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Abstract 26 

Blood cell phenotypes are routinely tested in healthcare to inform clinical decisions. 27 

Genetic variants influencing mean blood cell phenotypes have been used to understand 28 

disease aetiology and improve prediction; however, additional information may be captured 29 

by genetic effects on observed variance. Here, we mapped variance quantitative trait loci 30 

(vQTL), i.e. genetic loci associated with trait variance, for 29 blood cell phenotypes from the 31 

UK Biobank (N~408,111). We discovered 176 independent blood cell vQTLs, of which 147 32 

were not found by additive QTL mapping. vQTLs displayed on average 1.8-fold stronger 33 

negative selection than additive QTL, highlighting that selection acts to reduce extreme blood 34 

cell phenotypes. Variance polygenic scores (vPGSs) were constructed to stratify individuals 35 

in the INTERVAL cohort (N~40,466), where genetically less variable individuals (low 36 

vPGS) had increased conventional PGS accuracy (by ~19%) than genetically more variable 37 

individuals. Genetic prediction of blood cell traits improved by ~10% on average combining 38 

PGS with vPGS. Using Mendelian randomisation and vPGS association analyses, we found 39 

that alcohol consumption significantly increased blood cell trait variances highlighting the 40 

utility of blood cell vQTLs and vPGSs to provide novel insight into phenotype aetiology as 41 

well as improve prediction. 42 

 43 

  44 
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Introduction 45 

The complete blood count is amongst the most routinely ordered clinical laboratory 46 

tests performed globally1. Blood cells play crucial roles in a variety of biological processes, 47 

such as oxygen transport, iron homeostasis, and pathogen clearance2-4, and serve as key 48 

biological conduits for interactions between an individual and their environment. The genetic 49 

architecture of blood cell traits has been recently elucidated by genome-wide association 50 

studies (GWAS)5,6 and, consistent with their well-known role in disease and clinical testing, 51 

blood cell traits are both highly heritable and have been genetically linked to many diseases, 52 

including cardiovascular diseases7, mental disorders8 and autoimmune diseases9. 53 

Despite the success of GWAS, our understanding of the genetic architecture of complex 54 

traits has been limited by a focus on mean trait values and how these change with respect to 55 

genotype. The genetics of trait variance, how individual measurements deviate from the mean 56 

trait value across genotypes, is far less studied. It has long been known that trait variance, e.g. 57 

for gene expression10,11 and metabolic rate12, plays a role in an organism’s fitness and 58 

phenotypic penetrance. Theories support the existence of selection on trait variance to improve 59 

fitness 13,14. However, there are limited observations of selection on clinically significant traits. 60 

Variance quantitative trait loci (vQTLs) have been identified for human body composition 61 

traits, such as BMI15,16, and for cardiometabolic biomarkers17. vQTLs have also been linked to 62 

gene-by-environment interactions (GxE) or gene-by-gene interactions (GxG)15-18. vQTL 63 

studies of blood cell traits are currently lacking, despite their central role in biological processes 64 

and ubiquity in clinical testing. 65 

Polygenic scores (PGS) are being intensively studied in various ways to determine their 66 

utility in clinical practice19-21. PGS for blood cell traits, in particular, are both highly predictive 67 

and show sex- and age-specific interactions6,7. How to treat trait variance and vQTLs with 68 

respect to phenotype prediction is relatively unexplored. A variance PGS (vPGS) to predict the 69 
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trait variance may be estimated from the effect sizes obtained from a genome-wide vQTL 70 

analysis. In theory, a PGS is different from a vPGS, where the former may be used to stratify 71 

individuals based on the inherited trait level while the latter stratifies individuals based on the 72 

inherited deviation of individuals from the population mean. It is known that the accuracy of a 73 

PGS varies across individuals as a function of the genetic distance from the reference 74 

population22. As a vPGS may represent the outcome of GxE16 or GxG due to the nature of 75 

vQTLs15, examining a PGS alongside vPGS may reveal individual variability in PGS accuracy 76 

that can be accommodated. 77 

Here, we conduct genome-wide vQTL analysis for 29 blood cell traits in the UK 78 

Biobank6,7 and the INTERVAL cohort23. We compared the discovered vQTL with 79 

conventional QTL and analysed vPGS with conventional PGS in the prediction of blood cell 80 

traits. We found novel vQTL, not identified by previous conventional GWAS and displayed 81 

strong selection to reduce blood cell trait variances. Finally, we demonstrate the use of vPGS 82 

