenesis of diabetes-related complications49.  
 
Metabolic imbalances such electrolyte balance disorders—specifically potassium, magnesium, and 
phosphate—emerged as significant predictors across all complications, reflective of the complex interplay 
in diabetes management (Figure 6)50,51. Diabetes-related electrolyte imbalances stem from renal issues, 
absorption problems, acid-base imbalances, and extensive medication use. Low serum magnesium is linked 
to key diabetes complications, including retinopathy and heart disease, while polypharmacy can lead to 
hypopotassemia, further increasing cardiovascular risk. Our findings also showed association of vitamin D 
with both micro and macro-vascular complications, as well as identified anemia a significant predictive 
factor, corroborating existing clinical evidence51, 52. 
 
The age-specific patterns of symptoms suggest that for younger individuals, addressing modifiable risk 
factors such as hyperlipidemia and obesity could be crucial in reducing the risk of diabetes-related 
complications. Tailoring interventions for middle-aged individuals by monitoring glucose and addressing 
lifestyle factors like alcohol consumption while managing lipid levels in older adults may be vital. Thus, 
the common risk factors identified in this study highlight the significance of regular monitoring of glucose 
level, blood pressure, serum electrolytes and vitamin levels, hemoglobin, lipid profile, and weight in 
diabetes patients to improve their overall healthcare outcomes and hence prevent the onset of other 
complications53,54. 
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Symptoms of Complications and Clinical Implications 
Our findings delineate a trajectory of early clinical manifestations detectable in EHR data associated with 
an increasing risk of the studied complications. For example, patients at elevated risk for chronic kidney 
disease had earlier encounters indicating potential kidney dysfunction, including symptoms like limb 
swelling, increased frequency of urination, and fluctuating blood pressure. Patients at increased risk for 
cardiovascular complications presented with symptoms such as abnormal electrocardiogram readings and 
various cardiac anomalies, while those at risk for neuropathy exhibited chronic pain alongside other 
neurological symptoms. Similarly, individuals facing a risk of retinopathy had historical clinical encounters 
related to eye conditions. These insights highlight the essential role of proactive symptom assessment and 
the management of comorbid conditions in preventing the advancement of complications in patients with 
diabetes, emphasizing the medical necessity for comprehensive evaluation as a fundamental element of 
preventive care strategies54. 
 
Limitations and Future Goals 
Although our study achieved considerable progress in predicting clinical outcomes from EHR data 
enhancing BERT framework, we recognize several limitations that open opportunities for future research. 
Integration of Numerical Features: Our future goal is to improve the model performance in predicting the 
diabetic complications, especially leading to higher AUC values. Prior studies have shown to improve 
model performance with inclusion of numerical features such labs and vitals (body mass index, blood 
pressure, lipid profiles, etc.)15,55,56. BERT inherently processes inputs as tokens, including numerical 
features. This presents a limitation as it does not fully exploit the quantitative nature of these features. Thus, 
we will focus on integrating numerical data, such as lab values and vital signs, more effectively within our 
model architecture, which may potentially lead to enhanced model performance and identification of 
modifiable predictive factors. 
 
Model Fairness Studies: Our research also highlights the role of thorough documentation and patterns of 
healthcare utilization in the EHR, which significantly contribute to the predictive features of our models. 
For example, patients with higher healthcare utilization tend to accumulate more diagnostic entries in their 
EHRs, influencing the model’s predictions. As AI and machine learning become more prevalent in 
healthcare, it's critical to maintain model integrity and prevent biases that could adversely affect certain 
groups of patients. In our future work, we aim to conduct thorough model fairness studies to identify and 
mitigate any biases and confounding factors, ensuring equitable predictions across all demographics. 
 
Multi-center Data Expansion: The current study’s findings are based on single-center data, which may not 
capture the diversity of patient populations and practice patterns. Expanding the dataset to include multiple 
centers will allow our model to learn from a broader range of patient encounters, enhancing its 
generalizability and robustness across different clinical environments. 
 
Thus, addressing these limitations is pivotal for advancing our research. The envisioned improvements and 
expansions will aim not just to refine the predictive accuracy but also to ensure that the insights generated 
by our model are equitable, generalizable, and applicable across various clinical settings.   
 
