1 / 34

1	Deciphering the complex interplay between physical activity,
2	inflammatory bowel disease and obesity/BMl through causal inference
3	and mediation analyses
4	Short title: Effect of PA on IBD and Mediation of BMI
5	Minjing Chang ^{1*} , Yuhui Zhao ^{1*} , Jun Qiao ^{3*} , Hongxia Li ¹ , Linlin Jia ¹ , Kaixin Yao ¹ ,
6	Nan Li ¹ , Peifeng He ^{1,2}
7 8	¹ Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China;
9	² Institute of Medical Data Sciences, Shanxi Medical University, China;
10	³ Department of Pharmacology, School of Medicine, Southern University of Science
11	and Technology, Shenzhen, Guangdong, China
12	* Minjing Chang, Yuhui Zhao, and Jun Qiao contributed equally to this work.
13	Minjing Chang: changminjingdawang@163.com; Yuhui Zhao:
14	14735826532@163.com; Jun Qiao: qiaojunys@163.com; Hongxia Li:
15	lhx2334328448@163.com; Linlin Jia: 17835155830@163.com; Kaixin Yao:
16	15603595069@163.com; Nan Li: ln17835154179@163.com
17	Address correspondence to:

18 NOTE: 415 proprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

- 19 E-mail: Hepeifeng2006@126.com, Shanxi Key Laboratory of Big Data for Clinical
- 20 Decision, Shanxi Medical University Medical Data Sciences, Shanxi Medical
- 21 University, Taiyuan 030012, China; 13934569928

3 / 34

22 Abstract

23	Background and Aims: Observational studies on the association between physical
24	activity (PA) and inflammatory bowel diseases (IBDs), including Crohn's disease (CD)
25	and ulcerative colitis (UC), report inconsistent results. Moreover, the underlying
26	mediator between PA and IBDs remains unknown. We aimed to investigate the causal
27	effect of PA on IBD and the role of BMI as a mediator between PA and IBD.
28	Methods: Instrumental variables for the main exposures, i.e., moderate to vigorous
29	intense PA during leisure time (MVPA) and leisure screen time (LST), were extracted
30	from the meta-analysis on genome-wide association studies (GWASs). Summary
31	statistics of IBD, CD, and UC were retrieved from the GWASs on European populations.
32	Univariable Mendelian randomization (UVMR) analysis was performed to investigate
33	the net and individual effects of MVPA and LST on the risk of IBD. Multivariate MR
34	analysis was performed to investigate the effect of mediators on the risk of IBD.
35	Results: MR analysis revealed a protective relationship between MVPA and the risk of
36	IBD and CD. Higher genetically-predicted LST was associated with increased risk of
37	IBD and CD. The proportion of the effect of LST on IBD/CD mediated by BMI was
38	determined to be 0.8% and 3.7%. The proportion of the effect of MVPA on IBD/CD
39	mediated by BMI was determined to be 3.5% and 11.0%.
40	Conclusion: Our findings indicate a causal relationship between PA and IBD/CD and
41	elucidate the increased risk of IBD/CD due to reduced PA is partially mediated by
42	increased BMI.

4 / 3

43	Keywords:	Mendelian	Randomization	; Physical	Activity;	Inflammatory	Bowel Disease.
----	-----------	-----------	---------------	------------	-----------	--------------	----------------

44

45 Key messages

46 What is already known?

- 47 Observational studies have shown that occupations involving more physical labor are
- 48 associated with a lower risk of IBD compared with sedentary occupations.

49 What is new here?

- 50 The causal effect of PA on IBD and the role of BMI as a mediator between PA and IBD
- 51 were investigated.

52 How can this study help patient care?

53 The incidence of CD can be reduced by promoting lifestyle management, such as

- 54 reducing recreational sedentary activities and encouraging proper exercise. In addition,
- 55 individuals who are not physically active should monitor their BMI to prevent the

56 development of CD.

5 / 34

57 **1. Introduction**

Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative 58 colitis (UC), are chronic and life-threatening inflammatory diseases¹. CD manifests as 59 transmural inflammation and longitudinal ulceration and affects the entire 60 gastrointestinal tract, in particular the terminal ileum and adjacent colon, whereas UC 61 manifests as mucosal inflammation and is restricted to the colon²³. In recent years, 62 breakthroughs in our knowledge of the pathogenesis of these diseases have resulted in 63 the availability of a wider range of therapeutic options for IBD; however, owing to the 64 complex pathogenesis and lack of knowledge regarding the exact cause of the 65 diseases, there exists a therapeutic ceiling⁴. Currently, CD and UC are incurable, and 66 patients often require lifelong treatment with drugs⁵. To improve the quality of life of 67 patients with IBD, determining potential modifiable risk factors and treatments to 68 69 slow down the progression or even prevent the onset of these diseases is important. Recently, physical activity (PA) has attracted extensive attention as one of the most 70

prevalent modifiable risk factors for diseases worldwide. PA is defined as any mechanical movement produced by skeletal muscular action that results in energy expenditure above basal levels⁶. Early studies have shown that occupations involving more physical labor are associated with a lower risk of IBD compared with sedentary occupations^{7 8}. In two large prospective cohorts of American women, higher levels of PA were associated with a reduced risk of CD compared to lower levels of PA, but no association was found between UC and PA⁹. A meta-analysis also came to the same