in stratifying individuals, resulting in differing PGS performance, and then show that PGS 83 

performance within vPGS strata is associated with lifestyle factors. 84 

 85 

Results 86 

 87 

Genome-wide discovery and annotation of vQTLs in the UK Biobank 88 

We performed GWAS of variance in 29 blood cell traits from the UKB17,18 (Average 89 

sample size = 402,142, Supplementary Table 1). The processing of phenotypes and genotypes 90 

followed previously established protocols with stringent quality control and normalisation 91 

procedures5-7. Levene’s test24, as implemented in OSCA25, was used to map vQTLs for each of 92 

the 29 blood cell traits and the inflation factors and lambda GC were assessed using LD Score 93 

regression (LDSC)26. Across the 29 traits, the average lambda GC and LDSC intercepts were 94 
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1.03 and 1.007, respectively (Supplementary Table 2), indicating negligible inflation. At a 95 

study-wide significance level of p < 4.6x10-9 and with clumping r2 < 0.01, we identified 176 96 

independent vQTLs (Figure 1a, Supplementary Table 3, Methods).  97 

Basophil cell count (baso) and basophil percentage of white cells (baso_p) yielded the 98 

largest number of independent vQTLs (N = 27 and 23, respectively), whereas high light scatter 99 

reticulocyte count (hlr) did not have any study-wide significant vQTLs (Supplementary Table 100 

4). Most vQTL were associated with the variance of only one or two traits and many of these 101 

traits are correlated (Supplementary Figure 1 and Supplementary Table 3). By counting the 102 

number of blood cell traits associated, the most pleiotropic lead vQTL was located in gene 103 

HBM (hemoglobin subunit mu) and was associated with the variance of four traits (red blood 104 

cell count, mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular 105 

hemoglobin concentration, Supplementary Table 3). The second pleiotropic lead vQTL 106 

related to long intergenic non-coding RNA LINC02768 was associated with 3 traits [monocyte 107 

percentage of white cells (mono_p), baso and baso_p, Figure 1b]. To account for the 108 

phenotypic correlations, the pleiotropy of trait variance was further assessed using HOPS27, 109 

which found that 495 SNPs (out of 71,216 input SNPs) showed significant pleiotropy 110 

(Supplementary Table 5). In this analysis, the most significant pleiotropic locus was 111 

LINC02768 (Supplementary Table 5). 112 

vQTLs were largely distinct from additive QTLs. Of 176 lead vQTLs, 147 were not 113 

detected as additive QTLs by Vuckovic et al6, the largest GWAS to date of blood cell traits. 114 

vQTLs had an average r2 of 0.33 (SD=0.12) with the lead additive QTLs from Vuckovic et al6 115 

(Supplementary Figure 2). We repeated the OSCA25 analysis fitting the trait level as a 116 

covariate, i.e. effects of vQTL conditioned on the trait level. The correlation of the effects of 117 

these vQTLs between the original and conditional analysis was 0.99 (Supplementary Figure 118 

3), consistent with vQTL effects being independent of those for mean trait level.  119 
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Across 29 traits, the magnitude of the genetic correlation between trait variance and 120 

trait level, as estimated by LDSC26, was on average 0.328 (SD=0.24) (Figure 1c) and the 121 

genetic correlation between trait variance and value was not significant for 21 out of 29 traits 122 

after adjusting for multi-testing. Notably, red cell distribution width (rdw) and neutrophil 123 

percentage of white cells (neut_p) had significant negative genetic correlations after adjustment 124 

for multiple testing, indicating genetic control of trait variance so it is reduced at high levels of 125 

rdw or neut_p. Rdw is itself a measure of variation; however, high rdw is an indicator of iron 126 

or other nutrient deficiencies, thus our results suggest a potential simultaneous genetic 127 

stabilisation when rdw is genetically high. Similarly, high neut_p is an indicator of microbial 128 

or inflammatory stress, thus a negative genetic correlation suggests a stabilisation at genetically 129 

high neut_p levels. 130 

With many known trait-associated alleles under negative selection28, we also assessed 131 

the extent to which QTLs for trait variability are under selection. We used Bayes(S)28, to 132 

compare the selection coefficient (S) between vQTLs and additive QTLs across 29 blood cell 133 

traits (Figure 1d). We found that, on average S is 1.8 times stronger on trait variance (-0.82, 134 