Conclusion 
In summary, Top-BERT introduces a transformative approach that deviates from the traditional pretraining-
finetuning paradigm of language models, demonstrating its effective predictive performance on clinical 
tasks within the confines of a single-center EHR dataset, even with limited sample sizes. The model 
explanations using Integrated Gradients further validate the clinical applicability of our findings, 
highlighting its promise for enhancing diabetes care management and patient health outcomes. Moreover, 
our study deployed a robust framework integrating the strengths of MU EHR data lake and NRP Nautilus 
infrastructures––leveraging parallel high-performance computing significantly reduced model training 
time, boosting efficiency, and accelerating the development of our sophisticated predictive models from an 
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estimated 65 days to just 2 days. Furthermore, we prioritized the reproducibility of our research, making 
our codes accessible and clearly illustrating our methodology through informative graphics and diagrams.  
 
Code Availability 
The complete codebase for this framework is accessible through our GitHub repository: 
https://github.com/hikf3/task-oriented-predictive-BERT  
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Supplementary Document 
 
Comparing BERT-based Model Performances: Table S1 shows the micro-averaged performance metrics for two finetuning frameworks and Top-BERT embedding 
configurations. Metrics were computed for epoch 200 for the two finetuning frameworks after pretraining for 500 epochs. For the Top-BERT models all metrics were 
computed at epoch 350. We also compared the AUROC of prolonged hospital stay in the Top-BERT models, as shown in Table S1.  

 Finetuning A 
 Input Embedding micro-

auroc 
micro-
recall 

micro- 
precision 

micro-f1 epoch 

1 DX age 0.6789 0.7992 0.7914 0.7951 200 
2 DX time diff 0.6957 0.7828 0.8010 0.7911 200 
3 DX visit 0.6709 0.7998 0.8005 0.8002 200 
4 DX pos+seg 0.6745 0.7917 0.7907 0.7912 200 
5 DX age+time diff 0.6725 0.7978 0.7906 0.6725 200 
6 DX pos+seg+age 0.6440 0.7900 0.7901 0.6991 200 
7 DX pos+seg+time diff 0.6858 0.8113 0.7998 0.8052 200 
8 DX visit+age 0.6591 0.7961 0.7847 0.7901 200 
9 DX visit+age+time diff 0.6568 0.8179 0.7954 0.8051 200 
10 DX visit+time diff 0.6786 0.8023 0.7960 0.7990 200 
11 DX pos+seg+visit 0.6754 0.7941 0.7904 0.7922 200 
12 DX pos+seg+visit+age 0.6440 0.8175 0.7853 0.7985 200 
13 DX pos+seg+visit+time diff 0.6491 0.8103 0.7914 0.7998 200 
14 DX pos+seg+age+time diff 0.6501 0.8241 0.7945 0.8063 200 
15 DX pos+seg+visit+age+time diff 0.6594 0.8197 0.7907 0.8025 200 
 Finetuning B 
 Input Embedding micro-

auroc 
micro-
recall 

micro- 
precision 

micro-f1 epoch 

1 DX age 0.6859 0.8053 0.7904 0.7973 200 
2 DX time diff 0.7035 0.7948 0.8014 0.7980 200 
3 DX visit 0.7086 0.8071 0.7995 0.8009 200 
4 DX pos+seg 0.6939 0.8032 0.7802 0.7952 200 
5 DX age+time diff 0.6641 0.8178 0.7888 0.8008 200 
6 DX pos+seg+age 0.6652 0.8125 0.7838 0.7957 200 
7 DX pos+seg+time diff 0.6903 0.8143 0.7906 0.8008 200 
8 DX visit+age 0.6725 0.8007 0.7901 0.7952 200 
9 DX visit+age+time diff 0.6869 0.8191 0.7950 0.8051 200 
10 DX visit+time diff 0.6890 0.804 0.7978 0.8008 200 
11 DX pos+seg+visit 0.6876 0.8080 0.7917 0.7991 200 
12 DX pos+seg+visit+age 0.6705 0.830 0.7886 0.8033 200 
13 DX pos+seg+visit+time diff 0.6898 0.8242 0.7947 0.8061 200 
14 DX pos+seg+age+time diff 0.7057 0.8257 0.7981 0.8090 200 
15 DX pos+seg+visit+age+time diff 0.6713 0.8065 0.7830 0.7933 200 
 Top-BERT 
 Input Embedding micro-