6 / 3

conclusion¹⁰; however, a study by Chan et al. reported a different result, i.e.¹¹, PA did 78 not show any association with UC or CD. These contradictions in the observational 79 studies indicate that additional studies are required to estimate the actual causal 80 relationships. Furthermore, many observational studies have reported that physical 81 inactivity and increased sedentary time are associated with an increased risk of 82 obesity¹²¹³. Meanwhile, a substantial and consistent body of epidemiological data 83 suggests that obesity is one of the high-risk factors for developing IBD^{14 15}. These 84 findings indicate that the increased risk of CD observed in individuals who engage in 85 lower levels of PA may be partially mediated by weight gain. However, to date, no 86 study has validated this hypothesis. 87

Traditional observational studies form the backbone of our current understanding of 88 the mediating pathways; however, these studies might have been influenced by 89 90 potential confounding, measurement error, and reverse causality. Thus, the extent to which the association observed between exposure and outcome and its intermediates 91 is influenced by bias, such as confounding, measurement error, and reverse causality, 92 remains unclear. These limitations can be overcome by applying Mendelian 93 randomization (MR), which is an accepted method of investigating causal 94 relationships in observational data. MR uses single-nucleotide polymorphisms (SNPs) 95 elucidated by genome-wide association studies (GWASs) to be strongly associated 96 with an exposure as instrumental variables (IVs) to determine whether a causal 97 relationship exists between an exposure and outcome. Since genetic variants are 98

7 / 34

99	randomly allocated at conception prior to disease onset, MR analysis efficiently
100	avoids potential confounding factors and reverse causality ¹⁶ . As a recent development
101	in the MR, multivariate MR (MVMR) method is used to investigate mediation.
102	In this study, we aimed to determine potential causal relationships between self-
103	reported moderate to vigorous intense PA during leisure time (MVPA)/leisure screen
104	time (LST) and the risk of IBD, including that of its two subtypes, i.e., CD and UC,
105	by analyzing the most recent GWAS data using the univariable two-sample MR
106	(UVMR) method. Furthermore, using the MVMR method, we aimed to determine
107	whether BMI mediates the effects of MVPA/LST on IBD, including CD and UC, and
108	the proportion of the effect that is mediated by BMI.

109

110 **2. Methods**

111 2.1 Data Sources

112 2.1.1 Summary-level data of MVPA and LST

Summary statistics of the main exposures analyzed in this study, i.e., MVPA (Moderate to vigorous intense physical activity during leisure time) and LST (leisure screen time), were extracted from the latest published meta-analysis of GWASs on self-reported MVPA and LST. The meta-analysis analyzed 51 GWASs and included a total of 703,901 European individuals (MVPA: n = 608, 595; LST: n = 526, 725)¹⁷ (summarized in Table 1). Activities such as swimming and jogging were regarded as MVPA, and activities such as watching TV, playing video games, and sitting at the

120	computer were regarded as LST. The results of the GWASs were adjusted for
121	principal covariates, including assessment center, genotyping array, age, and season.
122	2.1.2 Summary-level data of IBD
123	Summary statistics of IBD were extracted from a meta-analysis of GWASs of IBD
124	that included a total of 25,042 clinically diagnosed cases of IBD (with 34,915
125	controls), 12,194 clinically diagnosed cases of CD (with 28,072 controls), and 12,366
126	clinically diagnosed cases of UC (with 33,609 controls) (summarized in Table 1). The
127	first 10 principal components for each cohort were adjusted ¹⁸ .
128	2.1.3 Summary-level data of BMI
129	Genome-wide significant (P < 5 \times 10 ⁻⁸) genetic variants associated with BMI were

extracted from a meta-analysis of GWASs, which included a total of 681,275 individuals of European ancestry, published by the Genetic Investigation of Anthropometric Traits consortium (summarized in Table 1). Age, age squared, and study-specific covariates, including principal components for adjusting for population stratification, were adjusted¹⁹.

135 2.2 Selection of IVs

136 For MR analysis, we included IVs that met the following three assumptions (Fig 1): (a)

the IV must be robustly associated with the exposure; (b) the IV must be unrelated to any known confounders; and (c) the IV must be associated with the risk of outcome only via its effects on the exposure. First, SNPs associated with PA were extracted, with the genome-wide significance threshold as $P < 5 \times 10^{-8}$ for MVPA and LST.

9<u>/34</u>

141	Second, SNPs that satisfied the relevance assumption ($r^2 = 0.01$, clumping distance =
142	10,000 kb) were regarded as being correlated with the MVPA and LST and to exhibit
143	genome-wide significance. Additionally, they were validated to be independent and
144	not in linkage disequilibrium. Moreover, only data pertaining to individuals of
145	European ancestry were analyzed in this study, and population stratification did not
146	violate the independence assumption at any instance.
147	2.3 Statistical analysis
148	2.3.1 Total, direct, and indirect effects
149	First, UVMR analysis was performed to determine the net effect of MVPA and LST
150	on IBD (including CD and UC), which was regarded as the total effect. Next, UVMR
151	analysis was performed again to estimate the effect of MVPA and LST on BMI.
152	Subsequently, MVMR analysis was performed to determine the effect of mediators on
153	IBD (including CD and UC) after adjusting for MVPA and LST.
154	The total effect of an exposure on an outcome can be broken down into direct and
155	indirect effects. Direct effect is defined as the effect of exposures on an outcome that
156	is not mediated through a causal intermediate, whereas indirect effect is defined as the
157	effect of an exposure on an outcome through a candidate mediator (Fig 2). Herein, the
158	indirect effect was calculated using the product of the coefficients method, wherein,
159	after adjusting for MVPA and LST, the MR estimate of the effect of MVPA and LST
160	on BMI was multiplied with the MR estimate of the impact of BMI on IBD (including
161	CD and UC). Furthermore, the proportion of the effect mediated by BMI was

10 / 3

162	calculated by dividing the indirect effect by the total effect. The confidence intervals
163	(CIs) and standard errors for the proportion of the effect mediated by BMI were
164	estimated using the delta method.