SD=0.07) than trait level (-0.45, SD=0.05) (Figure 1d). These results show a much stronger 135 

negative selection on blood cell trait variance than on trait level. While it can be difficult to 136 

differentiate between negative and stabilising selection, our results are consistent with 137 

evolution acting on blood cell traits to remove extreme phenotypes from the population. 138 

We used FUMA25 to annotate the lead vQTLs for each trait (Supplementary Data 1 139 

and Supplementary Table 6) and perform a trait enrichment analysis with GWAS Catalog23. 140 

We found multiple significant overlaps between vQTL and additive QTL related to alcohol 141 

consumption. Significant vQTLs (rs191673261 in LD with lead vQTL rs572454376) for 142 

platelet crit (pct) were located proximal to ALDH2, a well-known gene contributing to alcohol 143 

consumption29 (Figure 2a). We subsequently performed Summary-data-based Mendelian 144 
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Randomisation (GSMR)30 between GWAS of alcohol consumption (as exposure, obtained 145 

from Cole et al 202031) and variances of blood cell traits (as outcome). We also used MR-146 

PRESSOR32 and MR-weighted median33 to validate our results with different assumptions. We 147 

did not find statistically significant causal links between alcohol consumption and pct. 148 

However, at multi-testing adjusted p < 0.05 level, increased alcohol consumption was 149 

genetically predicted to increase variance in mean corpuscular volume (mcv) and mean sphered 150 

corpuscular volume (mscv) (Figure 2b-d). At nominal significance (p < 0.05 for each of the 151 

three MR methods), increased alcohol consumption was genetically predicted to increase 152 

variance in red blood cell count (rbc) and neutrophil percentage of white cells (neut_p) (Figure 153 

2b). The positive effects of alcohol consumption on neutrophil count (neut) were significant in 154 

GSMR (nominal p = 0.014) and MR-PRESSO (nominal p=0.008), but insignificant (nominal 155 

p=0.1) in MR-weighted median. Overall, our results support alcohol consumption as affecting 156 

particular blood cell trait variances. 157 

FUMA-enabled ANNOVAR24 was used to study the enrichment of vQTLs in 158 

different functional annotation classes. We found that vQTLs for mean sphered corpuscular 159 

volume (mscv), reticulocyte count (ret) and reticulocyte fraction of red cells (ret_p) were 160 

significantly enriched in exonic variants related to protein-coding functions (Supplementary 161 

Figure 4a). However, vQTLs for many other traits were enriched in regulatory regions. For 162 

example, vQTLs for mean corpuscular hemoglobin concentration, red blood cell count and 163 

hemoglobin concentration (hgb) were enriched for upstream gene regulatory sites. vQTLs for 164 

eosinophil count (eo), mean corpuscular hemoglobin and mean corpuscular volume were 165 

enriched for downstream regulatory sites of genes. vQTLs for platelet distribution width 166 

(pdw) and basophil percentage of white cells (baso_p) were enriched for UTR-3’ sites 167 

(Supplementary Figure 4a). We used pathway enrichment analyses within FUMA to further 168 

investigate whether vQTLs were enriched for gene regulation, finding that vQTLs for mean 169 



 8 

corpuscular hemoglobin were enriched for many epigenetic regulatory mechanisms including 170 

DNA methylation and histone modifications (Supplementary Figure 4b). 171 

 172 

Polygenic scores of blood cell trait variance 173 

Polygenic scores are conventionally constructed for differences in trait level. Using 174 

the vQTL results from the UK Biobank, we constructed polygenic scores for blood cell trait 175 

variance (vPGS) using PRSICE34 and the INTERVAL study as an external validation cohort 176 

(Supplementary Table 1, Methods). For conventional PGS we utilised those from Xu et al7. 177 

Across traits, there was nearly zero Pearson correlation between vPGS and PGS (mean 178 

0.00028, range [-0.018, 0.023]; Supplementary Figure 5), consistent with PGS for trait 179 

variance being independent from those for mean trait levels. 180 

A potential use of vPGS is to stratify a population by trait variance, thus identifying 181 

subgroups where predictive models may have increased performance. For each trait, we 182 

stratified individuals into the top and bottom 5% of vPGS. As vPGS were trained to estimate 183 

SNP effects on trait variance, individuals with lower or higher vPGS were expected to 184 

display less or more variation around the trait mean, respectively. We then compared the 185 

correlation of PGSs for each trait between these more (high-vPGS) or less variable (low-186 

vPGS) groups. Across the 27 blood cell traits, we found the less variable group (bottom 5% 187 

of vPGS) had a significantly higher PGS-trait correlation than the more variable group (top 188 