auroc 
micro-
recall 

micro- 
precision 

micro-f1 epoch Prolonged 
LOS auroc 

1 DX age 0.6759 0.8476 0.8709 0.8585 350 0.7331 
2 DX time diff 0.6947 0.7607 0.8802 0.8079 350 0.8011 
3 DX visit 0.7105 0.7963 0.8825 0.8815 350 0.7958 
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Comparing Task-Specific Model Performances: 
To gain insights on the differences and similarities of Top-BERT and XGBoost in handling class imbalance, we compared the model performance for each 
classification task: CKD, MACE, NEUR, and RET using precision, recall, F1-score, Mathew’s correlation coefficient (MCC) and confusion matrix computed at 
varying threshold values (10%, 30%, 50%, and 80%). Our test data consisted of 7.25% of CKD labels, 11.6% of MACE, 10.9% of NEUR, and 2.7% of RET. Table 
S2 compares the metrics for each classification task for five Top-BERT embedding configurations (having comparable mAUCs) and XGBoost. Top-BERT models 
displayed more balanced metrics across the thresholds with significantly higher true positive predictions, leading to higher recall values than XGBoost. However, 
XGBoost showed lower false positive rates, contributing to higher precision, particularly at higher thresholds than Top-BERT. For instance, XGBoost achieved a 
precision of 69.5% for predicting MACE at 50% threshold compared to 26.4% in Top-BERT (input+time_diff). False positives of MACE predicted by XGBoost 
were significantly lower than Top-BERT models (0.28% for XGBoost vs. 9.32% for Top-BERT input+time_diff) –– which contributed to the significant increase in 
precision for XGBoost. However, XGBoost identified 41 true positives out of the 849 positive labels, which resulted in a recall value of 4.8% compared to 414 true 
positives (recall of 48.8%) for Top-BERT (input+time_diff). Additionally, to predict RET, which had the lowest fraction of true positives, true positive rates for 
XGBoost were zero in most cases, whereas input+time_diff identified 21.5% true positives at the 50% threshold. Thus, we observed that higher precision values and 
lower recall values obtained by XGBoost were consequences of conservatively predicting fewer number of positive cases (both true positives and false positives) in 
all classification tasks. On the other hand, Top-BERT showed better measure of separability, as indicated by higher mAUC values, and higher efficiency in predicting 
the positive classes compared to XGBoost.  

 
Chronic Kidney Disease (CKD) Major Adverse Cardiac Events (MACE) 

Model input+ 
visit+ 
time_diff 

input+ 
visit 

input+ 
visit+ 
pos+ 
seg 

input+ 
time_diff 

input+ 
pos+ seg+ 
time_diff 

XGBoost Model input+ 
visit+ 
time_diff 

input+ 
visit 

input+ 
visit+ 
pos+ 
seg 

input+ 
time_diff 

input+ 
pos+ 
seg+ 
time_diff 

XGBoost 

C
hr

on
ic

 K
id

ne
y 

D
is

ea
se

 (C
K

D
) 

Precision 10% 0.1295 0.1170 0.1284 0.1081 0.1520 0.1965 

M
aj

or
 A

dv
er

se
 C

ar
di

ac
 

E
ve

nt
s (

M
A

C
E

)  

Precision 10% 0.1792 0.1691 0.1798 0.1620 0.2331 0.2226 

30% 0.1441 0.1266 0.1391 0.1122 0.1605 0.3462 30% 0.1970 0.1859 0.2009 0.1791 0.2470 0.4501 

50% 0.1537 0.1314 0.1458 0.1205 0.1655 0.7273 50% 0.2116 0.2111 0.2147 0.1893 0.2641 0.6949 

80% 0.1678 0.1575 0.1696 0.1377 0.1788 0.0000 80% 0.2400 0.2595 0.2459 0.2354 0.2922 0.6667 

Recall 10% 0.4415 0.5906 0.4113 0.5792 0.2472 0.4943 Recall 10% 0.6125 0.6737 0.5112 0.6643 0.3604 0.7173 

4 DX pos+seg 0.6933 0.8155 0.8766 0.8419 350 0.7602 
5 DX age+time diff 0.6850 0.8489 0.8716 0.8596 350 0.7413 
6 DX pos+seg+age 0.6753 0.8761 0.8690 0.8725 350 0.7449 
7 DX pos+seg+time diff 0.6976 0.8591 0.8756 0.8669 350 0.7468 
8 DX visit+age 0.6795 0.8589 0.8719 0.8652 350 0.7577 
9 DX visit+age+time diff 0.6796 0.8725 0.8690 0.8707 350 0.7619 
10 DX visit+time diff 0.7125 0.7839 0.8815 0.8233 350 0.7699 
11 DX pos+seg+visit 0.6960 0.8317 0.8757 0.8513 350 0.7585 
12 DX pos+seg+visit+age 0.6751 0.8699 0.8682 0.8690 350 0.7470 
13 DX pos+seg+visit+time diff 0.693 0.8619 0.8749 0.8681 350 0.7399 
14 DX pos+seg+age+time diff 0.6719 0.8669 0.8693 0.8681 350 0.7634 
15 DX pos+seg+visit+age+time diff 0.6766 0.8641 0.8694 0.8667 350 0.7487 

