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Abstract 
 
In silico variant interpretation pipelines have become an integral part of genetics research and genome 
diagnostics. However, challenges remain for automated variant interpretation and candidate 
shortlisting. Their reliability is affected by variability in input data caused due the use of differing 
sequencing platforms, erroneous nomenclature and changing experimental conditions. Similarly, 
differences in predictive algorithms can result in discordant results. Finally, scalability is essential to 
accommodate large amounts of input data, such as in whole genome sequencing (WGS). To accelerate 
causal variant detection and innovation in genome diagnostics and research, we developed the 
MOLGENIS Variant Interpretation Pipeline (VIP). VIP is a flexible open-source computational pipeline 
that generates interactive reports of variants in whole exome sequencing (WES) and WGS data for 
expert interpretation. VIP can process short- and long-read data from different platforms and offers 
tools for increased sensitivity: a configurable decision-tree, filters based on human phenotype 
ontology (HPO) and gene inheritance that can be used to pinpoint disease-causing variants or finetune 
a query for specific variants. Here, alongside presenting VIP, we provide a step-by-step protocol for 
how to use VIP to annotate, classify and filter genetic variants of patients with a rare disease that has 
a suspected genetic cause. Finally, we demonstrate how VIP performs using 25,664 previously 
classified variants from the data sharing initiative of the Vereniging van Klinisch Genetische 
Laboratoriumdiagnostiek (VKGL), a cohort of 18 diagnosed patients from routine diagnostics and a 
cohort of 41 patients with a rare disease (RD) who were not diagnosed in routine diagnostics but were 
diagnosed using novel omics approaches within the EU-wide project to solve rare diseases (EU-Solve-
RD). VIP requires bioinformatic knowledge to configure, but once configured, any diagnostic 
professional can perform an analysis within 5 hours.   
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Introduction 
 
The field of clinical genetics focuses on the identification of genetic variants that cause disease. By 
understanding the pathogenesis of genetic diseases, we can provide patients with a prognosis and 
appropriate treatment1-3. Worldwide, around 350 million people are affected by one of 4440 RDs with 
a known genetic cause4. Pinpointing the causal RD variants among all the variants detected in 
targeted-enrichment sequencing, such as adaptive sampling and whole exome sequencing (WES), or 
even in whole genome sequencing (WGS) data, is not a trivial task and cannot be performed using a 
single strategy2,5-7. Several in silico pipelines have been created to combine published tools into a 
single solution2,5. Alissa Interpret (Agilent) is one example of a commercially developed tool in genome 
diagnostics, but there are also open-source alternatives, such as Kipoi and Scout8-10. 
 
Although the rapid growth of next generation sequencing (NGS) technologies has also accelerated the 
development of in silico pipelines, many challenges remain. To ensure reliability and reproducibility, 
pipelines must deal with the variability in quality and types of input data caused by different 
sequencing platforms and experimental conditions. Pipelines also need to accommodate different 
sources of information with different nomenclatures and ontologies, such as reference genomes, DNA 
annotation files and knowledge bases2,11-15. Further, variability in prediction algorithms, which 
originates from inherent biases in the datasets used for the development and training of these tools, 
often causes discordant results2,16.  
 
Additionally, the increasing volumes of sequencing data resulting from advances in NGS such as long-
read and WGS require large-scale translation of results into the clinic17. To accomplish this, scalability 
must be ensured. Pipelines are also required to adapt to the continuous emergence of new 
bioinformatic methods and knowledge bases. Ideally, they should also include tools to interpret 
variants according to the American College of Medical Genetics (ACMG) guidelines5,6,18, which helps 
to accommodate more advanced variant interpretation and prioritization methods17,19.  
 
Finally, because variant interpretation pipelines involve different algorithms and resources, their 
operation can require bioinformatic expertise. Most pipelines are restricted to individual institutions 
or bound to specific hardware configurations17. There are solutions that solve these problems using 
containerization and parallelization of the processes within the pipelines, but these are far from 
perfect17. Another example that often requires some level of bioinformatic expertise is the 
presentation and visualization of the results. This is typically of poor quality and difficult to 
understand, which negatively affects interpretation and translation toward the clinic20. 
 
To accelerate causal variant detection and innovation in genome diagnostics and research, we present 
the MOLGENIS Variant Interpretation Pipeline (VIP). VIP is a flexible open-source pipeline to generate 
self-contained, interactive reports of variants in WES, WGS, targeted NGS (tNGS) and adaptive 
sampling data for expert interpretation. To our knowledge, VIP is the only pipeline to incorporate the 
aforementioned into a single solution. It features integrated best-in-practice algorithms and protocols 
from routine diagnostics to facilitate classification of coding and non-coding variants according to the 
ACMG guidelines. VIP applies experience from the VKGL, the EU-wide project to solve rare diseases 
(EU-Solve-RD), the European Joint Program on Rare Diseases (EJP-RD,) and European infrastructural 
collaboration to accelerate access and sharing of research data (CINECA) (table 1)12,21. We 
containerized and parallelized VIP for straightforward deployment and large-scale data analysis. VIP 
is easily modified by updating its tools, annotations, and classification trees. Results are presented in 
coherent interactive reports for expert interpretation. VIP has already been used in several studies, 
such as the curation and expansion of human phenotype ontology (HPO) for systemic 
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autoinflammatory diseases and to study the use of a targeted gene panel in Dutch NGS-based 
newborn screening22,23. 
 