165

2.3.2 UVMR and MVMR analysis

166 To evaluate the effect of MVPA and LST on the risk of IBD (including that of CD and

167 UC), we used the fixed-effects inverse variance-weighted (IVW) method as the main

168 UVMR and MVMR method. The IVW method is used to estimate the odds ratio (OR)

169 for genetic variants and is the most widely used method in MR studies. Herein, for

170 IVW analysis, we used the Wald estimator method to estimate the causal effect of

171 each SNP and determined the overall effect by meta-analyzing all the estimates.

172 **2.3.3 MR sensitivity analyses**

Sensitivity analyses were performed to validate the robustness of the IVW results and 173 174 determine pleiotropy and the potential genetic outliers. A weighted median estimator method, which is a modification of the standard weighted median MR, was employed 175 to examine the median effects of all the SNPs and resulting in unbiased estimates of 176 177 effects under the assumption that >50% of the information contributing to the analysis comes from valid IVs. MR-Egger method was used to test directional pleiotropy and 178 causal effects that on average differed from zero and to estimate the causal effects 179 under the InSIDE (Instrument Strength Independent of Direct Effect) assumption. In 180 MR-Egger regression, the slope is used to estimate the causal effect of the exposure 181 on the outcome when it is consistent with the strength of the instrument independent 182

11 / 34

183	of the direct effects assumption; in addition, deviation of the intercept of MR-Egger
184	regression from zero indicates the presence of pleiotropy. Despite the statistically
185	lower efficiency (i.e., a wider range of CIs), the MR-Egger method provides a causal
186	estimate (i.e., regression slope) corrected for directional horizontal pleiotropy. The
187	MR pleiotropy residual sum and outlier method (MR PRESSO) was employed to
188	detect significant outliers, and outliers were removed to correct horizontal pleiotropic
189	effects. The global test was used to assess whether horizontal pleiotropy existed
190	among the instruments. Furthermore, Cochran Q test was used to evaluate the
191	heterogeneity among the causal effects of each variant. $P < 0.10$ was regarded to
192	indicate statistically significant heterogeneity. We also performed "leave-one-out"
193	analysis to determine and assess the potential impact of specific variants on the
194	estimates by excluding one SNP each turn and performing IVW analysis on the other
195	SNPs.
196	The results of the MR analyses are represented as ORs, and 95% CIs were determined
197	for the risk of outcomes for the corresponding unit changes in exposure. The OR of
198	the outcome risk per log OR change in exposure was interpreted as the final effect
199	estimates, given that all exposure variables in the current analysis were binary. MR
200	analyses were performed using the "TwoSampleMR" package in the R software

201 (version 4.1.2).

202

203 **3. Results**

12 / 3

204 **3.1 Total and direct effects of MVPA and LST on IBD, CD, and UC**

205	In UVMR, IVW analysis suggested a protective causal relationship between MVPA
206	and IBD as well as MVPA and CD (Table 2, Fig 3 A-B). For each S.D. increase in
207	MVPA, the relative odds of IBD decreased by 33.5% (OR = 0.665, 95% CI = 0.465–
208	0.952, $P = 0.026$) and the relative odds of CD decreased by 46.7% (OR = 0.533, 95%)
209	CI = 0.302-0.942, P = 0.030). IVW analysis showed that a higher genetically-
210	predicted LST was associated with increased risk of IBD and CD (Table3,
211	Supplementary Fig 1 A-B). For each S.D. increase in LST, the relative odds of IBD
212	(OR = 1.213, 95% CI = 1.063 - 1.384, P = 0.004) increased by 21.3% and the relative
213	odds of CD (OR = 1.245, 95% CI = 1.070–1.449, P = 0.005) increased by 24.5%. On
214	the contrary, MVPA did not show a statistically significant association with a reduced
215	risk of developing UC (OR = 0.761, 95% CI = 0.489–1.183, P = 0.225) (Table 2, Fig
216	3 C). Furthermore, no statistically significant evidence of a relationship was observed
217	between LST and UC (OR = 1.122, 95% CI = $0.950-1.325$, P = 0.176) (Table 3,
218	Supplementary Fig 1 C). Similar causal estimates were observed for IBD (including
219	CD and UC) using the other MR methods, including the weighted median and MR-
220	Egger methods.
221	In the MVMR analyses, a causal relationship between MVPA and IBD was observed
222	after adjusting for BMI. For each S.D. increase in MVPA, the relative odds of IBD
223	decreased by 32.3% (OR = 0.677, 95% CI = 0.464–0.986, P = 0.042) and the relative
224	odds of CD decreased by 42.2% (OR = 0.578, 95% CI = 0.356–0.936, P = 0.026)

13 / 34

225	(Table 4). On the contrary, the causal relationship between LST and IBD ($OR = 1.074$,
226	95% CI = 0.831–1.388, P = 0.586) or LST and CD (OR = 1.107, 95% CI = 0.797–
227	1.537, $P = 0.543$) did not show statistical significance after adjusting for BMI (Table
228	4).