Table S 1. Comparing the micro-averaged metrics for each embedding configura<ons for the BERT-based model frameworks. Addi<onally, the AUROC of prolonged hospital stay is provided for the 
Top-BERT models.   
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30% 0.3755 0.4792 0.3170 0.4943 0.2057 0.0509 30% 0.5253 0.5453 0.4158 0.5783 0.2933 0.1861 

50% 0.3208 0.3943 0.2566 0.4377 0.1774 0.0151 50% 0.4653 0.4629 0.3569 0.4876 0.2544 0.0483 

80% 0.2264 0.2642 0.1660 0.3019 0.1302 0.0000 80% 0.3475 0.2733 0.2627 0.3145 0.2038 0.0024 

F-1 10% 0.2003 0.1953 0.1957 0.1822 0.1882 0.2813 F-1 10% 0.2773 0.2704 0.266 0.2604 0.2831 0.3397 

30% 0.2083 0.2003 0.1933 0.1829 0.1803 0.0888 30% 0.2865 0.2772 0.2709 0.2735 0.2682 0.2633 

50% 0.2078 0.1972 0.1859 0.1889 0.1712 0.0296 50% 0.2909 0.2899 0.2681 0.2727 0.2591 0.0903 

80% 0.1928 0.1973 0.1678 0.1891 0.1507 0.0000 80% 0.2839 0.2662 0.254 0.2693 0.2401 0.0047 

MCC 10% 0.1259 0.1303 0.1185 0.1093 0.1120 0.2259 MCC 10% 0.1596 0.1534 0.1394 0.1363 0.1707 0.2569 

30% 0.1332 0.1283 0.1142 0.1048 0.1086 0.1096 30% 0.1690 0.1564 0.1488 0.1522 0.1633 0.2341 

50% 0.1322 0.1198 0.1080 0.1105 0.1041 0.0980 50% 0.1744 0.1731 0.1504 0.1491 0.1638 0.1629 

80% 0.1210 0.1219 0.1034 0.1092 0.0967 0.0000 80% 0.1738 0.1670 0.1523 0.1595 0.1631 0.0348 

True 
Positive 

10% 234 313 218 307 131 262 True 
Positive 

10% 520 572 434 564 306 609 

30% 199 254 168 262 109 27 30% 446 463 353 491 249 158 

50% 170 209 136 232 94 8 50% 395 393 303 414 216 41 

80% 120 140 88 160 69 0 80% 295 232 223 267 173 2 

False 
Positive 

10% 1573 2362 1480 2533 731 1071 False 
Positive 

10% 2382 2810 1980 2918 1007 2127 

30% 1182 1752 1040 2073 570 51 30% 1818 2028 1404 2250 759 193 

50% 936 1381 797 1694 474 3 50% 1472 1469 1108 1773 602 18 

80% 595 749 431 1002 317 0 80% 934 662 684 867 419 1 

True 
Negative 

10% 5204 4415 5297 4244 6046 5706 True 
Negative 

10% 4076 3648 4478 3540 5451 4331 

30% 5595 5025 5737 4704 6207 6726 30% 4640 4430 5054 4208 5699 6265 

50% 5841 5396 5980 5083 6303 6774 50% 4986 4989 5350 4685 5856 6440 

80% 6182 6028 6346 5775 6460 6777 80% 5524 5796 5774 5591 6039 6457 

False 
Negative 

10% 296 217 312 223 399 268 False 
Negative 

10% 329 277 415 285 543 240 

30% 331 276 362 268 421 503 30% 403 386 496 358 600 691 

50% 360 321 394 298 436 522 50% 454 456 546 435 633 808 

80% 410 390 442 370 461 530 80% 554 617 626 582 676 847 

Neuropathy (NEUR) Retinopathy (RET) 

Model input+ 
visit+ 
time_diff 

input+ 
visit 

input+ 
visit+ 
pos+ 
seg 

input+ 
time_diff 

input+ 
pos+ seg+ 
time_diff 

XGBoost Model input+ 
visit+ 
time_diff 

input+ 
visit 

input+ 
visit+ 
pos+ 
seg 

input+ 
time_diff 

input+ 
pos+ 
seg+ 
time_diff 

XGBoost 
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N
eu

ro
pa

th
y 

(N
E

U
R

) 
Precision 10% 0.17192 0.1565 0.1648 0.1508 0.1971 0.2256 

R
et

in
op

at
hy

 (R
E

T
)  