Here, we explain the different capabilities of VIP and how to use them. These include integrated best-
in-practice annotation sources, such as our variant pathogenicity predictor CAPICE, and a step-by-step 
protocol for the analysis of NGS sequencing data, supporting researchers and diagnostic professionals 
in variant interpretation and classification. We demonstrate VIPs ability to classify and report any 
clinically relevant germline variants. Additionally, we demonstrate the classification of causal variants 
in representative cohorts of RD patients from the University Medical Center Groningen (UMCG) and 
the EU-Solve-RD project21.  
 
 

Resource Link 

CINECA https://www.cineca-project.eu/ 

EJP RD https://www.ejprarediseases.org/ 

File formats https://gatk.broadinstitute.org/hc/en-us/articles/360035531812-GVCF-Genomic-Variant-Call-Format/ 

Git download https://git-scm.com/downloads/ 

Illumina https://emea.illumina.com/ 

Nextflow https://www.nextflow.io/docs/ 

Oxford Nanopore Technology https://nanoporetech.com/ 

PacBio HiFi https://www.pacb.com/technology/hifi-sequencing/ 

VIP Github repository https://github.com/molgenis/vip/ 

VIP online documentation https://molgenis.github.io/vip/ 

VIP releases https://github.com/molgenis/vip/releases/ 

VKGL https://vkgl.molgeniscloud.org/ 

 
Table 1 Online resources 

 
 

MOLGENIS VIP 
 
VIP supports short- and long-read WGS, WES and otherwise targeted-enrichment WGS data from 
different sequencing platforms: PacBio HiFi long-read sequencing, Oxford Nanopore Tech (ONT) long-
read sequencing and Illumina short-read sequencing (table 1). To annotate both coding and non-
coding variants, VIP integrates different algorithms and knowledge bases and is divided into four 
modules:  pre-processing, annotation, filtering and interactive reporting (figure 1). Depending on the 
input format, VIP starts one of four workflows: the FASTQ (raw human-readable sequencing output) 
workflow, the CRAM/BAM (Compressed Reference-oriented Alignment Map/Binary Alignment Map) 
workflow, the gVCF (Genomic Variant Call Format) or the VCF (Variant Call Format) workflow (figure 
1). The sequence of the pre-processing steps is different for each workflow, but after arriving at a VCF 
file, the steps performed by the remaining modules are the same. From here, all variants are 
annotated using the different algorithms, knowledge bases, known genotype-phenotype relationships 
and inheritance patterns (figure 1, supplementary table 1). Finally, all variants are filtered using a user-
specified decision tree and inheritance modes. This results in an interactive report containing a 
prioritized shortlist of classified variants of interest. Possible classifications are likely benign (LB), 
benign (B), variant of unknown significance (VUS), likely pathogenic (LP) and pathogenic (P). The raw 
output with the different annotations is also available as an unfiltered VCF file. 
 

https://www.cineca-project.eu/
https://www.ejprarediseases.org/
https://gatk.broadinstitute.org/hc/en-us/articles/360035531812-GVCF-Genomic-Variant-Call-Format/
https://git-scm.com/downloads/
https://emea.illumina.com/
https://www.nextflow.io/docs/
https://nanoporetech.com/
https://www.pacb.com/technology/hifi-sequencing/
https://github.com/molgenis/vip/
https://molgenis.github.io/vip/
https://github.com/molgenis/vip/releases/
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VIP has been developed in a combination of Java, JavaScript, Python, Perl and Shell scripting and runs 
on the command line. All processes performed by VIP are implemented using the workflow manager 
Nextflow, allowing parallel processing per chromosome to maximize performance. Apptainer is used 
for containerization, ensuring straightforward installation and reproducible deployment in different 
research or diagnostic environments24,25. Nextflow also creates intermediate files, allowing users to 
stop and resume the pipeline at any time during a run. This feature also allows users to analyze large 
amounts of data step-by-step and helps to accurately follow and reproduce all processes. 
 
 
 

 
 

Figure 1 Summary of modules in VIP.  As input, VIP requires a sample sheet in which the patient information is specified. In module 1, the 
input is validated and pre-processed, resulting in a VCF file. The workflow can be started at all points in the pre-processing step. Module 2 
provides the variants in the VCF file with annotations from bioinformatic tools and resources (supplementary table 1). Module 3 filters the 
variants using a customizable decision tree and inheritance information from the previous modules. Finally, VIP generates an interactive 
report in which the logic for the classifications is explained. Diagnosticians and researchers can use this report for further interpretation of 
the variants and sharing of the results.  
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Application of the method 
 
With VIP we aim to provide a complete computational procedure to align reads, followed by calling, 
annotating, classifying and finally filtering genetic variants for research and diagnostics of patients 
with a RD with a suspected genetic cause. VIP offers tools to increase sensitivity to find previously 
unsolved or unknown variants or to finetune a query to find specific variants. The annotation module 
and decision tree can be altered or expanded to incorporate new annotation tools or resources. 
Therefore, we encourage users to develop and validate their own decision trees and to expand VIP for 
their own needs. 