229 **3.2 Effect of MVPA and LST on BMI**

To explore the effect of MVPA and LST on IBD (including CD and UC) mediated 230 through BMI, we performed UVMR analysis to estimate the effect of MVPA and LST 231 232 on BMI. The results showed that higher levels of MVPA were associated with lower BMI and that higher levels of LST were associated with higher BMI. For each SD 233 increase in MVPA, the BMI was observed to decrease by 0.154 SD units (OR = 0.846, 234 95% CI = 0.739-0.969, P = 0.016), and for each SD increase in LST, the BMI was 235 observed to increase by 0.148 SD units (OR = 1.148, 95% CI = 1.094–1.204, P = 1.48 236 $\times 10^{-8}$). 237

238 **3.3 Effect of BMI on IBD, CD, and UC after adjusting for MVPA and LST**

In the MVMR analyses of MVPA–BMI–IBD and MVPA–BMI–CD, the conditional F-statistics for MVPA and BMI were both >10. After accounting for MVPA, the direct effect of BMI on IBD was determined to be OR 1.020 (95% CI = 0.894-1.163, P = 0.769), and the proportion mediated by BMI was determined to be 0.8%. Likewise, after accounting for MVPA, the direct effect of BMI on CD was determined to e OR 1.150 (95% CI = 0.971-1.361, P = 0.104), and the proportion mediated by BMI was determined to be 3.7%.

14 / 3

246	In the MVMR analyses of LST-BMI-IBD and LST-BMI-CD, the conditional F-
247	statistics for LST and BMI were both >10. After accounting for LST, the direct effect
248	of BMI on IBD was determined to be OR 1.051 (95% CI = $0.901-1.226$, P = 0.528),
249	and the proportion mediated by BMI was determined to be 3.5%. After accounting for
250	LST, the direct effect of BMI on CD was determined to be OR 1.192 (95% CI =
251	0.979–1.452, $P = 0.081$), and the proportion mediated by BMI was determined to be
252	11.0% of the total effect (Table 4).
253	3.4 Sensitivity analyses
254	We performed a series of sensitivity analyses, including the MR-Egger intercept test,
255	Cochran Q test, and MR-PRESSO global test, to assess the robustness of our results.
256	In the MR–Egger intercept tests, P values > 0.05 were not likely to exhibit horizontal
257	pleiotropy. Even though heterogeneity was observed in the Cochran Q test, the MR
258	estimates did not invalidate random-effect IVW. Furthermore, the pooled
259	heterogeneity was balanced. Altogether, our results were less likely to be confused by
260	horizontal pleiotropy, heterogeneity (Fig 3 D-F, Supplementary Fig 1 D-F), or
261	individual SNP effects, as demonstrated by the leave-one-out analyses (Fig 3 G-I,
262	Supplementary Fig 2 A-C).
263	

264 **4. Discussion**

In this study, we used the UVMR and MVMR methods to analyze data from largescale GWASs. First, our results suggest an effect of genetically-predicted reduced

15 / 34

267	MVPA, increased LST, and increased BMI on the risk of IBD and CD. However, our
268	results suggest no association between PA/ LST and risk of UC. Second, our study
269	provides robust evidence that the effect of MVPA/LST on IBD and CD is partially
270	mediated by BMI. Altogether, our study reveals the complex association between
271	MVPA/LST, BMI, and IBD, including its subtypes; moreover, our findings address
272	the gap in knowledge on this topic in the general population.
273	Several observational studies have investigated the association between PA and the
274	risk of IBD. The Nurses' Health Study I and II reported that women aged between 25
275	to 55 years who engaged in at least 27 metabolic equivalent tasks (MET) hours of PA
276	per week exhibited an HR of 0.56 (0.37; 0.84) for the risk of developing CD
277	compared with women who were inactive; however, these studies reported no
278	association between PA and the risk of UC ⁹ . These findings are consistent with those
279	of our study. However, a study on the European Prospective Investigation into Cancer
280	and Nutrition cohort did not report an association between PA and the risk of CD and
281	UC ¹¹ . These conflicting results may be because the cohort included only 75 CD cases
282	and 177 UC cases and because the study was unable to account for long-term changes
283	in PA. Moreover, this contradictory result may be attributed to the analysis method
284	itself. Observational studies may be influenced by unavoidable clinical confounders,
285	which influence the exposures and outcomes, thereby making it difficult to accurately
286	determine causal relationships.

287 Despite long-standing clinical observations^{11 20}, the causal genetic association between

16/3

BMI and CD was not discovered until recently²¹. However, no previous study has 288 investigated whether increased BMI mediates the effect of MVPA/LST on the risk of 289 290 CD. The results of our study suggest an indirect effect of MVPA/LST on the risk of CD that is mediated by BMI. Furthermore, in the context of MR, this effect is highly 291 unlikely to have been confounded by other factors. Our MR analysis indicates that 292 293 approximately 4% of the effect of reduced MVPA on increased CD risk is mediated by BMI and that approximately 11% of the effect of increased LST on increased CD 294 risk is mediated by BMI. The difference in the mediated proportion may be attributed 295 to the fact that compared to reduced MVPA, increased LST results in lower energy 296 expenditure and higher energy intake (particularly snacking), thereby resulting in a 297 greater shift in energy balance to excess energy and a more significant increase in 298 BMI^{22 23}. 299

Our in-depth analyses of the mediating effect of BMI elicited potential explanations 300 for this causal association between MVPA/LST and IBD/CD. Inflammatory T cells 301 are known to direct innate cells to maintain a constant hypersensitivity to microbial 302 303 antigens, tissue injury, and chronic intestinal inflammation. Therefore, the accumulation of inflammatory T cells in the intestine is considered to be one of the 304 main pathogenic mechanisms of IBD²⁴. A substantial body of research suggests that 305 obesity may contribute to IBD and CD by altering innate and intrinsic immune 306 responses. In obese individuals, adipocytes can synthesize and secrete several 307 biologically active substances called adipokines, such as lipocalin adiponectin (APN), 308

