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Interrater agreement of annotations of epileptiform discharges and 
its impact on deep learning – A pilot study 
 
Mats Svantesson, Anders Eklund, Magnus Thordstein. 

1. Abstract 
Background: Expert interrater agreement for epileptiform discharges can be moderate. This 
reasonably will affect the performance when developing classifiers based on annotations per-
formed by experts. In addition, evaluation of classifier performance will be difficult since the 
ground truth will have a variability. In this pilot study, these aspects were investigated to eval-
uate the feasibility of conducting a larger study on the subject. 

Methods: A multi-channel EEG of 78 minutes duration with abundant periodic dis-
charges was independently annotated for epileptiform discharges by two experts. Based on 
this, several deep learning classifiers were developed which in turn produced new annotations. 
The agreements of all annotations were evaluated by pairwise comparisons using Cohen’s 
kappa and Gwet’s AC1. A cluster analysis was performed on all periodic discharges using a 
newly developed version of parametric t-SNE to assess the similarity between annotations. 

Results: The Cohen’s kappa values were 0.53 for the experts, 0.52–0.65 when comparing 
the experts to the classifiers, and 0.67–0.82 for the classifiers. The Gwet’s AC1 values were 
0.92 for the experts, 0.92–0.94 when comparing the experts to the classifiers, and 0.94–0.96 
for the classifiers. Although there were differences between all annotations regarding which 
discharges that had been selected as epileptiform, the selected discharges were mostly similar 
according to the cluster analysis. Almost all identified epileptiform discharges by the classifiers 
were also periodic discharges. 

Conclusions: There was a discrepancy between agreement scores produced by Cohen’s 
kappa and Gwet’s AC1. This was probably due to the skewed prevalence of epileptiform dis-
charges, which only constitutes a small part of the whole EEG. Gwet’s AC1 is often considered 
the better option and the results would then indicate an almost perfect agreement. However, 
this conclusion is questioned when considering the number of differently classified discharges. 
The difference in annotation between experts affected the learning of the classifiers, but the 
cluster analysis indicates that all annotations were relatively similar. The difference between 
experts and classifiers is speculated to be partly due to intrarater variability of the experts, and 
partly due to underperformance of the classifiers. For a larger study, in addition to using more 
experts, intrarater agreement should be assessed, the classifiers can be further optimized, and 
the cluster method hopefully be further improved. 

 
Keywords: EEG, epileptiform discharges, deep learning, interrater variability, label noise, t-
SNE 

 

2. Introduction 
Automating tasks that are time-consuming and depend on expert knowledge is important to 
increase availability. This is certainly the case in EEG analysis and deep learning has emerged 
as a promising way to accomplish this (Craik et al., 2019; Roy et al., 2019). To assess the utility 
and risks of the technology, it is important to evaluate it, as well as to study different aspects 
of the conditions for developing deep learning, to optimize the performance. Most deep learn-
ing applications for detecting epileptiform discharges (EDs) are developed using supervised 
learning (Nhu et al., 2022) where deep classifiers are trained to align to human expert assess-
ments. At present time, there is no generally accepted objective way of defining or quantita-
tively measure EDs and the gold standard is rating by experts. However, experts do not always 
agree and in this work, interrater agreement for EDs and how it affects training of deep classi-
fiers was investigated. 

In cases where there is no way to know which expert is right, one can at least evaluate if 
how the experts are assessing is reproducible or how much they agree. The most frequently 
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used quantitative measures for the agreement between experts in the setting of rating EDs, as 
found in the review below, are percent agreement, Cohen’s kappa (Cohen, 1960), Fleiss’ kappa 
(Fleiss, 1971), and Gwet’s AC1 (Gwet, 2008). The percent agreement is simply the percentage 
of the data for which the experts agree. Cohen’s kappa, Fleiss’ kappa, and Gwet’s AC1 produce 
relative scores where the percent agreement is adjusted for the agreement by chance. Cohen’s 
kappa uses the marginal distribution to estimate the chance agreement (Cohen, 1960) and 
Fleiss’ kappa is an extension of this to multiple raters. These two kappa scores have been crit-
icized for producing unexpectedly low scores in some cases of high percent agreement and 
higher scores when the marginal distribution is asymmetrical compared to the symmetrical 
case (Gwet, 2014). To address the problems with Cohen’s kappa, Gwet (2008) suggests an 
agreement coefficient, now referred to as Gwet’s AC1, which is less sensitive to variation in the 
marginal distributions. To interpret the kappa scores, Landis and Koch (1977) suggest: 0–0.20, 
slight agreement; 0.2–0.40, fair agreement; 0.4–0.60, moderate agreement; 0.61–0.80, sub-
stantial agreement; and 0.81–1.00, almost perfect agreement. 

Studies assessing interrater agreement for EEGs can be divided into the rating of indi-
vidual EDs and rating the presence of EDs in whole EEGs. In the former case, the median 
agreement score is 0.56 (min: 0.30; max: 0.81) (Bagheri et al., 2017; Beuchet et al., 2017; 
Dümpelmann and Elger, 1999; Halford et al., 2017; Halford et al., 2018; Jing et al, 2019; Wil-
son et al., 1996). In the latter case, the median score is 0.67 (0.16, 0.83) (Abend et al., 2011; 
Abend et al., 2017; Azuma et al., 2003; Black et al., 2000; Gaspard et al. 2014; Hussein et al., 
2017; Mani et al., 2012; Nguyen et al., 2010; Piconelli et al., 2005; Reus et al., 2022; Stroink et 
al., 2006; Zhuo et al., 2019). The median agreement is thus higher for whole EEGs, but the 
number of studies is relatively low, they use different types of agreement scores, the number 
of raters vary from 2 to 49, which makes the difference difficult to assess. A few studies com-
pare the two conditions, and the scores are higher when assessing whole EEGs (Black et al., 
2000; Jing et. al., 2019). In summary, the agreement for EDs has a large variation and there 
are methodological differences that make comparisons of different studies difficult, but overall, 
the agreement is moderate for individual EDs and possibly substantial for the presence of EDs 
in whole EEGs. 