 
Description of the workflow 
 
Input 
 
Diagnosticians and researchers can provide a sample sheet in the tab-separated values (TSV) format 
in which each row represents a sample taken from an individual. It contains the location of the 
sequencing data and metadata associated to the sample, such as the location of maternal and paternal 
sequencing data, phenotypic information, and the reference genome specified and sequencing 
method used. VIP supports several standard input formats for sequencing data produced by NGS: 
FASTQ, CRAM, BAM, VCF and gVCF files (table 1)26-28. In addition, phenotypic information can be 
provided using terms from the HPO system29. 
 
Module 1: pre-processing 
 
When sequencing data is provided in FASTQ format, VIP initiates the FASTQ workflow and maps the 
files to the specified reference genome using Minimap230. Next, BAM files are aligned and indexed by 
Samtools. Structural tandem repeats are detected using ExpansionHunter for short-read data and 
Straglr for long-read data31,32. Single nucleotide variants (SNVs), and insertions and deletions (indels) 
are detected by DeepVariant. GLnexus is used to merge proband, maternal and paternal VCF files into 
a single VCF for further processing33. Finally, structural variants are detected using Manta and 
cuteSV34,35. Sequencing data generated with the following platforms are supported: Illumina short-
read (single and paired-end), ONT long-read sequencing and PacBio HiFi long-read sequencing (table 
1). 
 
Module 2: annotation 
 
Next, the detected variants are annotated with different levels of information. Examples are allele 
frequencies from GnomAD, known gene-phenotype relationships from the HPO database and 
classifications validated by the VKGL. VIP also integrates our powerful CAPICE machine learning (ML)–
based variant pathogenicity predictor with other best-in-class annotation sources, such as Ensembl 
Variant Effect Predictor (VEP) and SpliceAI. Supplementary table 1 provides a complete list of the 
default tools and knowledge bases, including references, that VIP uses to annotate variants. These 
annotations are used to classify and display variants in the interactive report. We use the plugin 
framework of Ensembl VEP to extend the existing functionality with new tools and annotations36. 
 
The two main annotation tools in VIP are CAPICE and SpliceAI. CAPICE is a ML- based method to predict 
the pathogenicity of SNVs and indels using diverse genomic features, such as genetic context, gene 
model annotations and evolutionary constraints. We chose CAPICE as it outperforms other similar 
pathogenicity predictors, such as CADD and REVEL37. Based on the study performed by Li et al. we 
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updated and re-trained CAPICE. Our benchmark study showed that a cut-off value of 0.5 results in a 
recall rate of 0.95, which we used in our decision tree. SpliceAI is a ML-based method that exploits the 
sequence surrounding a variant to determine the likelihood that the position in the pre-mRNA 
transcript is a splice donor or acceptor site38. SpliceAI outperforms most other splice variant 
predictors. Based on a study in which we performed a sensitivity and specificity analysis on published 
splice variants, we chose a cut-off value of 0.42 as this resulted in the highest sensitivity 
(supplementary data 1). 
 
Module 3: filtering 
 
Inheritance matcher 
 
To study families for which genotypic and phenotypic information is available, diagnosticians can 
evaluate if variants segregate with disease or if they occurred de novo. This provides an additional 
level of evidence to determine if a variant is disease-causing. Therefore, VIP uses pedigree information 
consisting of trios (proband, mother and father) to check if the variant segregation matches disease 
disease-affected status, while taking into consideration the known inheritance modes of the gene of 
interest in the Clinical Genomic Database (CGD)39. Users can also provide VIP with known inheritance 
modes from the Online Mendelian Inheritance in Man (OMIM) database or other sources39,40.  Both 
maternal and paternal genetic information can be specified in the sample sheet. VIP supports X-linked 
recessive, X-linked dominant, Y-linked recessive, Y-linked dominant, mitochondrial (MT), autosomal 
recessive, autosomal dominant and de novo inheritance modes. Additionally, VIP supports compound 
recessive inheritance patterns and inheritance with incomplete penetrance. 
 
Customizable decision tree based on best-practices 
 
VIP uses a decision tree to filter variants based on the results of the annotation module, which are 
collected in an interactive report. Users can compose a decision tree to fit their diagnostic workflow 
or research question. The decision tree is specified in a human-readable JavaScript object notation 
(JSON) formatted file. It can be customized by editing the different objects within this file. Each object 
represents criteria that ultimately lead to the predicted variant classification by VIP. VIP also produces 
intermediate files so that classification and filtering can be performed repeatedly using different 
decision trees. Figure 2 shows the default decision tree which is based on the VKGL and the Association 
for Clinical and Genetic Science (ACGS) guidelines and on collaboration with experts from Genome 
Diagnostics at the UMCG Genetics department12,41,42. 
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Figure 2 Default decision tree. The figure shows a schematic version of the default decision tree. The green blocks and bold arrows represent 
the general sequence of filtering steps and the values that are evaluated for each variant (see legend). Each value is calculated in the 
annotation module (supplementary table 1). Small arrows represent the decisions for the consequence classifications by VIP. VIP classifies 
the different consequences as B, LB, VUS, LP or P. After a variant is classified by VIP, it exits the filter tree. Variants with incorrect contigs or 
genes and low quality are removed (RM). Using the JSON format, each component in the decision tree can be customized to fit the workflow 
of the user. 