309	IL-1, IL-6, IL-8, IFN γ , TNF- α , and leptin ²⁵ ²⁶ . Among these, leptin and lipocalin
310	adiponectin are of particular interest. The balance between leptin and adiponectin, i.e.,
311	the leptin-adiponectin ratio, is important for the maintenance of intestinal immune
312	homeostasis ²⁶ . Leptin exerts a notable pro-inflammatory effect on the immune system
313	and can be released when stimulated by inflammation ²⁷ . In contrast, lipocalin has an
314	inhibitory effect on the expression of adhesion molecules and pro-inflammatory
315	mediators ²⁶ . At the onset of obesity, the leptin–adiponectin ratio is altered, wherein the
316	level of leptin is elevated. Increased leptin secretion induces the proliferation of
317	inflammatory CD4 T cells and results in an increase of type 1 T helper (Th1) cells and
318	the suppression of Th2 cytokines 28 . In addition, TNF- α , IL-1 β , and IL-6 have been
319	demonstrated to recruit CD4 T cells and enhance Th1/17 immunity; moreover, IFN- γ
320	has been shown to induce Th17 cell development ²⁹⁻³¹ .
321	IBD may be caused by inflammatory T cells influencing the function of innate cells,
322	such as epithelial cells, fibroblasts, and phagocytes, which results in constant
323	hyperresponsiveness to microbial antigens being activated, thereby causing intestinal
324	tissue injury and chronic intestinal inflammation ²⁴ ³² ³³ . Under these conditions,
325	intestinal permeability increases, and microbial components cross the barrier,
326	inducing activation of DCs and macrophages, which in turn induce the infiltration of
327	more inflammatory CD4 T-cells into the intestinal tissues ^{24 34} . Meanwhile,
328	lipopolysaccharide present on the surface of microbes activates the NF- κ B pathway,
329	which results in the elevation of TLR-4 expression in adipocytes and preadipocytes,

18/3

330	leading to increased production of adipokines, and creating a positive inflammatory
331	feedback loop that further exacerbates the development of IBD ^{26 35} . Th1 and Th17-
332	dominant immune cells have been shown to play a central role in the pathogenesis of
333	CD, whereas Th2-type immune cells were shown to play an important role in UC ³⁶ .
334	This may explain why the occurrence of obesity leads mainly to IBD and CD rather
335	than UC.

Taken together, our findings validated that increasing moderate to vigorous intense PA 336 and reducing LST prevent CD and that this effect is partially mediated by BMI. 337 Therefore, the incidence of CD can be reduced by promoting lifestyle management, 338 such as reducing recreational sedentary activities and encouraging proper exercise. In 339 addition, individuals who are not physically active should monitor their BMI to 340 prevent the development of CD. This practice can reduce the risk of CD development 341 342 as well as the burden on healthcare and general public health returns in terms of human productivity³⁷. 343

This study has several strengths. First, this study is based on the largest and most upto-date GWAS database on PA and is the first to use MR to analyze whether BMI mediates the effects of MVPA/LST on the risk of IBD. Second, we assessed the causal effects of MVPA and LST on the risk of IBD as a whole, as well as the two main subtypes of IBD, i.e., UC and CD, using an MR approach, which reduces unobserved confounding and is less susceptible to reverse causation and exposures that are nondifferentially measured with error. Nevertheless, our study also has several limitations.

351	First, the genetic instruments and GWASs used in this study were based on
352	individuals of European ancestry; therefore, our results cannot be generalized to other
353	ethnic groups. Second, our MR analysis only yielded genetic evidence. In the future,
354	animal studies or population-based observational studies should be conducted to
355	validate the causality, explore potential mechanisms of this possible causal association,
356	and further explore related mechanisms. Third, the self-reported PA data may be
357	affected by the participants' memorizing and cognitive abilities, such as awareness of
358	the beneficial effects of PA, which could have resulted in misclassification and
359	outcome bias.
360	In conclusion, by leveraging large-scale genetic summary-level data, we found that
361	elevated BMI partially mediates the effect of MVPA/LST on the risk of IBD and CD.
362	Our study findings may provide a strategy for preventing IBD and CD. Further studies
363	are warranted to decipher other potential mechanisms linking MVPA/LST to IBD and
364	CD.

20 / 3

365 **Declarations**

366 Ethics approval and consent to participate

- 367 Since the analysis used published studies or publicly available GWAS summary data,
- 368 containing no personal identifications, no ethical committee approval was required. The
- 369 informed consent from participants, and approval by ethical committees involved in the
- 370 original studies.
- 371 Consent for publication
- 372 Not applicable.

373 Availability of data and materials

- 374 LST and MVPA data underlying this article are available in the NHGRI-EBI GWAS
- 375 Catalog, and can be accessed with IDs GCST90104339 and GCST90104341,
- 376 respectively. IBD, CD, UC and BMI data are available in the IEU OpenGWAS, and
- 377 can be accessed with IDs ebi-a-GCST004131, ebi-a-GCST004132, ebi-a-
- 378 GCST004133, ebi-b-40, respectively.

379 **Competing interests**

- 380 The authors declare that they have no competing interests.
- 381 Funding
- 382 This work was supported by the National Social Science Fund of China (21BTQ050).
- 383 Authors' contributions
- 384 Minjing Chang, Yuhui Zhao and Jun Qiao designed the study. Minjing Chang, Yuhui
- 385 Zhao, Jun Qiao wrote the manuscript. Minjing Chang, Yuhui Zhao, Jun Qiao acquired

21 / 34

the data, assessed quality, analyzed and interpreted the data. All authors were involved in drafting of the manuscript and critical revision of the manuscript, including the authorship list. All authors approved the final draft of the manuscript. Prof. He had full access to all of the data in the study and takes responsibility for the integrity and the accuracy of the data analysis.