5% vPGS) (Figure 3). Across all traits, the mean relative difference in PGS-trait correlation 189 

(Pearson) between the less and more variable groups was +6.5% [-7%, 18%] (Figure 3), with 190 

a mean difference of +6.6% [-9%, 19%] for spearman correlation (Supplementary Figure 191 

6). 192 

Next, we analysed the effects of interaction between PGS and vPGS for each trait. We 193 

found that 6 out of 27 blood cell traits displayed statistically significant (p < 0.05) effects of 194 
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interaction between PGS and vPGS (Figure 4a), suggesting that associations between PGS 195 

and blood cell trait level can depend on vPGS (Figure 4b-c). 196 

Next, for all INTERVAL individuals, we examined whether adding vPGS to PGS 197 

increased the prediction of blood cell trait level. For each blood cell trait, we estimated the 198 

difference in the variance explained (R2) between PGS models with or without vPGS (Figure 199 

5, Methods). Across all 27 traits, the mean R2 increase was +1.8% (range [0%, 5%]) and 9 200 

traits showed a statistically significant35  increase in R2 (Figure 5, Methods). We further 201 

tested whether multi-trait vPGSs also increase prediction power36, and found that adding 202 

multi-trait vPGSs to PGS increased R2 by a mean of +3.5% (range [0%, 10%]) and the 203 

increase was statistically significant in 16 traits (Figure 5). 204 

 205 

Lifestyle effects on blood cell trait variance 206 

To investigate why some individuals have highly variable blood cell trait levels we 207 

assessed two major lifestyle factors, namely alcohol consumption and smoking behaviour. 208 

We first identified distinct groups of individuals with high or low trait variance in 209 

INTERVAL. For the high variability trait group, we identified individuals who were in the 210 

top 5% of vPGS for at least 4 blood cell traits and, for the low variability trait group, with 211 

individuals in the bottom 5% of vPGS for at least 4 traits (Methods, Figure 6). Our analysis 212 

found that those in the high variability trait group were more likely to be current or previous 213 

consumers of alcohol (Figure 6a). Further, we applied this analysis to mcv, neut_p and rbc, 214 

finding significant causal effects of alcohol consumption in GSMR analyses (Figure 2a, 215 

mscv not available in INTERVAL). Consistent with the results from GSMR, individuals with 216 

high variability in mcv, neut_p and rbc were more likely to be alcohol consumers (Figure 217 

6b). These results support the hypothesis that alcohol consumption increases variation in 218 

blood cell traits. 219 
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 220 

Discussion 221 

The analysis of vQTL and vPGS may yield new insights into locus and GxE 222 

discovery as well as the use of human genetics for patient stratification. Our study explored 223 

vQTL analysis in 29 blood cell traits in the UK Biobank, where the majority (84%) of vQTLs 224 

did not overlap with and were largely independent of genetic variants identified in 225 

conventional GWAS of trait mean. We investigated the functional annotation, pathway-level 226 

associations and selection of vQTLs. The potential utility of using vQTLs to construct vPGS 227 

and using the latter to stratify the population into groups of trait variance was demonstrated. 228 

Finally, our analysis also showed trait variance to be related to non-genetic factors, finding 229 

that alcohol consumption had a putatively causal effect on increasing blood cell trait 230 

variances. 231 

Both blood cell trait variance and level display significant negative selection. 232 

Stabilising selection of human traits has been reported14. However, to our knowledge, 233 

negative selection on blood cell trait variance, particularly its strength relative to that on trait 234 

level, has not yet been identified. Strong negative selection of blood cell trait variances 235 

suggests that extreme blood cell morphologies, which may be indicative of diseases, have not 236 

been favoured.  237 

Many vQTLs tagged loci implicated in GxG, GxE and under epigenetic regulation, 238 

consistent with previous studies of vQTLs18,37. We found blood cell vQTLs tagged genes 239 

related to diet. Previous GWAS of diet identified loci related to blood lipids38 and glycated 240 

hemoglobin39 but not to blood cell traits analysed here; however, others have reported that 241 

alcohol intake increases mean corpuscular volume independent of the genetic contribution to 242 

the level of mean corpuscular volume40. In our study, alcohol consumption-related loci 243 
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significantly overlapped with vQTLs for platelet count, the function of which can be 244 

significantly affected by alcohol drinking41.  245 

Stratification by vPGS was shown to identify groups with significantly different PGS 246 

prediction accuracy, indicating that some groups are intrinsically harder to predict by PGSs 247 

than others. Such information may be important for the implementation of PGSs in 248 

healthcare. Interestingly, our analysis also found multiple significant interactions between 249 