Precision 10% 0.0863 0.0894 0.0933 0.0730 0.1058 0.1552 

30% 0.18289 0.1839 0.1858 0.1655 0.2144 0.4778 30% 0.0909 0.0959 0.0957 0.0786 0.1095 0.0000 

50% 0.19700 0.2044 0.2059 0.1803 0.2292 0.6939 50% 0.0993 0.1005 0.0935 0.0883 0.1221 0.0000 

80% 0.21867 0.2505 0.2468 0.2075 0.2521 1.0000 80% 0.1096 0.1020 0.0829 0.0978 0.1151 0.0000 

Recall 10% 0.60453 0.6927 0.5567 0.7028 0.4572 0.6675 Recall 10% 0.18 0.235 0.195 0.265 0.145 0.215 

30% 0.48992 0.5945 0.4723 0.5957 0.3741 0.2166 30% 0.15 0.21 0.155 0.22 0.11 0 

50% 0.43073 0.5126 0.4207 0.5076 0.3325 0.0856 50% 0.145 0.19 0.13 0.215 0.105 0 

80% 0.31864 0.3476 0.3174 0.3489 0.2670 0.0063 80% 0.125 0.15 0.085 0.175 0.08 0 

F-1 10% 0.26771 0.2553 0.2543 0.2483 0.2754 0.3373 F-1 10% 0.1167 0.1295 0.1262 0.1145 0.1224 0.1803 

30% 0.26635 0.2809 0.2667 0.2590 0.2726 0.2981 30% 0.1132 0.1317 0.1183 0.1158 0.1097 0 

50% 0.27036 0.2923 0.2765 0.2661 0.2713 0.1525 50% 0.1179 0.1315 0.1088 0.1252 0.1129 0 

80% 0.25935 0.2911 0.2777 0.2602 0.2593 0.0125 80% 0.1168 0.1215 0.0840 0.1254 0.0944 0 

MCC 10% 0.15984 0.1480 0.1374 0.1371 0.1649 0.2587 MCC 10% 0.0889 0.1058 0.0995 0.0929 0.0949 0.1556 

30% 0.15283 0.1778 0.1532 0.1464 0.1644 0.2700 30% 0.0847 0.1060 0.0902 0.0904 0.0846 -0.0048 

50% 0.15846 0.1883 0.1669 0.1528 0.1675 0.2192 50% 0.0900 0.1047 0.0806 0.0998 0.0901 0 

80% 0.15331 0.1920 0.1789 0.1501 0.1662 0.0749 80% 0.0905 0.0937 0.0578 0.0979 0.0749 0 

True 
Positive 

10% 480 550 442 558 363 530 True 
Positive 

10% 36 47 39 53 29 43 

30% 389 472 375 473 297 172 30% 30 42 31 44 22 0 

50% 342 407 334 403 264 68 50% 29 38 26 43 21 0 

80% 253 276 252 277 212 5 80% 25 30 17 35 16 0 

False 
Positive 

10% 2312 2964 2240 3143 1479 1819 False 
Positive 

10% 381 479 379 673 245 234 

30% 1738 2095 1643 2385 1088 188 30% 300 396 293 516 179 6 

50% 1394 1584 1288 1832 888 30 50% 263 340 252 444 151 0 

80% 904 826 769 1058 629 0 80% 203 264 188 323 123 0 

True 
Negative 

10% 4201 3549 4273 3370 5034 4694 True 
Negative 

10% 6726 6628 6728 6434 6862 6873 

30% 4775 4418 4870 4128 5425 6325 30% 6807 6711 6814 6591 6928 7101 

50% 5119 4929 5225 4681 5625 6483 50% 6844 6767 6855 6663 6956 7107 

80% 5609 5687 5744 5455 5884 6513 80% 6904 6843 6919 6784 6984 7107 

False 
Negative 

10% 314 244 352 236 431 264 False 
Negative 

10% 164 153 161 147 171 157 

30% 405 322 419 321 497 622 30% 170 158 169 156 178 200 

50% 452 387 460 391 530 726 50% 171 162 174 157 179 200 

80% 541 518 542 517 582 789 80% 175 170 183 165 184 200 
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Table S 2. Comparing the task-specific model performances for five Top-BERT embedding configura<ons (having comparable micro-averaged AUROCs) and XGBoost for each classifica<on task: CKD, 
MACE, NEUR, and RET using precision, recall, F1-score, Mathew’s correla<on coefficient (MCC) and confusion matrix computed at varying threshold values (10%, 30%, 50%, and 80%). The red 
highlighted scores show the highest value in each metric for each threshold value. 
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