391 Acknowledgments

We are indebted to the staff and participants of the Genetic Investigation of Anthropometric Traits consortium, IEU OpenGWAS, the NHGRI-EBI GWAS Catalog and the genome-wide association study consortia for their important contributions, without whom this effort would not have been possible.

396 Abbreviations

Inflammatory bowel disease (IBD); Crohn's disease (CD); ulcerative colitis (UC); 397 398 physical activity (PA); Mendelian randomization (MR); single-nucleotide polymorphisms (SNPs); genome-wide association studies (GWASs); instrumental 399 variables (IVs); multivariate MR (MVMR); moderate to vigorous intense PA during 400 401 leisure time (MVPA); leisure screen time (LST); univariable MR (UVMR); confidence intervals (CIs); inverse variance-weighted (IVW); odds ratio (OR); 402 InSIDE (Instrument Strength Independent of Direct Effect); MR pleiotropy residual 403 sum and outlier method (MR PRESSO); metabolic equivalent tasks (MET); type 1 T 404 helper (Th1) 405

22 / 3

406 Writing Assistance

407 Not applicable

408 Synopsis

- 409 The main point of this article is that there is a causal relationship between PA and
- 410 IBD/CD and that the portion of the increased risk of IBD/CD due to decreased PA is
- 411 mediated by increased BMI.

23 / 34

412 **References**

413	1. Guan Q. A Comprehensive Review and Update on the Pathogenesis of
414	Inflammatory Bowel Disease. Journal of immunology research.
415	2019;2019:7247238.
416	2. Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention,

- 417 and treatment methods of inflammatory bowel disease. Journal of medicine and
- 418 life. 2019;12:113-22.
- 419 3. Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and
- 420 established and evolving therapies. Lancet (London, England). 2007;369:1641-57.
- 421 4. Na SY, Moon W. Perspectives on Current and Novel Treatments for Inflammatory
- 422 Bowel Disease. Gut and liver. 2019;13:604-16.
- 423 5. Cai Z, Wang S, Li J. Treatment of Inflammatory Bowel Disease: A Comprehensive
- 424 Review. Frontiers in medicine. 2021;8:765474.
- 425 6. Sharif K, Watad A, Bragazzi NL, et al. Physical activity and autoimmune diseases:
- 426 Get moving and manage the disease. Autoimmunity reviews. 2018;17:53-72.
- 427 7. Bøggild H, Tüchsen F, Orhede E. Occupation, employment status and chronic
 428 inflammatory bowel disease in Denmark. International journal of epidemiology.
- 429 1996;25:630-7.
- 430 8. Sonnenberg A. Occupational distribution of inflammatory bowel disease among
- 431 German employees. Gut. 1990;31:1037-40.
- 432 9. Khalili H, Ananthakrishnan AN, Konijeti GG, et al. Physical activity and risk of

433	inflammatory bowel disease: prospective study from the Nurses' Health Study
434	cohorts. BMJ (Clinical research ed). 2013;347:f6633.
435	10. Wang Q, Xu KQ, Qin XR, et al. Association between physical activity and
436	inflammatory bowel disease risk: A meta-analysis. Digestive and liver disease :
437	official journal of the Italian Society of Gastroenterology and the Italian
438	Association for the Study of the Liver. 2016;48:1425-31.
439	11. Chan SS, Luben R, Olsen A, et al. Body mass index and the risk for Crohn's
440	disease and ulcerative colitis: data from a European Prospective Cohort Study
441	(The IBD in EPIC Study). The American journal of gastroenterology.
442	2013;108:575-82.
443	12. Silva B, Silva I, Ekelund U, et al. Associations of physical activity and sedentary
444	time with body composition in Brazilian young adults. Scientific reports.
445	2019;9:5444.
446	13. Myers A, Gibbons C, Finlayson G, et al. Associations among sedentary and active
447	behaviours, body fat and appetite dysregulation: investigating the myth of
448	physical inactivity and obesity. British journal of sports medicine. 2017;51:1540-
449	44.
450	14. Harpsøe MC, Basit S, Andersson M, et al. Body mass index and risk of
451	autoimmune diseases: a study within the Danish National Birth Cohort.
452	International journal of epidemiology. 2014;43:843-55.
453	15. Khalili H, Ananthakrishnan AN, Konijeti GG, et al. Measures of obesity and risk

454	of Crohn's disease and ulcerative colitis. Inflammatory bowel diseases.
455	2015;21:361-8.
456	16. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal
457	inference in epidemiological studies. Human molecular genetics. 2014;23:R89-98.
458	17. Wang Z, Emmerich A, Pillon NJ, et al. Genome-wide association analyses of
459	physical activity and sedentary behavior provide insights into underlying
460	mechanisms and roles in disease prevention. Nature genetics. 2022;54:1332-44.
461	18. de Lange KM, Moutsianas L, Lee JC, et al. Genome-wide association study
462	implicates immune activation of multiple integrin genes in inflammatory bowel
463	disease. Nature genetics. 2017;49:256-61.
464	19. Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide
465	association studies for height and body mass index in \sim 700000 individuals of
466	European ancestry. Human molecular genetics. 2018;27:3641-49.
467	20. Singh S, Dulai PS, Zarrinpar A, et al. Obesity in IBD: epidemiology, pathogenesis,
468	disease course and treatment outcomes. Nature reviews Gastroenterology &
469	hepatology. 2017;14:110-21.
470	21. Carreras-Torres R, Ibáñez-Sanz G, Obón-Santacana M, et al. Identifying
471	environmental risk factors for inflammatory bowel diseases: a Mendelian
472	randomization study. Scientific reports. 2020;10:19273.
473	22. Otten JJ, Jones KE, Littenberg B, et al. Effects of television viewing reduction on
474	energy intake and expenditure in overweight and obese adults: a randomized