Expert annotations are used as labels in classification tasks in the setting of supervised 
learning in deep learning. From what has been presented above, there will thus be a label noise 
due to disagreement between experts for EDs. It is known that label noise has a negative impact 
on training deep classifiers in medical imaging (Karimi et al., 2020; Abdala and Fine, 2023). 
The subject has to the best of our knowledge not been thoroughly investigated in clinical neu-
rophysiology, but it is reasonably a general problem. Label noise will also make evaluation 
harder since it is not known if the labels are correct—an error in the prediction accuracy may 
be either due to an error made by the expert or the classifier. When reviewing studies where 
deep learning is applied to ED classification, the most used performance measures are accuracy 
(ACC) and area under the curve (AUC). Including studies using either or both of these 
measures, twenty-two relevant studies were found spanning the years 2016–2023. The median 
ACC is 0.90 (min: 0.71; max: 1.00) and the median AUC is 0.94 (0.76, 1.00) (Abou Jaoude et 
al., 2020;Antonaides et al., 2017; Cheng et al., 2022; Chung et al., 2023; Faghihpirayesh et al., 
2021; Fürbass et al., 2020; Geng et al., 2021; Jeon et al., 2022; Jiang et al., 2023; Johansen et 
al., 2016; Kural et al., 2022; McDougall et al., 2023; Medvedev et al., 2019; Nejedly et al., 2023; 
Nhu et al., 2023; Thangavel et al., 2021; Thomas et al., 2020; Thomas et al., 2021; Tjepkema-
Cloostermans et al., 2018; Wang et al., 2023; Wei et al., 2021; Zhang et al., 2023). In these 
studies, there is a large variation in data sizes, in the methods to calculate ACC (e.g., some used 
balanced ACC) and AUC (e.g., ROC vs. precision and recall), making comparisons difficult. 

The commercial system Persyst 13 has been evaluated in several studies, and its perfor-
mance in detecting EDs is often characterized as ‘noninferior’ compared to experts (Halford et 
al., 2018; Joshi et al., 2018; Kural et al., 2022; Reus et al., 2020; Reus et al., 2021; Reus et al., 
2022), but it is unclear to what extent it is based on deep learning. Searching the literature, no 
other studies were found where both interrater agreement for EDs between experts and be-
tween experts and deep learning classifiers are assessed. Wang et al. (2023) report an AUC of 
0.99 for their classifier and a Cohen’s kappa of 0.91 when comparing it to three experts. The 
classifier developed by Thomas et al. (2020) achieve an AUC of 0.84 and percent agreement of 
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81 with one expert. In addition, in the study by Abou Jaoude et al. (2020), they report that 36 
percent of false positives made by their classifier are retrospectively assessed as EDs missed by 
the annotating expert. 

In this pilot study, two experts annotated EDs, and different classifiers were created 
based on their annotations. The agreements between the experts’ and classifiers’ annotations 
were assessed and the results were also visualized using a newly developed clustering tech-
nique (Svantesson et al, 2023). The main aim was to evaluate the feasibility of performing a 
larger study. 

3. Materials and methods 

3.1. EEG data 
One EEG from the Temple University Hospital EEG Corpus database (Obeid and Picone, 2016) 
was used for this study. The EEG had been extracted previously in the context of another study 
(Svantesson et al., 2021). The duration was approximately 78 minutes sampled at 250 Hz. Elec-
trodes were placed according to the international 10–20 system. Twenty-one electrodes were 
used (Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, Pz, P3, P4, T3, T4, T7, T8, O1, O2, A1, and A2). 

The EEG represented a focal status epilepticus with continuous periodic discharges 
(PDs) with varying morphology, of which a subset was epileptiform (Fig. 1). It was selected for 
the study because the exam was somewhat longer than a standard exam, it contained relatively 
large amounts of candidate EDs which had a variation in morphology but relatively similar 
electric fields. The expectation was that this would provide enough data for training and anal-
ysis, while still being a reasonable task for the experts to perform. 

 

 

Fig. 1. Thirty seconds excerpt from the EEG in common average reference. 

3.1.1. Preprocessing 
For the visualization, the EEG was bandpass filtered between 0.3 and 40 Hz. For deep learning 
classifiers and cluster encoders, the EEG was bandpass filtered between 1 and 40 Hz, re-refer-
enced to the common average, and normalized by dividing by the 99th percentile of the absolute 
amplitude. All filters were implemented in Python as 5th order Butterworth filters using 
scipy.signal (Virtanen et al., 2020) and zero-phase filtering. 

3.1.2. EEG annotation 
Two senior specialists in clinical neurophysiology (author M.T. and another member of the 
research group, non-author; both with more than 20 years of experience) independently 
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annotated the EEG for EDs. They were instructed to only annotate potentials with a strict epi-
leptiform morphology, where each potential should be assessed independent of other poten-
tials. No further instructions or definitions were provided of what constitutes EDs. From their 
annotations, two additional annotations were created by taking the union and the intersection 
of the two original annotations. 

The EEG was also annotated for PDs (author M.S., specialist in clinical neurophysiology). 
It was assumed that the same biological process generated all the PDs, i.e., discharges of epi-
leptiform morphology were not generated by another process. The intention was thus to let the 
epileptiform discharges be a subset of the PDs and to guarantee this, the union of all annota-
tions were taken as the final annotation of PDs. 

3.1.3. Visualization and manual annotation 
A GUI implemented in Python was created for visualizing and annotating the EEG. The visu-
alization was calibrated to display amplitude as 100 µV per cm and time as one second per 
three cm. Fifteen seconds of EEG was displayed at a time. It was possible to navigate forward 
or backward in steps of 1 or 15 seconds, and to jump directly to the start or the end. Navigation 
was possible by using the mouse and clicking on buttons in the GUI, or by using designated 
buttons on the keyboard. The EEG could be visualized in a common average reference or a 
longitudinal bipolar montage. 

EDs were annotated by using the mouse cursor to place markings. The experts were in-
structed to position the markers at the peak of the maximum of each discharge. Each marker 
only represented the time of the discharge, not which EEG-lead the maximum was located in. 
Each annotation was saved as an array of zeros and ones, where ones signified EDs. The length 
of the arrays was equal to the length of the EEG (78 minutes sampled at 250 Hz). For each 
marking the 29 preceding and 30 succeeding positions in the array were set to one. Each EDs 
would then have a length of 60 sample points or 240 ms. 

3.2. Deep learning 
All deep learning was developed in Python (version 3.7.13) using the API Keras (version 2.8.0) 
and the programming module TensorFlow (version 2.8.0). Three different computers were 
used, equipped with 64–128 GB of RAM, and Nvidia graphics cards (Quadro P5000, Quadro 
P5000 RTX, or two Titan RTX). 

The Adam optimizer was used in all training (Kingma and Ba, 2015) with parameters β1 
= 0.5 and β2 = 0.9. A learning rate of 1e-5 was used for the classifiers and 1e-4 for the cluster 
encoder. Batch sizes of 500 were used in all instances. The binary cross-entropy was used as 
loss function for the classifiers. To reduce differences due to random variations, the classifiers 
were initialized using the same values for the weights. 

In what follows, channel refers to EEG-channel. 