PGS and vPGS, suggesting that the non-additive and GxE components related to PGSs could 250 

impact prediction accuracy. These findings are consistent with previous observations42,43. 251 

Our results also showed that alcohol consumption and, to some extent increased BMI, 252 

were significant contributors to increased genetic variability in blood cell traits. Previously 253 

reports have found that blood cell traits can be significantly influenced by alcohol intake44 254 

and BMI45. However, to our knowledge, this is the first study to report lifestyle risk factors 255 

contributing to genetically predicted variation in blood cell traits.  256 

In conclusion, our study provides an in-depth analysis of human genetic effects on the 257 

variance of blood cell traits, including the discovery of loci and strong negative selection, 258 

improved genomic prediction and stratification, and identification of GxE. vPGSs may 259 

provide a generalisable approach to incorporate individual differences to improve trait and 260 

disease risk prediction. This study demonstrates that there is substantive human biology and 261 

potential clinical utility in studying trait variances alongside conventional studies of trait 262 

means. 263 

 264 

Methods and Materials 265 

 266 

Study Cohorts and Methods 267 
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UK Biobank. The UK Biobank46,47 (https://www.ukbiobank.ac.uk/) is a cohort 268 

including 500,000 individuals living in the UK who were recruited between 2006 and 2010, 269 

aged between 40 and 69 years at recruitment. Ethics approval was obtained from the North 270 

West Multi-Center Research Ethics Committee. The current analysis was approved under UK 271 

Biobank Project 30418. The participants with the measurements of the 29 blood cell traits 272 

and who were identified as European ancestry based on their genetic component analysis 273 

were included in our study. The detailed sample sizes used for vQTL detection were shown in 274 

Supplementary Table 1. 275 

INTERVAL Study. INTERVAL23 (https://www.intervalstudy.org.uk/) is a 276 

randomised trial of 50,000 healthy blood donors, aged 18 years or older at recruitment. The 277 

participants with measurements of the 27 considered blood cell traits were included in our 278 

study. The detailed sample sizes were shown in Supplementary Table 1. All participants 279 

have given informed consent and this study was approved by the National Research Ethics 280 

Service (11/EE/0538). 281 

Data quality control. For trait levels of 29 blood cell traits in the UK Biobank and 282 

matching 27 traits in the INTERVAL, we adopted previously established protocols for 283 

quality controls5-7 to adjust technical and other confounders and the first 10 genetic principal 284 

components. For trait levels, adjusted technical variables include the time between 285 

venepuncture and full blood cell analysis, seasonal effects, center of sample collection, the 286 

time-dependent drift of equipment, and systematic differences in equipment; other adjusted 287 

variables included sex, age, diet, smoking and alcohol consumption. Quality control and 288 

imputation of the genotype data have been described previously5,47, which filtered the 289 

samples to the European ancestry only. 290 

vQTL analysis. Genome-wide analysis of vQTL used Levene's test. As detailed in 291 

11,15, the test statistic of Levene's test is: 292 
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(𝑛 − 𝑘)

(𝑘 − 1)

∑ 𝑛𝑖(𝑧𝑖. − 𝑧..)
2𝑘

𝑖=1

∑ ∑ (𝑧𝑖𝑗 − 𝑧𝑖.)2𝑛𝑖

𝑗=1
𝑘
𝑖=1

 293 

where 𝑛 is the total sample size, 𝑘 is the number of groups (k = 3 in vQTL analysis), 𝑛𝑖 is the 294 

sample size of the ith group (one of three genotypes), 𝑧𝑖𝑗 is the absolute difference between 295 

the phenotype value in sample 𝑗 from genotype and the median value in genotype 𝑖, 𝑧𝑖. is the 296 

average 𝑧 value in genotype 𝑖, and 𝑧.. is the average 𝑧 value across all samples. OSCA-297 

implemented Levene's test also provides beta and se estimates based on p-value and minor 298 

allele frequency15 and the beta estimates were used to construct vPGSs described later. 299 