475	controlled	trial. Arc	hives of	internal	medicine.	2009	;169:2109-15.
.,.		******					,

- 476 23. Frydenlund G, Jørgensen T, Toft U, et al. Sedentary leisure time behavior,
 477 snacking habits and cardiovascular biomarkers: the Inter99 Study. European
 478 journal of preventive cardiology. 2012;19:1111-9.
- 479 24. Saez A, Gomez-Bris R, Herrero-Fernandez B, et al. Innate Lymphoid Cells in
- Intestinal Homeostasis and Inflammatory Bowel Disease. International journal of
 molecular sciences. 2021;22.
- 482 25. Dandona P, Aljada A, Chaudhuri A, et al. Metabolic syndrome: a comprehensive
- 483 perspective based on interactions between obesity, diabetes, and inflammation.
- 484 Circulation. 2005;111:1448-54.
- 485 26. Bilski J, Mazur-Bialy A, Wojcik D, et al. Role of Obesity, Mesenteric Adipose
- 486 Tissue, and Adipokines in Inflammatory Bowel Diseases. Biomolecules. 2019;9.
- 487 27. Genser L, Aguanno D, Soula HA, et al. Increased jejunal permeability in human
- 488 obesity is revealed by a lipid challenge and is linked to inflammation and type 2
- diabetes. The Journal of pathology. 2018;246:217-30.
- 490 28. Weidinger C, Ziegler JF, Letizia M, et al. Adipokines and Their Role in Intestinal
 491 Inflammation. Frontiers in immunology. 2018;9:1974.
- 492 29. Pesce B, Ribeiro CH, Larrondo M, et al. TNF-α Affects Signature Cytokines of
- 493 Th1 and Th17 T Cell Subsets through Differential Actions on TNFR1 and TNFR2.
- 494 International journal of molecular sciences. 2022;23.
- 495 30. Geginat J, Paroni M, Kastirr I, et al. Reverse plasticity: TGF-β and IL-6 induce

101	TT11, $TT117$, 11	1.00	• •	.1 .	Г	• 1	C · 1
496	Int_to_tht/_cell	transdifferentiat	10n 1n	the out	Huronean	1011rnal 0	t immunology
T 70		uansamerentia	non m	the gut.	Luiopean	journar o	i minunology.

- 497 2016;46:2306-10.
- 498 31. Griffiths JS, Camilli G, Kotowicz NK, et al. Role for IL-1 Family Cytokines in
- 499 Fungal Infections. Frontiers in microbiology. 2021;12:633047.
- 500 32. Tindemans I, Joosse ME, Samsom JN. Dissecting the Heterogeneity in T-Cell
- 501 Mediated Inflammation in IBD. Cells. 2020;9.
- 502 33. Duchmann R, Kaiser I, Hermann E, et al. Tolerance exists towards resident
- 503 intestinal flora but is broken in active inflammatory bowel disease (IBD). Clinical
- and experimental immunology. 1995;102:448-55.
- 505 34. Preza GC, Yang OO, Elliott J, et al. T lymphocyte density and distribution in
- 506 human colorectal mucosa, and inefficiency of current cell isolation protocols. PloS
- 507 one. 2015;10:e0122723.
- 508 35. Kruis T, Batra A, Siegmund B. Bacterial translocation impact on the adipocyte
 509 compartment. Frontiers in immunology. 2014;4:510.
- 510 36. Schirmer M, Garner A, Vlamakis H, et al. Microbial genes and pathways
 511 in inflammatory bowel disease. Nature reviews Microbiology. 2019;17:497-511.
- 512 37. Shafer LA, Shaffer S, Witt J, et al. IBD Disability Index Is Associated With Both
- 513 Direct and Indirect Costs of Inflammatory Bowel Disease. Inflammatory bowel
- 514 diseases. 2022;28:1189-97.

Trait/phenotype	GWAS consortium	Ethnicity	Sample size (total or case/control subjects)	PMID
MVPA	MTAG	European	608,595	36071172
LST	MTAG	European	526,725	36071172
IBD	IBD meta-GWAS	European	25,042/34,915	28067908
CD	CD meta-GWAS	European	12,194/28,072	28067908
UC	UC meta-GWAS	European	12,366/33,609	28067908
BMI	GIANT	European	681,275	30124842

515 **Table 1: Characteristics of GWAS included in MR analyses.**

516

517 GWAS data sets included in MR analyses. PMID, PubMed identifier. Abbreviations: MVPA, moderate to vigorous intense physical activity 518 during leisure time. LST, leisure screen time. IBD, inflammatory bowel disease. CD, Crohn's disease. UC, ulcerative colitis. BMI, Body Mass

519 Index.

exposure	outcome	SNPs	MR methods	OR	95%CI	Pval	Q_pval	Intercept_pval
			IVW	0.665	0.465,0.952	0.026	0.315	
	IBD	9	MR-Egger	0.364	0.056,2.353	0.324	0.267	0.538
			WM	0.671	0.424,1.062	0.088		
			IVW	0.533	0.302,0.942	0.030	0.079	
MVPA	CD	9	MR-Egger	1.076	0.054,21.636	0.963	0.057	0.654
			WM	0.588	0.320,1.083	0.089		
			IVW	0.761	0.489,1.183	0.225	0.368	
	UC	9	MR-Egger	0.096	0.011,0.809	0.068	0.668	0.093
			WM	0.704	0.396,1.254	0.234		

520 Table 2. The causal effect of MVPA on IBD, CD, and UC.

521

522 The Q_pval was executed by the MR-Egger and IVW methods to detect heterogeneity. The intercept p-value was derived from the pleiotropy

- 523 test of MR-Egger regression. Abbreviations: MVPA, moderate to vigorous intense physical activity during leisure time. IBD, inflammatory
- 524 bowel disease. CD, Crohn's disease. UC, ulcerative colitis.