3.2.1. Classifiers 
All classifiers used the same architecture (Fig. 2) and hyperparameters. The input size to the 
classifiers were 21x60 (channels x time). Each classifier started with five convolutional layers; 
each layer was followed by a scaled-exponential rectifying unit (SELU) (Klambauer et al., 
2017), and a max pooling layer which downsampled by a factor of two. Filter kernel sizes were 
three and the number of filters per layer were 32, 64, 128, 256, and 512. Channels were ana-
lyzed separately. Thereafter, four fully connected layers followed, the three first having 512 
nodes. SELU activations was used for all layers except the last, which had one node and a sig-
moid activation to complete the classifier. The total number of trainable parameters was 
6,640,769. 
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Fig. 2. Classifier architecture. The classifier starts with a series of five convolutional layers. Each convo-
lutional layer is followed by a SELU activation and a max pooling layer using strides of two. This is 
followed by three fully connected layers with SELU activations in between. The classifier ends in a fully 
connected layer with one node followed by a sigmoid activation. The value of the output is rounded off 
relative a threshold to produce a value of 0 or 1, where 0 signifies no ED and 1 signifies ED. 

Due to the small data size, a five-fold cross-validation strategy was used in the evaluation. 
The EEG was partitioned into five segments, training was performed on four segments with 
evaluation on the remaining segment, and this was repeated for all five combinations so that 
the whole EEG was evaluated. 

Using a validation set in every instance to determine when to end training proved diffi-
cult due to large variation in validation values from iteration to iteration. Instead, repeated 
training was performed using the annotation of expert 1, withholding 15 percent of the in-
tended training data as validation data, and then averaging the validation loss and accuracy. 
From these tests, it was determined that 3,000 iterations (corresponding to roughly 12 minutes 
of training for the used computer) was adequate to maximize the accuracy of the validation 
data without exaggerating the overfitting. Comparisons were also made between using differ-
ent distributions of the three categories: non-ED/non-periodic, non-ED/periodic, and ED 
data. The large variation in validation output made comparisons difficult, but there did not 
seem to be a distribution that would produce a high accuracy without producing many false 
positives and minimizing false positives or both false positives and negatives yielded low num-
ber of true positives. In the end, it was decided towards aiming to detect an equal amount of 
EDs as the respective annotation since the aim of the study was to compare the annotations. A 
distribution of 0.15, 0.75, and 0.1 (non-ED/non-periodic, non-ED/periodic, and ED) was 
therefore used for the final results. It was not tested to use different weights for the categories 
in the loss function. 

To produce as much variation as possible in the training data, batches of examples were 
generated by random selection from the EEG. Each example was selected by first randomly 
selecting one of the three categories defined above according to a given distribution, and then 
generating a random position in the EEG that belonged to the selected category. An example 
was defined as ED if > 75 percent overlapped with an ED marking, as periodic non-ED if not 
ED and > 75 percent overlapped with a periodic marker, and as non-periodic/non-ED other-
wise. The input size of 60 samples was chosen so that the EDs would fit inside while still allow-
ing some variation where the EDs were located (cf., Fig. 18) and without risk of overlap between 
EDs (or PDs). 

Since EEG is continuous data where EDs can occur at any time, the training and test data 
was for each classifier scanned in steps of 15 samples, i.e., overlapping. An array of ones and 
zeros was created where each segment classified as ED was marked as ones (60 sample steps), 
and the remaining array positions were marked as zeros. The scanning process made some 
markings longer than 60 sample steps (75 or 90 steps). The evaluation time for each fold was 
45–50 minutes. 
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3.2.2. Cluster encoder 
Cluster analysis was performed on the PDs, to better understand the results. A further devel-
opment of a deep learning-based cluster encoding published previously (Svantesson et al., 
2022) was used. The clustering is based on the principle of t-distributed stochastic neighbor 
embeddings (t-SNE) where high-dimensional data can be reduced into two dimensions to pro-
duce visualizations (van det Maaten and Hinton, 2008). The improved version used here, pro-
duced more distinctly separate clusters and in addition produced identifiers for each cluster. 
Details on the cluster encoder developed for this work is presented in Appendix 9.3. 

3.3. Statistics 
In the evaluation, the data were analyzed as consecutive examples of 240 ms duration. The 
whole EEG then amounted to 19,408 examples. When comparisons were made between dif-
ferent annotations, overlapping markers corresponding to the same potentials had to be 
aligned since the exact position would vary between both experts and classifiers. The result of 
this procedure was visually inspected by plotting the original and aligned markers across the 
EEG to ensure accurate results. 

In previous studies, presented in the introduction, there is a large variation in used met-
rics to assess the accuracy of classifiers. In this pilot study a battery of metrics was included. 
In addition to ACC and AUC based on the receiver operating characteristic (R-AUC), balanced 
accuracy (B-ACC), AUC based on precision-recall (PR-AUC), F0.5, and Matthew’s correlation 
coefficient (MCC) were used. The library sklearn.metrics (Pedregosa et al., 2011) was used to 
calculate these metrics. For R-AUC, average was set to “weighted”. For F0.5, average was set 
to “binary”. Sensitivity, specificity, precision, and negative predictive value (NPV) was also cal-
culated. 

Interrater agreement was assessed by pairwise comparisons using both Cohen’s kappa 
and Gwet’s AC1. Cohen’s kappa was computed using sklearn.metrics.cohens_kappa_score. 
Gwet’s AC1 was computed using irrCAC (https://pypi.org/project/irrcac/; accessed 2023-10-
15). 

4. Results 

4.1. Annotations 
Expert 1 identified 1,709 EDs, expert 2 identified 1,430 EDs, the union of expert 1 and 2 re-
sulted in 2,253 identified EDs, and the intersection of expert 1 and 2 resulted in 886 identified 
EDs. There were 8,107 identified PDs. Examples of marked potentials are presented in the Ap-
pendix, section 9.1. All experts used the average referenced montage, and the annotation time 
was about two hours. 
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Fig. 3. Overview of the data and results as a function of time. (A) Frequency spectrum below 40 Hz for 
the O1-electrode. The color bar indicates the mapping of colors to the logarithm of the mean absolute 
amplitude per minute. (B) Number of markers per minute for the annotations. Dashed lines are five-
minute moving average. (C) Distribution of periodic markers with respect to cluster classes. The color 
bar indicates the mapping of colors to the number of markers per minute. (D) Distribution of expert 1’s 
markers with respect to cluster classes. The color bar indicates the mapping of colors to the number of 
markers per minute. (E) Distribution of expert 2’s markers with respect to cluster classes. The color bar 
indicates the mapping of colors to the number of markers per minute. 
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4.2. Classifiers 
For the classifiers to identify roughly the same number of EDs as their respective expert anno-
tation they were trained on, the thresholds for identification based on the sigmoid output were 
adjusted to 0.48, 0.45, 0.35, and 0.55. 