We estimated the study-wise significance for vQTL as 4.6  10-9 = 5  10-8 / 10.2 300 

where 10.2 is the effective number of traits analysed in the study. The effective number of 301 

traits is estimated using 
(∑ 𝜆𝑘

𝑝
𝑘=1 )2

∑ 𝜆𝑘
2𝑝

𝑘=1

, where 𝜆1 . . 𝜆𝑝 is principal component variances or the 302 

ordered eigenvalues15,17. To identify lead vQTL with relative independence, we used plink-303 

clumping48 using a p-value threshold of 4.6  10-9
, r2 <0.01 and window size of 5000kb (the 304 

same parameter used by15). The LD analysis between vQTL and lead QTL reported by 305 

Vuckovic et al 6 used plink 1.9 with the function of --ld. The novel vQTL was defined as 306 

those lead vQTL after clumping with GWAS p-value > 4.6  10-9 in Vuckovic et al and with 307 

LD-r2 < 0.8 with lead QTL reported by Vuckovic et al. For vQTL mapping results of each 308 

trait, we used LDSC26 to estimate lambda-GC and intercept to check inflation. We also used 309 

FUMA49 to annotate significant vQTL for each trait with default settings. Results from 310 

FUMA functions of SNP2GENE and GENE2FUNC were presented in the results. 311 

To explore the potential causal relationships between alcohol consumption and blood 312 

cell trait variances, we used GSMR30 to discover the causal relationships and used MR-313 

PRESSO32 and weighted-mean implemented in MendelianRandomisation33 as validation. The 314 

GWAS summary data for alcohol consumption was obtained from Cole et al31. Default 315 

settings for nominated software were used and SNPs with p-value < 5e-8 and r2 < 0.05 were 316 
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used in the analysis. Significant results were defined as the multi-testing adjusted p-value 317 

from GSMR < 0.05 and the nominal significance was defined as the Mendelian 318 

Randomisation had raw p-value < 0.05 in all 3 methods. 319 

Analysis of vPGS and PGS. PGS trained using the elastic net from Xu 2022 et al7 320 

was used. For training vPGS, we followed the protocol described by Miao et al16 reported 321 

successful implementation of vPGS for BMI using PRSICE34, we used the same procedure 322 

described by Miao et al to construct vPGS in the INTERVAL using PRSICE, i.e., –clump-p1 323 

1 –clump-p2 1 –clump-r2 0.1 and –clump-kb 1000. When vPGS was computed for each trait, 324 

they were used to rank INTERVAL individuals where the top and bottom 5% of individuals 325 

were stratified. As vPGS was trained based on SNP effects on phenotypic variance, i.e., the 326 

extent to which the individual measurement deviates from the mean, vPGS was expected to 327 

genetically predict such variation of individuals for the corresponding trait. Therefore, 328 

individuals ranked in the top 5% of vPGS were called the genetically more variable group 329 

and individuals ranked in the bottom 5% of vPGS were called the genetically less variable 330 

group. Then, for each trait, within the more variable and less variable groups, we estimated 331 

the PGS accuracy, i.e., the correlation between PGS and the corresponding trait. We then 332 

compared the PGS accuracy between the more variable and less variable groups for each trait 333 

and the relative increase was calculated as 
𝑟𝑙𝑒𝑠𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 − 𝑟𝑚𝑜𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

𝑟𝑚𝑜𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
 where 𝑟𝑙𝑒𝑠𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 is the 334 

PGS accuracy in the less variable group defined by vPGS and 𝑟𝑚𝑜𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 is the PGS 335 

accuracy in the more variable group defined by vPGS. 336 

The effects of interaction between PGS and vPGS on the corresponding trait in 337 

INTERVAL were tested on corrected blood cell traits (described above). As the traits were 338 

already corrected for covariates, only the main effects and interaction of PGS and vPGS were 339 

fitted for each blood cell trait in the lm() function in R: 𝑦 = 𝑃𝐺𝑆 + 𝑣𝑃𝐺𝑆 + 𝑃𝐺𝑆 ∗ 𝑣𝑃𝐺𝑆, 340 

where y was each of the blood cell trait. The effects of interaction on specific traits (e.g., 341 
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eo_p and neut) were visualised using the function of plot_model in the R package sjPlot 342 