 
Module 4: interactive report 

The final set of variants that passed through the decision tree is provided as a self-contained, 
interactive hypertext markup language (HTML) report that can be opened in any recent internet 
browser (figure 3). This report contains the filtered list of annotated variants. Diagnosticians can use 
these annotations to navigate the report and study the criteria that were used to classify the variants. 
Additionally, basic information, such as the genomic position, reference and alternative alleles, the 
consequence, and the gene in which the variant is located, are provided. A more detailed view of all 
available annotations for each transcript is also available. Experts can perform diagnostic-relevant 
filtering, such as hiding variants with a genotype quality ≤ 20, variants with allelic imbalance and all 
variants predicted to be LB and B. Similarly, using the HPO-match filter button, variants not located in 
a gene associated to the HPO terms provided are hidden. Variants that do not match known 
monogenic inheritance patterns or variants that are not de novo can be hidden using the inheritance-
match buttons. The report is also provided as a raw VCF file as input for other tools. For the FASTQ 
and BAM workflows, a genome viewer is available to view the reads that overlap with a variant. 
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Figure 3 Interactive report. This figure shows an example of the base view of the interactive report. The interactive report opens in the 
sample screen (A). Here, all the individuals within a family are shown. To navigate to the list of variants with their predicted class, users can 
navigate to the variant view by clicking one of the individuals (C). The default variant view shows the variants and the consequence of the 
transcript with the highest CAPICE score. The variants in the list can be filtered using different filters, such as HPO filters, inheritance filters 
and predicted class filters (B). The report also contains more detailed views to show all annotations for each transcript and which criteria 
were used to classify a specific variant. When the BAM workflow is used, the built-in genome viewer can be used to study the context of 
variants within reads that were mapped to the reference genome.  
 

 
Expertise needed 
 
We advise that the installation, configuration and customization of the decision tree be done by a 
bioinformatician or system administrator. Subsequently, the protocol can be followed by any 
diagnostician or researcher.  
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Materials 
 

Software 
 
VIP has been developed for GNU-based Linux (e.g. Ubuntu, Windows Subsystem for Linux with x86_64 
architecture with installed versions of Bash (version 3.2 or higher), Java (version 11 or higher), 
Apptainer (version 3.18 or higher) and Nextflow (version 23.10.0). Installation of Git is required to 
download and install VIP (table 1). 
 

Hardware 
 
To install the version of VIP that is described in this paper (7.4.0), 220 GB of free diskspace is required. 
A multicore computer with at least 4 CPUs and 8 GB of RAM is advised, as this allows for parallel 
processing per chromosome to optimize performance. However, for the FASTQ and BAM workflows, 
the computing resources required are heavily dependent on the number of input files and the read 
depth. Similarly, the resources required for the VCF workflow depend heavily on the number of VCF 
files and the number of variants per sample. To install the most recent version of VIP, we refer to table 
1.  
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Procedure 
 
Below we describe the procedure to download, install and run the VCF workflow and analyze the 
results. The same procedure applies to the FASTQ and BAM workflows. For more information on 
running the FASTQ and BAM workflows, see the online VIP documentation (table 1). 

 
Installation (1-2 hours) 
 

1. Open a command-line Unix-like terminal, define a directory in which VIP will be installed and 
navigate to that directory. Download VIP using the following command: git clone 
https://github.com/molgenis/vip.git. Execute bash vip/install to install VIP. The install 
process creates a directory vip with all files required to run the application. 

 

Optional configuration (1 hour) 
 

2. The default configuration files are stored in the directory vip/config. These files specify 
values for the different parameters in JSON format. For each workflow a custom configuration 
file can be created to overwrite values in the default configuration. All parameters that are 
not hardcoded in the config files can be overwritten. Our experience is that the most 
frequently adjusted parameters are the process parameters for allocating RAM, CPU and 
processing time limits to specific sub workflows, the reference genome parameters to specify 
the reference genome used, and the filter parameters to specify which variants are shown in 
the interactive report. Additionally, users can specify the decision tree that they want to use. 
For a detailed description of all parameters, with default and example values, see the online 
VIP documentation (table 1). The custom configuration file used to run the VCF workflow for 
the demonstration data set is available in supplementary data 2. 

 
3. The file containing the default decision tree in a JSON formatted file is stored in the directory 

vip/resources. The decision tree can be customized by creating a copy of the default decision 
tree file and editing or changing the order of the different parameters. For a description of 
the parameters that can be edited, see the online VIP documentation (table 1). 

 

Create sample sheet (1 hour) 
 
 

4. Users need to create a sample sheet containing the information of the individuals within each 
family. The required and default values are shown in table 2 and the online VIP documentation 
(table 1). When performing a trio analysis, we recommend providing the family identifier, 
individual identifier of the proband, the paternal and maternal identifiers, the affected status 
of the individuals, HPO terms of the proband, the sequencing method used (WES or WGS), the 
reference assembly used (GRCh37 or GRCh38) and the location of the stored VCF files. 
Examples of sample sheets used to run the VCF workflow for the demonstration data set are 
available in supplementary tables 4, 5 and 6. 