The performances as assessed by the metrics were moderate in most instances (Tab. 1): 
B-ACC 0.76–0.82, R-AUC 0.52–0.72, PR-AUC 0.51–0.65, F0.5 0.53–0.75, MCC 0.51–0.72, 
sensitivity 0.54–0.75, and precision 0.55–0.75. Most of the EEG was non-ED, and this was 
reflected in higher scores for ACC 0.94–0.96, specificity 0.97–0.98, and NPV 0.97-0.98. The 
best overall result was obtained for classifier U. The metrics were also calculated comparing 
the experts using expert 1 as ground truth. In comparison to the classifiers most values were 
somewhat lower for the experts. 

 
Tab. 1. Results for the classifiers. Values are averages over folds (±standard deviation). E12: using 
expert 1 as ground truth and comparing with expert 2; E1: expert 1; E2: expert 2; U: union of expert 1 
and 2; I: intersection of expert 1 and 2; Data: indicate which annotation that was used for training and 
evaluation; ACC: accuracy; B-ACC: balanced accuracy; R-AUC: area under the curve based on receiver 
operating characteristic; PR-AUC: precision-recall area under the curve; MCC: Matthew’s correlation 
coefficient; Sens: sensitivity; Spec: specificity; Prec: precision; NPV: negative predictive value. Blue 
indicates comparison between expert 1 and 2; green indicates results from testing the classifiers; light 
green indicates results from training the classifiers. 
Data ACC B-ACC R-AUC PR-AUC F0.5 MCC Sens Spec Prec NPV 
E12 0.93 0.74 0.49 0.50 0.60 0.53 0.52 0.97 0.62 0.95 
E1 0.94±0.00 0.82±0.03 0.65±0.05 0.60±0.02 0.68±0.04 0.65±0.03 0.68±0.06 0.97±0.01 0.68±0.06 0.97±0.01 
E2 0.95±0.01 0.79±0.05 0.58±0.11 0.54±0.08 0.59±0.14 0.57±0.11 0.61±0.12 0.97±0.01 0.59±0.16 0.97±0.01 
U 0.94±0.00 0.86±0.02 0.72±0.05 0.65±0.03 0.75±0.07 0.72±0.04 0.75±0.05 0.97±0.01 0.75±0.09 0.97±0.01 
I 0.96±0.01 0.76±0.06 0.52±0.12 0.51±0.07 0.53±0.13 0.51±0.08 0.54±0.13 0.98±0.01 0.55±0.18 0.98±0.01 
E1 0.96±0.00 0.85±0.01 0.70±0.03 0.67±0.01 0.76±0.01 0.72±0.01 0.73±0.03 0.98±0.00 0.77±0.03 0.97±0.00 
E2 0.95±0.00 0.83±0.04 0.66±0.08 0.62±0.02 0.68±0.04 0.65±0.02 0.68±0.09 0.98±0.01 0.68±0.06 0.97±0.01 
U 0.96±0.00 0.88±0.02 0.77±0.04 0.70±0.01 0.81±0.02 0.78±0.01 0.79±0.04 0.98±0.01 0.82±0.04 0.97±0.01 
I 0.97±0.00 0.83±0.05 0.66±0.09 0.66±0.03 0.71±0.03 0.68±0.03 0.67±0.10 0.99±0.00 0.73±0.06 0.99±0.00 

 
Classifier 1 identified 1,703 EDs, classifier 2 identified 1,431 EDs, classifier U identified 

2,228 EDs, and classifier I identified 862 EDs. Out of these false positives, almost all were 
within the PD population (Tab. 2). 

 
Tab. 2. Summary of detected EDs. E12: Comparing the annotations for expert 1 and 2 using expert 
1’s as ground truth; C1: classifier based on expert 1’s annotation; C2 classifier based on expert 2’s 
annotation; CU: classifier based on the union of expert 1 and 2 annotations; CI: classifier based on the 
intersection of expert 1 and 2’s annotations; TP: true positives; TN: true negatives; FP: false positives; 
FN: false negatives; ÌPeriodic: Number of EDs detected by the classifiers that were from the popula-
tion of PDs; ËPeriodic: Number of EDs detected by the classifiers that were outside the population of 
PDs. 

Classifier #EDs–experts #EDs–classifiers TP TN FP FN ÌPeriodic ËPeriodic 
E12 1,709 1,430 886 17,155 544 823 - 0 
C1 1,709 1,703 1,158 17,151 545 551 1,701 2 
C2 1,430 1,431 898 17,450 525 532 1,431 0 
CU 2,253 2,228 1,682 16,610 542 571 2,225 3 
CI 886 862 475 18,132 387 411 862 0 

 
The Euclidean distance (‖𝑥 − 𝑦‖) between periodic non-EDs (𝑥) and EDs (𝑦) for the an-

notations of expert 1 and 2 and the corresponding classifiers were calculated for each channel. 
The distribution of distances across the electrodes were mostly similar with largest difference 
for Fp1, Fp2, F8, Cz, Pz, and O1. There were however some differences. Most emphasis was on 
Fp1, Fp2, Pz, and O1 for expert 1 and on Cz, Pz, and O1 for expert 2. This was also reflected by 
the classifiers. The classifiers thus preserved the distribution of the distances between periodic 
non-EDs and EDs compared to the experts (Fig. 4), but the distances increased and more no-
tably so for expert 2 (Tab. 3). 
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Fig. 4. Euclidean distances between the averages for periodic non-EDs and EDs. In the field plots D, E, 
I, and J the color scale is from white (0) to dark blue (max distance). (A) First potential: average ED by 
expert 1; second potential: average non-ED by expert 1; third potential: average difference by expert 1; 
fourth potential: average ED by expert 2; fifth potential: average non-ED by expert 2; sixth potential: 
average difference by expert 2. (B) Euclidean distances per electrode for the averages of expert 1. (C) 
Euclidean distances per electrode for averages of expert 2. (D) Field plot for the Euclidean distances for 
averages of expert 1. (E) Field plot for the Euclidean distances for the averages of expert 2. (F) First 
potential: average ED by classifier 1; second potential: average non-ED by classifier 1; third potential: 
average difference by classifier 1; fourth potential: average ED by classifier 2; fifth potential: average 
non-ED by classifier 2; sixth potential: average difference by classifier 2. (G) Euclidean distances per 
electrode for the averages of classifier 1. (H) Euclidean distances per electrode for averages of classifier 
2. (I) Field plot for the Euclidean distances for averages of classifier 1. (J) Field plot for the Euclidean 
distances for the averages of classifier 2. 