(version 2.8.15). 343 

To evaluate if adding vPGS improves PGS model predictability, we tested two sets of 344 

vPGS, where one set is the original single-trait vPGSs for 27 traits computed by PRSICE, and 345 

the other set is estimated using the multi-trait BLUP (SMTpred36) combining information 346 

from single-trait vPGSs. Following the instructions from 347 

https://github.com/uqrmaie1/smtpred, we used the LDSC26 wrapper (ldsc_wrapper.py) with 348 

default options in SMRpred to estimate the genetic parameters for each trait which are 349 

required inputs by the multi-trait BLUP. Then, the script smtpred.py was used by default 350 

options with the estimated genetic parameters to combine single-trait vPGSs to construct 351 

multi-trait vPGSs. Then, we used r2redux35 to quantify the difference in variance explained 352 

(R2) between PGS models with and without vPGS. As described by Momin et al35, r2redux 353 

can powerfully detect R2 differences between models for the out-of-sample genomic 354 

prediction which is suitable to our case where the PGS and vPGS models were trained in the 355 

UK Biobank and predicted into INTERVAL. We followed the instructions provided by 356 

(https://github.com/mommy003/r2redux) to compare the R2 of models with vPGS and 357 

without PGS using the nested method and obtained p-values testing the significance of the 358 

increase in R2 when adding vPGS. The relative increase in R2 was expressed as the absolute 359 

difference in R2 divided by the heritability estimated using LDSC26. 360 

To characterise the individuals that were identified as genetically variable across 361 

traits, we first counted the number of times (out of 27 blood cell traits) an individual was 362 

ranked in the top 5% by PGS for each trait. We also counted the number of times an 363 

individual was ranked in the bottom 5% by PGS for each trait. We then identified 2,465 364 

individuals who always ranked in the top 5% vPGS, and 2,362 individuals who always 365 

ranked in the bottom 5% vPGS across multiple blood traits. Individuals in the top group were 366 

https://github.com/uqrmaie1/smtpred
https://github.com/mommy003/r2redux
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ranked in the top 5% vPGS for 4 to 17 traits with a mean of 5 and individuals in the bottom 367 

group were ranked in the bottom 5% vPGS for 4 to 23 traits with a mean of 9. Then, the top 368 

group was labelled as 1 and the bottom group was labelled as 0 and this 0/1 vector was 369 

analysed as a binary outcome for a logistic regression analysis against lifestyle factors: 𝑦 =370 

𝑎𝑔𝑒 + 𝑠𝑒𝑥 + 𝐵𝑀𝐼 + 𝑠𝑚𝑜𝑘𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑢𝑠 + 𝑑𝑟𝑖𝑛𝑘𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑢𝑠, where the average age is 46.1 371 

(SD=14.3) and the average BMI is 26.2 (SD=4.6); for sex, there are 2,419 women; for 372 

smoking status, there are 2,728 people never smoked, 378 current smokers, 1,634 previous 373 

smokers and 87 with no answers; for alcohol drinking status, there are 118 who never drunk, 374 

4,178 current drinkers, 323 previous drinkers and 208 with no answers. The logistic 375 

regression used the function glm() in R and for sex the male was set to the reference level, for 376 

smoking the level of never smoked was set to the reference and for drinking the level of 377 

never drunk was set to the reference. The same analysis was also applied to individual blood 378 

cell traits of mean corpuscular volume (mcv), neutrophil percentage of white cells (neut_p) 379 

and red blood cell count (rbc) which were significant in Mendelian Randomisation analyses.  380 

 381 

Data availability 382 

Full summary statistics of vQTL mapping are available via the GWAS Catalog 383 

(https://www.ebi.ac.uk/gwas/) under the accession number NNNNNNNNN (to be generated 384 

upon acceptance of peer-reviewed manuscript). All data described are available through the 385 

UK Biobank subject to approval from the UK Biobank access committee. See 386 

https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access for further details. 387 

INTERVAL study data from this paper are available to bona fide researchers from 388 

helpdesk@intervalstudy.org.uk and information, including the data access policy, is available 389 

at http://www.donorhealth-btru.nihr.ac.uk/project/bioresource. 390 

 391 

https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
http://www.donorhealth-btru.nihr.ac.uk/project/bioresource
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Code availability 392 

The manuscript does not produce original code. vQTL mapping used OSCA: 393 

https://yanglab.westlake.edu.cn/software/osca/#Overview; genetic correlation analysis used 394 

LDSC: https://github.com/bulik/ldsc; pleiotropy analysis: https://github.com/rondolab/HOPS. 395 

Mendelian randomisation used GSMR: https://yanglab.westlake.edu.cn/software/gsmr/, MR-396 