  

https://github.com/molgenis/vip.git


 

 11 

Category Column Description 

General 

project_id 
Unique identifier for each project. 
Each projects can contain multipe families and individuals. 
Default is 'vip'. 

family_id 
Unique identifier for each family. 
A family can exit out of multiple layers of a father, mother and children. 
Default is 'fam_<integer>'. 

individual_id 
Unique identifier for each family member. 
This field is mandatory. 

paternal_id Unique identifier for each father within a family. 

maternal_id Unique identifier for each mother within a family. 

sex 
Biological sex of family member. 
Possible values are 'male' and 'female'. 
Default is 'unknown'. 

affected 
Specifies whether the family member is affected by the disease phenotype. 
Allowed values are 'yes' or 'no'. 
Default is 'unknown'. 

proband 
Specifies whether the family member is a proband. 
Allowed values are 'yes' or 'no'. 
If no probands are defined in the sample sheet, then all samples are considered to be probands. 

hpo_ids 
Comma-sperated unique identifiers from the HPO database describing the phenotypes of the family members within the 
sample sheet. 

sequencing_method 

Specifies the sequencing method used. This determines which workflow-specific processes are used for the processing of 
the input data. 
Allowed values are 'WES' or 'WGS'. 
Default is 'WGS'. 

Workflow specific     

Category Column Description 

FASTQ 

fastq 
Specifies the absolute path to the file containing raw sequencing data in FASTQ format. 
Only for single read files. 
Allowed file extensions are: fastq, fastq.gz, fq and fq.gz. 

fastq_r1 
Specifies the absolute path to the file containg raw sequencing data in FASTQ format for one of the pairs in paired-end 
sequencing. 
Allowed file extensions are: fastq, fastq.gz, fq and fq.gz. 

fastq_r2 
Specifies the absolute path to the file containg raw sequencing data in FASTQ format for one of the pairs in paired-end 
sequencing. 
Allowed file extensions are: fastq, fastq.gz, fq and fq.gz. 

sequencing_platform 

Specifies the sequencing platform used. This determines which workflow-specific processes are used for the processing of 
the input data. 
Allowed values are: 'illumina', 'nanopore' or 'pacbio_hifi'. 
Value must be the same for all project samples. 

BAM 

bam Specifies the absolute path to the file containing sequencing data in BAM format. 
Allowed file extensions are: bam, cram and sam. 

sequencing_platform 
Specifies the sequencing platform used. This determines which workflow-specific processes are used for the processing of 
the input data. 
Allowed values are: 'illumina', 'nanopore' or 'pacbio_hifi'. 
Value must be the same for all project samples. 

gVCF 

assembly 
Identifier specifying the used build of the reference genome. 
Allowed values are: 'GRCh37', 'GRCh38' and 'T2T'. 

gvcf Specifies the absolute path to the file containing the called variants in gVCF format. 
In case a multisample gVCF is used, the individual_id has to match one of the samples in the VCF file. 

VCF 

assembly Identifier specifying the used build of the reference genome. 
Allowed values are: 'GRCh37', 'GRCh38' and 'T2T'. 

vcf Specifies the absolute path to the file containing the called variants in VCF format. 
In case a multisample VCF is used, the individual_id has to match one of the samples in the VCF file. 

 
 
Table 2 Sample sheet format The first column describes for which workflow the fields need to be filled in. The second column represents 
the different columns within the samplesheet. The third column contains the description and the requirements of the infromation that can 
be provided. 
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Running the pipeline (4 hours) 
 

5. To run the VCF workflow, navigate to the installation folder vip and execute vip –workflow 
vcf –input <path_to_directory>/<sample_sheet_name>.tsv –output 
<path_to_directory>/<output_folder_name>. If custom configuration values are 
provided, add -config <path_to_directory>/<config_file_name>.cfg. The pipeline’s 
progress is displayed in the standard output of the terminal. After VIP has performed a quality 
check on the sample sheet, it will run the pre-processing, annotation, filtering and interactive 
reporting modules. The filtered VCF file, intermediate files, supporting files and interactive 
reports are stored in the respective output folders (table 3). An interactive report is created 
for each project specified in the sample sheet. See table 4 for potential problems and 
suggestions for troubleshooting potential errors. 

 
 

File or folder1 Description 

.nextflow2 Contains files with run statistics for each Nextflow run. 

.nxf.home2, .nxf.tmp2 Contains files and executables used by Nextflow. 

.nxf.log2 Logfile containing history of all performed processes. 
Can be used to follow each run and debug failed runs. 

.nxf.work2 
Folder containing temporary files created by Nextflow for each process. 
Needed by Nextlfow to start subsequent processes. 
This folder is also used by Nextflow to resume a failed run. 

nxf_report.html2 
Self-contained interactive summary of the statistics for each process that Nextflow performed, like runtime, memory and CPU usage. 
Can be opened in any modern web browser. 

nxf_timeline.html2 Self-contained schematic overview of the runtime and walltime of each Nextflow process. 
Can be opend in any modern web browser. 

vip.html Self-contained interactive report based on variant calls and annotations in vip.vcf.gz. 

vip.vcf.gz Compressed VCF file containing all variant calls, annotations and predicted classifications. 
This file can be used as input for other tools or subsequent analyses that require VCF files as input. 

vip.vcf.gz.csi Index file for vip.vcf.gz 

intermediates 

Compressed VCF and index files. 
Allows user to monitor or rerun VIP starting from pre-defined modules. For different possible rerun options, refer to the VIP 
documentation (table 1). 
Contents are dependend on the workflow started. 
 