Tab. 3. Percentual increase in distance between periodic non-ED and ED when comparing the clas-
sifier to expert annotations. The median distances were larger for the classifier annotations (𝑝 ≪
0.001; Wilcoxon signed rank test). Top row: electrode. Middle row: percentual increase in distance 
for expert 1 vs. classifier 1. Bottom row: percentual increase in distance for expert 2 vs. classifier 2. 
Fp1 F7 T3 T5 Fp2 F8 T4 T6 F3 C3 P3 O1 F4 C4 P4 O2 Fz Cz Pz A1 A1 
9 7 7 6 8 1 -3 8 11 10 0 6 5 5 9 16 13 4 1 3 -2 
8 10 13 23 9 13 16 20 8 23 15 17 17 18 12 14 13 16 15 18 19 

4.3. Interrater agreement 
The Cohen’s kappa value for the experts was 0.53 and the kappa values when comparing the 
experts to the classifiers were 0.52–0.65 (Tab. 4). There was thus a moderate and comparable 
agreement between the experts and between experts and classifiers. The kappa values when 
comparing the classifiers with each other were 0.67-0.82 (Tab. 4), mostly corresponding to a 
substantial agreement. 

Using Gwet’s AC1 produced a different result with almost perfect agreement. For the ex-
perts, the value was 0.92 and when comparing the experts to the classifiers the values were 
0.92–0.94 (Tab. 4). When comparing the classifiers (trained with different annotations) to 
each other, the values were 0.94–0.96 (Tab. 4). 

The percent agreement comparing the experts was 93 percent, experts compared to the 
classifiers 93–96 percent, and comparing the classifiers 95–97 percent (Tab. 4). 
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Tab. 4. Interrater agreement according to Cohen’s kappa and Gwet’s AC1 
(confidence intervals in parenthesis). The highest value of the respective 
measure is in bold and underlined. The highest values when at least one 
expert is included in a comparison are in bold. E1: expert 1; E2: expert 2; 
C1: classifier based on expert 1; C2: classifier based on expert 2; CU: classi-
fier based on the union of expert 1 and 2; CI: classifier based on the inter-
section of expert 1 and 2. Comparison between expert is in blue, compari-
sons between an expert and a classifier are in green, and comparison be-
tween classifiers are in yellow. 
Comparison Cohen’s kappa Gwet’s AC1 % agreement 
E1 vs. E2 0.53 (0.504–0.549) 0.92 (0.913–0.922) 93 
E1 vs. C1 0.65 (0.630–0.669) 0.93 (0.927–0.935) 94 
E2 vs. C2 0.60 (0.576–0.620) 0.94 (0.933–0.8940) 93 
E1 vs. C2 0.57 (0.548–0.591) 0.92 (0.920–0.929) 94 
E2 vs. C1 0.57 (0.544–0.587) 0.92 (0.918–0.926) 95 
E1 vs. CU 0.65 (0.628–0.665) 0.93 (0.924–0.932) 96 
E2 vs. CU 0.60 (0.578–0.618) 0.93 (0.921–0.929) 94 
E1 vs. CI 0.54 (0.520–0.566) 0.93 (0.926–0.934) 94 
E2 vs. CI 0.52 (0.497–0.546) 0.93 (0.930–0.938) 94 
C1 vs. C2 0.67 (0.653–0.692) 0.94 (0.937–0.945) 95 
C1 vs. CU 0.82 (0.802–0.831) 0.96 (0.959–0.965) 97 
C2 vs. CU 0.72 (0.701–0.737) 0.95 (0.944–0.951) 96 
C1 vs. CI 0.67 (0.646–0.687) 0.95 (0.943–0.951) 95 
C2 vs. CI 0.70 (0.680–0.722) 0.96 (0.956–0.962) 96 
CU vs. CI 0.67 (0.654–0.694) 0.95 (0.942–0.949) 95 

4.4. Cluster analysis 
A cluster analysis was performed for the annotations of expert 1 and 2 and the corresponding 
classifiers. The cluster encoder produced distinct clusters of the PDs and the automatic cluster 
identification works (Fig. 5). Unfortunately, there were three examples that produces zero out-
put (Fig. 5; cluster 11). 

 
Fig. 5. Automatically color-coded clusters obtained from the cluster encoder. Each dot represents one 
EEG segment of size 21x64 (channels x time steps). 

Most of the discharges identified as EDs aggregated, and the distribution of aggregates 
were similar for experts and classifiers (Fig. 6 and Fig. 7). In most instances, differences con-
cerned data points that were close. There were also indications that the experts assessed more 
consistently different relative each other for some discharges, and that this affected the learn-
ing of the classifiers (Fig. 8). For example, in cluster 2 and 9, expert 1 and 2 tended to select 
from opposing sides of the clusters. In cluster 2, expert 1 selected more compared to expert 2, 
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while the opposite was true for cluster 9. There were also differences between the experts and 
the corresponding classifiers, e.g., in cluster 1, the classifier was more prone to identify EDs 
compared to expert 1 while the opposite was true for expert 2 and the corresponding classifier. 
The experts only identified a few scattered EDs in cluster 10, only one of these were common 
to the experts. Expert 2 also identified a few in cluster 4, where expert 1 did not identify any 
EDs. The classifiers did not identify any EDs in any of the two clusters. 

Averages of the discharges for each cluster are presented in Appendix 9.2. It is difficult 
to draw any major conclusions from the averages. There was some variation in the electric 
fields of the clusters. For the O1 electrode, averages of EDs were of higher amplitude and of 
sharper morphology compared to non-EDs. The overall averages of cluster 4 and 10 had a 
blunter morphology compared to the other clusters, in line with that non to few were identified 
as EDs in the annotations. 

 
Fig. 6. Distribution of all the annotations. Blue: ED; grey: non-ED. (A) Expert 1. (B) Expert 2. (C) Clas-
sifier 1. (D) Classifier 2. 
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Fig. 7. Comparison of intersections between annotations. Blue: ED; grey: non-ED. (A) Expert 1 and 
expert 2. (B) Classifier 1 and classifier 2. (C) Expert 1 and classifier 1. (D) Expert 2 and classifier 2. 
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Fig. 8. Comparison of annotations unique to one of the raters. (A) Expert 1 (blue) and expert 2 (red). 
(B) Classifier 1 (blue) and classifier 2. (red) (C) Expert 1 (blue) and classifier 1 (red). (D) Expert 2 (blue) 
and classifier 2 (red). 

5. Discussion 

5.1. Agreement scores 
For the percent agreement, Cohen’s kappa and Gwet’s AC1, comparing classifiers achieved the 
highest agreement, followed by experts compared to classifiers, while comparing the experts 
produced the lowest scores. As expected, agreement scores were higher when using Gwet’s AC1, 
where differences in agreement were small. 