PRESSO: https://github.com/rondolab/MR-PRESSO and MendelianRandomisation: 397 

https://cran.r-project.org/web/packages/MendelianRandomization/index.html; Analysis of 398 

selection used GCTB-BayesS: 399 

https://cnsgenomics.com/software/gctb/#SummaryBayesianAlphabet; vPGS analysis used 400 

PRSICE: https://choishingwan.github.io/PRSice/ and plink2: https://www.cog-401 

genomics.org/plink/2.0/; multi-trait GBLUP used SMTpred: 402 

https://github.com/uqrmaie1/smtpred; significance tests of R2 increase used r2redux: 403 

https://github.com/mommy003/r2redux; logistic regression analysis used glm(): 404 

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm.  405 
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Figure 1. vQTLs for 29 blood cell traits and their comparison with additive QTLs. a: Miami 560 
plot showing the best (smallest p-value) vQTLs across 29 blood cell traits (top plot) and the 561 
corresponding best additive QTLs (bottom plot). Red dots are genome-wide significant 562 
independent vQTLs. b: Example of pleiotropic effects of the C allele of rs10803164 for the 563 
long non-coding RNA LINC02768 on blood cell trait variance. Blue indicates the effect on 564 
trait variance had p < 4.6x10-9 (study-wide GWAS significance). c: Genetic correlation 565 
between blood cell trait variance and trait level. Blue indicates the correlation had multi-566 
testing adjusted p < 0.05. d: Selection coefficient estimated by BayesS 28 for trait variance 567 
and level. 568 
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 570 

 

Figure 2. a: LocuzZoom plot of variance QTL mapping for platelet crit (pct) variance at 571 
ALDH2 gene; b: Mendelian randomization (MR) of alcohol consumption on variance of blood 572 
cell traits using GSMR30, MR-PRESSO (presso)32 and weighted-median (wm)33. Diamonds: 573 
significant in 3 methods; grey dots: p>=0.05; the error bars indicate standard errors; c: Effects 574 
of MR of alcohol consumption on variance of corpuscular hemoglobin concentration (mscv); 575 
d: Effects of MR of alcohol consumption on variance of corpuscular volume variance (mcv). 576 
Dashed fitted lines indicate the coefficient of Mendelian Randomisation (bxy=0.07, sexy=0.019 577 
for mscv and bxy=0.064, sexy=0.0188 for mcv). 578 
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Figure 3. The variation in the accuracy of PGSs for 27 blood cell traits (Pearson correlation) 580 
between the top and bottom vPGS groups. a: Accuracy of PGS in the top vPGS group (more 581 
variable group, grey colour) and the difference (orange) of PGS between the top vPGS group 582 
and the bottom vPGS group (less variable group). #: count; % percentage; vol: volume; conc: 583 
concentration. b: Difference of accuracy of PGS between the bottom and top vPGS groups 584 
across 27 blood cell traits. ****: p < 0.0001.  585 
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 587 

Figure 4. Effects of interaction between PGS and vPGS on blood cell traits. a: Effects of 588 
interaction across 27 traits in INTERVAL. The vertical dashed line indicates the z-score 589 
value = 1.96 which equals p-value = 0.05 and bars with z-score value > 1.96 (p < 0.05) are in 590 
orange color. #: count; % percentage; vol: volume; conc: concentration. b-c: Examples of 591 
visualised effects of interaction for eosinophil percentage of white cells (eo_p) and neutrophil 592 
count (neut). 593 
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Figure 5. The difference in the variance explained (R2) between PGS models with or without 595 
vPGS. Each bar represents the relative increase in R2 for the blood cell trait when the PGS 596 
model added vPGS. In the left panel, the single-trait vPGS was added to PGS. In the right 597 
panel, multi-trait vPGS was added to PGS. #: count; % percentage; vol: volume; conc: 598 
concentration. *: p < 0.05; **: p < 0.01; ***: p < 0.001 and ****: p < 0.0001. P-values were 599 
estimated by comparing models with and without vPGS using r2redux 35. 600 
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Figure 6. Association between BMI, age, alcohol drinking and smoking and individuals to be 602 
genetically variable across blood cell traits in INTERVAL. a: an overall estimate across 27 603 
blood cell traits. b: Estimates for mean corpuscular volume (mcv), neutrophil percentage of 604 
white cells (neut_p) and red blood cell count (rbc) which were significant Mendelian 605 
Randomisation analyses. *: p < 0.05; **: p < 0.01; ***: p < 0.001 and **** p < 0.0001. 606 
 607 
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