A run of the VCF workflow containing WES data for one trio results in the following most important files: 
- <project_id>_<fam_id>_<individual_id>_liftover_accepted.vcf.gz 
- <project_id>_<fam_id>_<individual_id>_liftover_accepted.vcf.gz.csi 
- <project_id>_<fam_id>_<individual_id>_liftover_rejected.vcf.gz 
- <project_id>_<fam_id>_<individual_id>_liftover_rejected.vcf.gz.csi 
- <project_id>_<fam_id>_<individual_id>_annotations.vcf.gz 
- <project_id>_<fam_id>_<individual_id>_annotations.vcf.gz.csi 
- <project_id>_<fam_id>_<individual_id>_classifications.vcf.gz 
- <project_id>_<fam_id>_<individual_id>_classifications.vcf.gz.csi 
- <project_id>.sample_classifications.vcf.gz 
- <project_id>.sample_classifications.vcf.gz.csi 

1) Path to files is specified by the user with the '--output' option when running VIP on the command line 

2) For a detailed explanation, refer to the documentation of Nextflow (table 1) 

 
Table 3 Output files. The first column shows the name of the different output files that are created during a VIP run. The second column 
shows a description and function of the output files. 
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Step Problem Possible reason Solution 

5 

VIP returns unkown contig in VCF header. Used reference genome does not match input VCF. Edit the config file for the corresponding workflow to 
adjust the reference genome. 

Process runs out of memory. Not enough memory allocated in the corresponding 
config file. 

Edit the config file for the corresponding process to 
increase RAM and CPU usage,  and time limits for the 
failed process. 

VIP returns parsing error in the sample sheet 
validation process. 

VIP has found a parsing error in the sample sheet. 

Check the nxf.log output file for details about the error. 
Avoid special characters. Check if the columns line up 
with tab-separated values. Compare input with required 
and allowed values by using online VIP documentation 
and check for inconsitencies (table 1). 

VIP fails during the annotation process (no out-of-
memory error). 

One of the processes within the annotation module 
has failed. 

Check the nextflow log file for details about the error. 
Find the process working directory and locate it in the 
nextflow working directory. Check the command-files to 
pinpoint which process caused the error. Adjust your 
input accordingly and rerun your command by adding the 
resume option. 

 
Table 4 Troubleshooting table 

 
Navigating the interactive report 
 

6. To interpret the results, download and open an interactive report <project_id>.html from 
your output directory in a locally installed web browser. Navigate to the ‘samples tab’ and the 
proband of interest (figure 3a). Clicking ‘variants’ opens the base view, which displays the 
possible filters and all the effects of a variant on each possible transcript (figure 3b,c). Each 
line represents the effect of a variant with the highest CAPICE score. To show all effects for 
each variant, press the arrow next to an effect. By default, the report only displays the gene 
symbol, expected inheritance pattern, matching HPO terms, HGVS notations, CAPICE scores, 
VKGL and ClinVar classifications, GnomAD allele frequencies, predicted classifications by VIP 
and links to available literature. To display all available annotations, click ‘Variants’ in the 
header to open a detailed view of all annotations. To use a different sorting method, select an 
annotation by which to sort in the top right corner. 

7. In the base view, use the filters on the left side of the report to filter the list (figure 3b). By 
default, the read quality, read depth and allelic imbalance filters are applied. To also view low 
quality variant calls, deselect these filters. 

8. When VIP is run using the FASTQ or BAM workflow, click a chromosomal position in the base 
view to show the genomic context and the reads overlapping the variant for the different 
transcripts. 

9. In the base view, click on an effect to navigate to a list of all annotations for the specific effect. 
All the annotations added by VIP are displayed in the left panel in the ‘consequence section’. 
The path through the decision tree is displayed in the right panel. This information can be used 
to verify which information VIP used to predict a class for a variant. Record- and sample-
specific information, such as the chromosomal position and known inheritance mode, is 
shown in the bottom panel. 

10. In the base view, click on a gene symbol to open the gene in a webpage of the HUGO Gene 
Nomenclature Committee (HGNC) with links to related genomic, clinical and proteomic 
information43. 

11. If available, click on the citation in the base view to navigate to the related research article in 
PubMed. 

12. In the base view, click on an HPO term in the variant screen to navigate to a webpage of the 
HPO database. This contains a description of the phenotype, its ontology and its associations 
to diseases and genes. 

13. In the base view, click on the ClinVar classification to navigate to the associated webpage of 
ClinVar. This webpage contains detailed information about the variant and the submitted 
interpretations and evidence for its classifications44. 



 

 14 

 

Reanalysis 
 

14. To re-analyze data from a previous run, VIP can be restarted from the filter module. This is, 
for example, useful for applying a different decision tree to classify variants without having to 
annotate all variants again. To rerun VIP, the basic procedure remains the same. In addition, 
the correct intermediate files should be provided in the sample sheet and the module from 
which to start should be added in the custom configuration file using the parameter vcf.start. 
For more instructions to restart VIP from a different module, see the online VIP 
documentation (table 1). 

 
Adding additional annotation sources 
 
We also provide bioinformaticians and system administrators the ability to develop their own 
plugins to add new annotation sources. We use the VEP plugin framework to develop new plugins 
for VIP. The /vip/resources/vep/plugins directory contains examples with existing plugins. After a 
plugin is developed, the /vip/modules/vcf/templates/annotate.sh needs to be expanded with 
the newly developed plugin. 
 
 
Timing 
 
Using VIP version 7.4.0, 16 GB of memory and 4 CPUs, the average runtime for WES data in VCF format 
for 20 samples (average size ~216 MB) was 4 hours. However, the performance is highly dependent 
on the size of the dataset, the workflow used and the number of available CPUs and RAM. 
 