The two experts identified 1,709 and 1,430 EDs, respectively, but only agreed on 886. 
According to the often-used interpretation by Landis and Koch (1977), Gwet’s AC1 indicate an 
almost perfect agreement for the experts. This is not a reasonable interpretation and support 
the conclusion by Vach and Gerke (2023) that this ordinal scale should not be used for Gwet’s 
AC1. 

5.2. Disagreement – similar or different? 
Although there were differences between the annotations, the cluster analysis showed that an-
notated examples tended to aggregate, i.e., were similar, and that the different annotations 
showed similar distributions of aggregates. The cluster analysis also showed that differences 
in expert annotation to some extent induced corresponding differences for the classifiers (e.g., 
Fig. 8 A and B; clusters 2, 3, and 9). However, as the clustering method is new, it is uncertain 
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how strong conclusions that can be made, and as discussed below, it must be further and more 
systematically evaluated. 

Jing et al. (2019) suggest that experts rate EDs based on the same internal model and 
that differences in rating mostly are due to differences in their thresholds for scoring EDs. As-
suming that: 1) the experts use the same model for classifying, 2) the only significant difference 
between them is a threshold, and 3) that the thresholds are simple and stable; then most of the 
examples classified as EDs by the expert with higher threshold should be a subset of the other 
expert’s selected examples (Fig. 9 A). This was not the case here since each expert has a subset 
of significant number of examples that were uniquely scored as EDs by the respective expert 
(Fig. 9 B). 

 
Fig. 9. Illustration of two experts’ annotations where one expert (red) has a lower scoring threshold, 
i.e., score more, compared to the other expert (blue). (A) In this case almost all of the high threshold 
expert is a subset of the low threshold expert. This is consistent with them using the same model and 
one (blue) having a higher scoring threshold. (B) In this case there is an overlap between the scoring, 
but each expert also has their respective scored subset that are non-overlapping. This would imply either 
that they use different models for scoring or that they have different sensitivities along different dimen-
sions of a multi-dimensional threshold. 

The distances between EDs and non-EDs (Fig. 1) show that the annotation of expert 1 
seemed to emphasize the dipole O1, Fp1, Fp2, while the annotation of expert 2 emphasized the 
peak Cz, Pz, and O1. This was reflected in how the classifiers performed. The result thus indi-
cates that the experts to some extent rate differently and that this affects the learning of the 
classifiers. 

Interpreting the cluster analysis cautiously, part of the data seems to be assessed more 
differently by the experts (e.g., Fig. 8 A; clusters 2, 3, and 9). Assuming that scoring is based 
on a common model, this could imply a multidimensional threshold, and the more different 
assessments may represent dimensions where the experts had a more consistent difference in 
threshold. Part of the data that has been scored differently seem to be around more similar 
data points, which could imply that the thresholds are closer but vary over time, i.e., intrarater 
variability.  In this case, it can thus vary which expert is most sensitive to scoring, and this 
could contribute to different but similar annotations. 

5.3. The classifiers 
There are several factors the classifiers cannot learn. For instance, the annotation process con-
sumed several hours, and fatigue may have affected the thresholds. This is a form of external 
factor, not encoded in the EEG. The experts were instructed to assess each candidate discharge 
independently, but recently scored material may still affect the threshold, e.g., if there is a pe-
riod where discharges are blunter, the threshold may be lowered for scoring a discharge as 
epileptiform. Of course, there may also be long-term biological dependencies in the data that 
are clinically relevant and influence how the experts detect EDs. The classifiers cannot learn 
variation caused by external factors, or long-term dependencies since this type of classifier’s 
assessment is independent of the location in the data. It is therefore further speculated that the 
classifiers learn some form of average threshold. 

In a practical setting, how to balance between false positives and negatives will depend 
on the application. For the alternatives tested, none produced a perfect classifier, and since the 
aim of the study was to compare annotations, it was decided to train the classifiers toward 
producing roughly the same amount of EDs as the annotations they were trained on. There 
were limitations in creating the classifiers, e.g., they had a very basic architecture, no extensive 
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hyperparameter tuning was performed, and the data size used to train them was relatively 
small. A problem during this work was the large variation in validation values (accuracy, false 
positive and negative predictions) from iteration to iteration during training. This made it dif-
ficult to predict how the resulting classifiers would perform when tested (it was hard to aim for 
something). The weights of the classifiers were initialized with the same randomized values, 
but there were other sources of randomness that occurred during training, e.g., randomization 
of the training data, that could have contributed to a variation in the final results. In a larger 
study, this variation could be assessed by training multiple classifiers on the same data. There 
was some correlation between the performance metrics (Tab. 1) and the number of PDs in each 
annotation with higher values for larger number of PDs. It may be possible to tune the classi-
fiers to classify more aligned to the experts, but the relatively small dataset will set a limit to 
what is possible to achieve. Interpreting the (balanced) performance metrics in a traditional 
way, the classifiers would be assessed as performing relatively poorly. However, when compar-
ing the experts to each other using the same metrics, the classifiers had a better performance. 
Almost all false positive EDs identified by the classifiers were within the PD population. Part 
of the false positives would possibly be accepted as EDs, and part of the false negatives would 
possibly be accepted as rejected EDs by experts in a Turing test. Regardless of room for fine-
tuning the classifiers and using larger data sizes, it is speculated that the classifiers probably 
cannot learn to reproduce the experts’ annotations exactly, and that intrarater variability at 
least to some degree could contribute to this. 

5.4. The EEG data 
The aim of the study was not to settle the question of what constitutes EDs, but to study how 
rating varies between experts and how this affects the learning by classifiers. Only one EEG 
was used for this study. There were several reasons for this choice. The EEG was longer than a 
standard exam, so it would provide more training data for the classifiers while still being rea-
sonable for an expert to annotate in one session. The chosen exam represented a focal status 
epilepticus and so would contain relatively large amounts of candidate EDs. This would also 
increase the chance of training good classifiers based on a smaller amount of EEG. The PDs 
had a variation in morphology, but relatively similar electric fields. Hence, there would be a 
combination of a large but still limited variation that would provide more extensive testing of 
the scoring thresholds of the experts. The times to perform the annotations were shorter than 
expected and it seem possible to use recordings of longer duration. 

5.5. The cluster method 
The basis for the cluster encoder has been evolving over an extended period of time. The cur-
rent version of the encoder has several limitations. Similar to k-means clustering, the number 
of clusters has to be decided beforehand. Furthermore, there is no guarantee that all clusters 
will be utilized. The architecture may cause zero output for some data, and this is a more seri-
ous problem. This is represented by cluster 11 in the results. The number of clusters can affect 
the degree of zero output. The loss function will promote a uniform distribution of examples 
across the clusters. This may cause blending of categories in clusters if the training data have 
skewed prevalence of categories. In addition to the number of clusters, there are several new 
parameters that must be chosen (e.g., neighbors, sigmoid distribution, weights for loss func-
tion). 