525

exposure	outcome	SNPs	MR methods	OR	95%CI	Pval	Q_pval	Intercept_pval
			IVW	1.213	1.063,1.384	0.004	0.027	
	IBD	85	MR-Egger	1.079	0.591,1.973	0.804	0.024	0.698
			WM	1.163	0.978,1.382	0.088		
			IVW	1.245	1.070,1.449	0.005	0.351	
LST	CD	86	MR-Egger	1.765	0.884,3.526	0.111	0.353	0.313
			WM	1.213	0.973,1.513	0.086		
			IVW	1.122	0.950,1.325	0.176	0.026	
	UC	87	MR-Egger	0.800	0.376,1.702	0.564	0.026	0.371
			WM	1.107	0.897,1.367	0.342		

526 **Table 3. The causal effect of LST on IBD, CD, and UC.**

527

528 The Q_pval was executed by the MR-Egger and IVW methods to detect heterogeneity. The intercept p-value was derived from the pleiotropy

529 test of MR-Egger regression. Abbreviations: LST, leisure screen time. IBD, inflammatory bowel disease. CD, Crohn's disease. UC, ulcerative

530 colitis.

531

Exposure	Mediator	ator Outcome	0	se_a	b	se_b	c'	se_c'	a*b	se_a*b	c	Proportion
Exposure			a									mediated
 MVPA	BMI	IBD	-0.167	0.069	0.020	0.067	-0.390	0.192	-0.003	0.011	-0.407	0.008
MVPA	BMI	CD	-0.167	0.069	0.140	0.086	-0.549	0.246	-0.023	0.017	-0.628	0.037
LST	BMI	IBD	0.138	0.024	0.050	0.079	0.071	0.131	0.007	0.011	0.193	0.035
LST	BMI	CD	0.138	0.024	0.176	0.101	0.102	0.167	0.024	0.014	0.219	0.110

532 Table 4: Mediation analysis in our research.

533

- 534 **a** represents an estimate of the association between exposure and mediator in a linear regression model
- 535 **b** represents an estimate of the association between mediator and outcome, conditional on exposure in a logistic regression model
- 536 c' represents an estimate of the direct effect between exposure and outcome, conditional on the mediator in a logistic regression model
- 537 **a*b** represents an estimate of the indirect effect of the mediator on outcome
- 538 **c** represents an estimate of the association between exposure and outcome in the results of two samples
- 539 **proportion mediated** is calculated by a*b / c
- 540 standard errors (se) were calculated using the delta method.

Abbreviations: MVPA, moderate to vigorous intense physical activity during leisure time. LST, leisure screen time. IBD, inflammatory bowel
 disease. CD, Crohn's disease. UC, ulcerative colitis. BMI, Body Mass Index.

Fig 1: Mendelian randomization model of exposure and outcome. The design is under the assumption that the genetic instrumental variables are associated with exposure, but not with confounders, and the genetic instrumental variable influence outcome only through exposure. Genetic instrumental variable indicates single nucleotide polymorphism.

546 Fig 2: Direct acyclic graph to illustrate total, direct, and indirect effects of MVPA and LST on IBD, CD, and UC. Directed acyclic graphs

547 demonstrating the hypothesized direction for the total effect of MVPA and LST on IBD, CD and UC (A) and the hypothesized direction for the

⁵⁴⁸ effect of MVPA and LST on BMI (B), which may partially mediate the effect of MVPA and LST on IBD, CD and UC.

549 Fig 3: Scatter plots, funnel plots and leave-one-out analysis for the association of MVPA on IBD, CD and UC. (A-C) Scatter plots for IVW,

550 MR-Egger and WM analysis methods demonstrating the effect of MVPA on IBD (A), CD (B) and UC (C). (D-F) Funnel plot of MVPA on IBD

(D), CD (E) and UC (F) to suggest no evidence of substantial heterogeneity. (G-I) Leave-one-out analysis to explore whether the causal link of

552 MVPA on IBD (G), CD (H) and UC (I) was driven by single specific SNP.

- 553 Supplementary Fig 1: Scatter plots and funnel plots for the association of LST on IBD, CD and UC. (A-C) Scatter plots for IVW, MR-
- 554 Egger and WM analysis methods demonstrating the effect of LST on IBD (A), CD (B) and UC (C). (D-F) Funnel plot of LST on IBD (D), CD
- 555 (E) and UC (F) to suggest no evidence of substantial heterogeneity.
- 556 Supplementary Fig 2: leave-one-out analysis for the association of LST on IBD, CD, and UC. (A-C) Leave-one-out analysis to explore
- 557 whether the causal link of LST on IBD (A), CD (B), and UC (C) were driven by a single specific SNP.

Genetic instrumental variable

MVPA and LST

medRxiv preprint doi: https://doi.org/10.1101/2024.04.15.24305823; this version posted April 15, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity All rights reserved. No reuse allowed without permis Β

MVPA and LST

Direct effect of MVPA and LST on IBD, CD and UC independently of mechanisms that influence BMI

BMI

Indirect effect of MVPA and LST on

IBD CD and UC

IBD CD and UC

MVPA on Inflammatory bowel disease

MVPA on Crohn's disease