Preparation (once): 

- Step 1. Installing MOLGENIS VIP: 1–2 hours.  
- Step 2-3. Creating custom configuration file and decision tree: 1 hour. When the default 

configuration and decision tree is used, this step can be skipped. 
 
For each analysis: 

- Step 4. Creating the sample sheet: 1 hour. 
- Step 5. Running the pipeline: 4 hours (waiting for output). 
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Anticipated results 
 
To demonstrate how VIP performs and how it can be used to interpret clinically relevant germline 
data, we used VIP version 7.4.0, 4 CPUs and 16 GB of RAM to analyze variants from the VKGL database 
and two anonymized patient cohorts. The total runtime was 4 hours. 
 

Input data 
 
Previously classified variants 
 
We collected 25,664 variants previously classified by experts as LP or P based on the consensus 
between the different Dutch genome diagnostic laboratories within the VKGL. For this demonstration, 
we used the LP and P variants in VKGL release 2023-11 and all newly added LP and P variants (added 
between release 2023-11 and 2024-2) to showcase how VIP classifies previously classified variants 
(table 1). 
 
Routine diagnostics cohort 
 
To demonstrate VIP in diagnostics, we created two anonymized patient cohorts. The first cohort was 
created to demonstrate how VIP is applied in routine diagnostics at the UMCG. This routine diagnostics 
cohort contained 18 patients with a molecular genetic diagnosis (supplementary table 2). These 
patients were selected out of 70 monthly interpretation requests by a clinical geneticist. Virtual gene 
panels were used to home in on potential disease-causing genes and prevent incidental findings. The 
panels consisted of genes specific for developmental delay, dilated cardiomyopathy and the clinical 
exome (supplementary data 3). For all patients HPO terms, WES data and maternal and paternal WES 
data were available.  
 
Solve-RD research cohort 
 
The second cohort contained 41 patients with RDs who had not been diagnosed following routine 
diagnostics but whose cases were solved within the EU-Solve-RD project using novel omics approaches 
21. These patients were selected based on the availability of a molecular diagnosis, HPO terms and 
maternal and paternal WES data. The resulting patient selection originated from three different 
European Reference Networks (ERNs): the ERN for neuromuscular disorders (ERN-EURO NMD), the 
ERN for rare neurological diseases (ERN-RND) and the ERN for rare malformation syndromes, 
intellectual and other neurodevelopmental disorders (ERN-ITHACA)21. The verified causal variants 
were extracted from the Genome Phenome analysis platform (GPAP) on the 12th of February 202445 
(supplementary table 3). 
 

Comparing the number of candidate variants, recall rate and ranking 
 
Create sample sheets 
 
First, we created a sample sheet containing one file with all LP and P variants in VKGL release 2024-2, 
including variants that are part of the version of VIP used. Another sample sheet was created 
containing only newly added variants that are not part of the version of VIP used (supplementary table 
4). 
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Following this step, we created one sample sheet with the patients from the routine diagnostics cohort 
and one containing the patients from the Solve-RD research cohort. Both sample sheets specified the 
HPO terms used, affected status, reference genomes, sequencing types and the proband, maternal 
and paternal WES data (supplementary table 5, 6). 
 
Run VIP and analysis of results 
 
VIP was used with the three sample sheets and the default decision tree to create an interactive report 
for each case. By default, variants with a genotype quality ≤ 20 and allelic imbalance and all LB and B 
variants were filtered out. We then collected the number of candidate variants when applying: (1) the 
HPO-match filter, (2) the inheritance-match filter and (3) both the HPO- and inheritance-match filters. 
 
We studied the number of candidate variants per patient and the total number of confirmed molecular 
diagnoses found in order to compare the recall rates for the previously classified variants, the routine 
diagnostics cohort and the Solve-RD research cohort. To see how well VIP prioritized the molecular 
diagnoses, and demonstrate its added value for clinical geneticists, we also compared the assigned 
rank with the number of candidate variants. 
 
Expectation 
 
Because the variants of VKGL release 2023-11 were used by VIP in the VKGL and CAPICE annotation 
steps, we expect a 100% recall rate for these known variants. To showcase how VIP classifies known 
VKGL variants that were not part of the VKGL release used by VIP, we used the variants added between 
release 2023-11 and 2024-2. Because these are also known variants, we expect a recall rate of almost 
100%.  
 
The VCF files for the routine diagnostics cases are pre-filtered based on a virtual gene panel. Therefore, 
we expect that the average number of candidate variants in the interactive report for the routine 
diagnostics cohort will be smaller than for the Solve-RD research cohort. We also expect that the 
filtering based on VUS, LP and P variants, HPO term matches and inheritance matches results in the 
highest ranking of the causal variants. However, this could lead to a decreased recall rate. Not all genes 
in the HPO database are equally well annotated with HPO terms, and phenotypic features could have 
been missed when the patient’s phenotype was described in the clinic22. Similarly, not all genomic 
positions for the proband are also covered for both parents, resulting in a missing inheritance match. 
 
The patients from the Solve-RD research cohort that we collected were initially unsolved by the 
individual expertise centers. For this reason, they were submitted to the Solve-RD project to be 
analyzed using novel omics methods, such as gene expression analysis and RNA-sequencing, instead 
of relying only on NGS. We expect that the recall rate for this cohort is lower compared to the routine 
diagnostics cohort. 
 