For different data tested during the development, the best results have been produced 
using 5–15 clusters and a low number of neighbors (1–10). In many instances, a problem has 
rather been that clusters tend to be almost point-like, compared to the more confluent charac-
ter produced by previous versions of cluster encoders. The slope parameter 𝑆 of the sigmoid 
distribution may be less important but using a steep slope (larger value) might promote clus-
ters to expand. Similarly, but probably more important, the bias parameter 𝑏 may also cause 
clusters to expand by using larger values. The sigmoid distribution can produce very small val-
ues. It may be the case that differences in smaller values may not convey information about 
rank, but rather be due to machine precision. Furthermore, in practice, to avoid division by 
zero, a lower limit must be set for the distribution. If the sigmoid distribution produce values 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 12, 2024. ; https://doi.org/10.1101/2024.04.10.24305602doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.10.24305602
http://creativecommons.org/licenses/by-nc/4.0/


 16 

below this limit, the corresponding data points will be modeled as equidistant. Using the binary 
cross-entropy may therefore not be a good option, but the impression was that it improved the 
results. 

Possibly, the clustering and separation is artificially good, i.e., the architecture forces the 
data into well separated clusters. Furthermore, there were a few data points color coded as 
belonging to one cluster but are closer to another (e.g., cluster 2 and 5; Fig. 5). It seems more 
likely that this color coding was an effect of the loss function promoting a uniform distribution 
of examples per cluster rather than coding for similarity. However, for most data, the color 
coding seemed reasonable relative the similarity. 

5.6. Conducting a larger study 
In this pilot study, only two experts annotated the data, and the experts were also members of 
the research group. Studies by Halford et al. (2017) and Bagheri et al. (2017), imply that around 
ten experts can yield a stable group consensus, and is a reasonable size for a larger study. Ide-
ally, a larger study should include experts from different centers and non-members of the re-
search group. In addition, intrarater agreement could be assessed by having the experts per-
form the annotation twice on separate occasions. The EEG data and performed annotations in 
this pre-study can be used to optimize the classifiers to perform more aligned to the experts. 
New EEG data can then be used to assess the larger expert group. The new data should be 
similar, but if possible have longer duration. 

6. Conclusions 
The different measures of interrater agreement disagree. However, the general conclusion, in-
cluding the cluster analysis, is that experts and classifiers rate similar discharges as EDs. From 
a practical point of view regarding the applicability of machine learning to EEG assessment in 
clinical practice, these techniques may well come to contribute to more uniform evaluations, 
possibly closer to the biological basis of the assessed signals. The small sample size of the study 
makes the results uncertain and strong claims cannot be made. 
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9. Appendix 

9.1. Examples of discharges 
All discharges were first sorted according to increasing amplitude in the O1-electrode and 
twenty-one evenly spaced discharges from this order were then plotted (Fig. 10; Fig. 11; Fig. 
12). 

9.1.1. Periodic discharges 

 
Fig. 10. Twenty-one examples of waveforms annotated as periodic discharges. Electrodes referenced to 
the common average. 
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9.1.2. EDs by Expert 1 

 
Fig. 11. Twenty-one examples of waveforms annotated as epileptiform discharges by expert 1. 
Electrodes referenced to the common average. 
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9.1.3. EDs by Expert 2 
 

 
Fig. 12. Twenty-one examples of waveforms annotated as epileptiform discharges by expert 2. 
Electrodes referenced to the common average. 

9.2. Average discharges of clusters 
Averages for the clusters were calculated for both experts and the corresponding classifier. In 
the figures below, the same color code as in Fig. 5 was used. For each cluster the following 
averages were calculated of: 1) all discharges, 2) non-EDs of the expert, 3) non-EDs of the clas-
sifier, 4) EDs of the expert, and 5) EDs of the classifier.  
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Fig. 13. Average discharges for expert 1 and classifier 1. Clusters are indicated by number at the top and 
the color code is according to Fig. 5. For each cluster there are five averages plotted: 1) the total average 
of the cluster, 2) average non-ED of for expert, 3) average non-ED for classifier, 4) the average ED for 
the expert, and 5) the average ED for the classifier. 

 
Fig. 14 Average discharges for expert 2 and classifier 2. Clusters are indicated by number at the top and 
the color code is according to Fig. 5. For each cluster there are five averages plotted: 1) the total average 
of the cluster, 2) average non-ED of for expert, 3) average non-ED for classifier, 4) the average ED for 
the expert, and 5) the average ED for the classifier. 
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9.3. Cluster encoder 
Cluster analysis was performed using a further development of parametric t-distributed sto-
chastic neighbor embedding (t-SNE) that allowed for automatic identification of different clus-
ters. 

In t-SNE, a low-dimensional representation (LDR) can be generated of a high-dimen-
sional representation (HDR) of data (van det Maaten and Hinton, 2008). This is accomplished 
by matching probabilities of data points being neighbors in both the HDR and LDR. The HDR 
is assumed to have a normal distribution, the LDR a t-distribution, and the distributions are 
match using the Kullback-Leibler divergence. In parametric t-SNE, this is implemented as a 
fully connected neural network (van der Maaten, 2009). In recent work, this was adapted to 
EEG to create cluster encoders (Svantesson et al., 2023). The encoders consisted of convolu-
tional layers that produced a new HDR. Instead of following a normal distribution, the corre-
sponding neighbor distribution was assumed to follow a two-value function based on ranked 
distances. That is, data points below a certain rank threshold were regarded as neighbors and 
given a high probability, while those above the threshold were given a low probability. 

In this work the method was further developed. The encoder (Fig. 15; Tab. 5) produced 
two HDRs, 𝑍 and 𝐶, that were both matched to a LDR 𝑌, as well as to each other. The two-value 
function used previously only model whether points are neighbors or not. To additionally pro-
vide information of the rank, i.e., a proxy value of distance, a sigmoid probability distribution 
was used instead. The Kullback-Leibler divergence emphasize high probabilities, i.e., close 
data points. To possibly model distant data points better, the binary cross-entropy was used. 

The cluster encoder consisted of five main parts (Fig. 15; the corresponding parts indi-
cated by numbers in the figure): 

 
1. The first part of the cluster encoder was a section of convolutional and max pooling 

layers, similar to the classifiers, which produced the representation 𝑍. Convolutions 
were performed channel-wise and the size of 𝑍 was 21x64. 

2. The second part started with a section of fully connected layers analyzing channel-wise, 
which was followed by a section of locally connected layers. The channels were kept 
separate. The first section thus performed a more general waveform analysis, while the 
second section performed analysis adapted to each channel. The basic size was kept 
21x64. 