Results 

 
Previously classified variants 
 
Figure 4 shows the number of known variants recalled. As expected, VIP detected 100% 
(25,664/25,664) of these variants. In addition, VIP recalled 558 out of 597 (93.47%) of the variants that 
were newly added. Twenty-one variants missed because they were classified as LB based on the 
CAPICE scores. Two variants were missed because one was classified as LB in the ClinVar database and 
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another variant had a gnomAD minor allele frequency (MAF) higher than 0.02. Finally, 16 variants 
were missed because they had a SpliceAI score between 0.13 and 0.42. 
 
 

 
 
Figure 4 Number of recalled variants that are previously classified. Y-axis shows the percentage of variants that VIP was able to recall as 
LP or P. The first bar at left represents the variants of VKGL release 2024-2 that were used by VIP in the VKGL and CAPICE annotation steps. 
The second bar represents the newly added variants between VKGL release 2023-11 and 2024-2 that were not used by VIP. The absolute 
number of variants that were recalled is shown at the top of the bars. 

 
Routine diagnostics cohort 
 
Figure 5a shows the average number of candidate variants per patient and the total number of 
recalled molecular diagnoses for the routine diagnostics cohort. When LB and B variants are filtered 
out, VIP returned an average of 338 candidate variants per patient and recalled 18/18 molecular 
diagnoses. Applying the HPO-match and inheritance-match filters resulted in an average of 8 and 18 
candidate variants per patient and 14/18 and 15/18 recalled molecular diagnoses, respectively. The 
most significant decrease in the number of candidates came after applying the HPO-match and 
inheritance-match filters simultaneously, resulting in four candidate variants per patient. However, 
the recall rate decreased to 11/18. 
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Figure 5 Number of candidate variants and recall rate. a, The average numbers of candidate variants per patient in the routine diagnostics 
cohort. b, The average number of candidate variants per patient in the Solve-RD research cohort. On the x-axis, the different filters used in 
the interactive report are specified. The recall rate per filter is displayed above the individual bars. 
 
 
Solve-RD research cohort  
 
Figure 5b shows the same results for the Solve-RD research cohort. After LB and B variants were 
filtered out, VIP returned an average of 349 candidate variants per patient and recalled 34/41 
molecular diagnoses. Applying the HPO-match and inheritance-match filters resulted in an average of 
33 and 20 candidate variants per patient and 31/41 and 12/41 recalled molecular diagnoses, 
respectively. The most significant decrease in the number of candidate variants came from applying 
both the HPO-match and inheritance-match filters simultaneously, resulting in eight candidate 
variants per patient. However, the recall rate decreased to 11/41. 
 
Missed variants 
 
In the Solve-RD research cohort, VIP missed 7 molecular diagnoses due to a CAPICE score that did not 
meet the cut-off value specified in the default decision tree (figure 2). The decrease in recall rate after 
applying the HPO-match filter can be explained by the fact that 4 patients in the routine diagnostics 
and 10 patients in the Solve-RD research were annotated with HPO terms that do not match the gene 
in which the molecular diagnosis is located. This was not unexpected. As described previously by W. 
Maassen et al., it is possible that not every patient’s phenotype is equally well described in HPO terms 
or that the gene is not annotated with HPO terms in the HPO database22. The decrease in recall rate 
after applying the inheritance-match filter for patients in the routine diagnostics and the Solve-RD 
research cohort can be explained by the fact that, for 3 and 29 patients, respectively, NGS did not 
cover both alleles for at least one parent. 
 
Assigned rank versus number of candidate variants 
 
In figure 6, the average rank of the molecular diagnoses was compared with the number of candidate 
variants per patient in the routine diagnostics and Solve-RD research cohort. This figure shows that 
the average rank increased and that the average number of candidate variants per patient decreased 
when the different filters were applied. This shows that VIP was better able to discriminate causal 
variants from other variants when the number of candidate variants decreases. The lowest number of 
candidate variants was returned when both the HPO- and the inheritance-match filter were applied. 

a b 
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For the routine diagnostics and Solve-RD research cohort, this resulted in an average rank of 2 and 4, 
respectively. 
 
 

 
 

 
 
Figure 6 Number of candidate variants per patient and rank of molecular diagnoses. Panels show the average numbers of candidate 
variants per patient plotted versus the average rank of the molecular diagnosis for the patients in the (a) routine diagnostics and (b) Solve-
RD research cohorts. Patients for whom the molecular diagnoses were not found after applying the different filters are not included. 

 
Data availability 
 
The previously classified variants from the VKGL can be downloaded from 
https://vkgl.molgeniscloud.org/. The routine diagnostics cohort contains patient data from patients 
within the UMCG and can therefore only be shared upon request. The Solve-RD research cohort is 
available as a dataset (EGAD50000000390) in the European Genome-Phenome Archive and can be 
accessed by sending a data access request to the data access committee of the EU-Solve-RD project. 
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institutional requirements. Written informed consent was obtained from the 18 UMCG patients for 
sharing their WES data. To access patient data from the EU-Solve-RD project, we received 
confirmation from the Solve-RD Data Access Committee. 
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Code availability 
 

MOLGENIS VIP is publicly available at https://github.com/molgenis/vip under the GNU Lesser General 
Public License v3.0. See https://github.com/molgenis/vip/blob/main/LICENSE for details. VIP is an 
aggregate work of many individual tools, each covered by their own license(s). Therefore, the 
individual license(s) of the relevant tools should also be considered. 
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