3. The third part received input from the second part and consists of fully connected layers 
which ended in a layer with the number of nodes equal to the number of clusters, and 
this was followed by a softmax which produced the representation C. This part was then 
ended by a ReLU with a threshold of 0.5. The idea is that the combination of a softmax 
function followed by a ReLU with threshold 0.5 can at most generate a value (0.5–1) 
through one node. The output size from this part was 10 and it was used to produce 
automatic cluster identifier (numbers or color code). 

4. The fourth part also received input from the second part and consisted of fully con-
nected layers. The output size from this part was 10x32. 

5. The fifth part received input from the third and fourth part. These inputs were first 
multiplied and then processed by locally connected layers and ended in a fully con-
nected layer with two nodes which produced the LRD Y. In the locally connected layers, 
the basic size was the number of clusters times the size of the locally connected layers, 
which for this work was 10x32. 
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Fig. 15. Cluster encoder architecture. Its five parts indicated with numbers 1–5. (1) A series of convolu-
tional layers produced a high-dimensional representation (HDR) 𝒁 of EEG. (2) A series of connected 
layers. In the first section, the same fully connected layers were applied independently to each channel. 
In the second section, each layer has nodes that were separately connected per channel. (3) Fully con-
nected layers, analyzing all channels together to determine cluster assignment. It ended in a fully con-
nected layer followed by a softmax activation and then a ReLU activation with a threshold of 0.5. An-
other HDR 𝑪 was extracted before the ReLU activation. (4) Fully connected layer that analyzed all chan-
nels together to assess mapping into lower dimensions. (5) Results from part 3 and 4 were first multi-
plied together. The result from part 3 would then select part of the result from part 4 to preserve infor-
mation of cluster assignment. This was then further analyzed by locally connected layers, i.e., data cor-
responding to the respective cluster were analyzed separately. The part ended in a fully connected layer 
of two nodes, producing the low-dimensional representation 𝒀. 

Locally and fully connected sections of parts two to five had the general structure of 
blocks composed of a series of layers (Fig. 16): connected layer, ReLU, connected layer, ReLU, 
add residual, and layer normalization. The first connected layer either expanded or contracted 
the input size to 512, while the second connected layer restored it to the original size. The block 
is reminiscent of the feedforward network of the transformer (Vaswani et al., 2017).  
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Fig. 16. Illustration of a residual block. Depending on position in the encoder, there were locally or fully 
connected layers. In part two of the encoder, fully connected layers were applied channel-wise, while 
they were applied across all channels in part three and four. The first connected layer of the residual 
block always had 512 nodes. The second connected layer restored the data size to its input size to the 
block. ReLU activations were used after each connected layer. The original input 𝒙𝒏 was then added to 
the result of the connected layers and this was followed by layer normalization to produce the output 
𝒙𝒏"𝟏 of the block. 

In part two, channel-wise fully connected means that the same fully connected layer was 
applied to each channel, while locally connected means that each channel had its own con-
nected layer. In parts three and four, the channels were analyzed together in fully connected 
layers. In part five, each cluster was analyzed separately using locally connected layers, except 
in the last layer, which was fully connected and produced the LDR. 

To be able to extract the HDRs 𝑍 and 𝐶, the full encoder was implanted in three sections: 
1) part one, 2) part two, three and four, and 3) part five. 

 
 

Tab. 5. Characteristics of the parts of the encoder. Number of layers refer to convolutional or con-
nected layers. Colors indicate parts forming units in the practical implementation and their corre-
sponding number of parameters. All parameters were trainable. 
Part Layer type Number of 

layers 
Size (number of fil-
ters or nodes) 

Acti-
va-
tion 

Normali-
zation 

Regular-
ization  

Number of 
parameters 

1 Convolutional 
and 
Max pooling 

6 Layer 1-5: 64, 128, …, 
1024; layer 6: 128 

SELU - L2 2,353,408 

2 Channel-wise 
connected 

6 Alternating 512–128 ReLU Layer nor-
malization 

L2 26,148,426 

 Locally con-
nected 

6 Alternating 512–128 ReLU Layer nor-
malization 

L2  

3 Fully connected 6 Alternating 2688–512 ReLU Layer nor-
malization 

L2  

4 Fully connected 6 Alternating 2688–512 ReLU Layer nor-
malization 

L2  

5 Locally con-
nected 

6 Alternating 512–32 ReLU Layer nor-
malization 

L2 1,999,746 

Total number of parameters 30,501,580 
 
The intention with the architecture of the full encoder was that part one and two break 

down the signal into characteristic features for each channel. Based on these, part three classi-
fied the signal into one cluster, while part four analyzed and conveyed information of the 
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mapping into lower dimensions. In part five, the outputs from part three and four were multi-
plied. Since part three only can produce one non-zero value, this selected information from 
part four and guaranteed the cluster encoding of part three was perpetuated. 

There were two main problems arising from this architecture. One was that it was not 
guaranteed that input data would produce a non-zero output. The other was that the encoder 
may not use all possible clusters. There were several components in the loss function to coun-
teract this. During training the batch size was 500 and the encoder had 10 clusters. The loss 
function then consisted of six parts: 

 
1. To promote the encoder to learn to distribute data uniformly across clusters, the sum 

across the batch for each cluster for the output from part three was set to match 500/10 
using the sum of the absolute error. The main reason for doing this was to promote the 
usage of all clusters, but also to avoid non-zero outputs. 

2. To promote values above the ReLU threshold and for them to be closer to one, the sum 
for each example for the output from part three was set to match one using the sum of 
the absolute error. The main reason for doing this was to avoid non-zero outputs. 

3. To promote values closer to one, a one hot encoding was created from the output of 
part three, and the representation 𝐶 was set to match this using sum of the absolute 
error. This had an important effect on the separation of clusters. 

4. There were three instances of matching representations using the binary cross-entropy: 
a. The sigmoid distribution of 𝑍 and t-distribution of 𝐶. 
b. The sigmoid distribution of 𝑍 and t-distribution of 𝑌 
c. The sigmoid distribution of 𝐶 and t-distribution of 𝑌. 

These subfunctions were weighted 10, 1, 1, 1, 1, and 1, respectively, and then summed to 
a total loss. Weighting part 1 higher was necessary to promote usage of all clusters. 

The sigmoid distribution based on the ranked distances 𝑟!" between example 𝑖 and 𝑗 was 
computed according to 

𝑝!" =
1

1 − 𝑒#$(&'(.*+,!"-
+ 𝐵(𝑟!") 

 
where 𝑛 is the number of neighbors, the parameter 𝑆 determine the slope, the term 𝐵(𝑟!") is 
used to provide the possibility to accentuate the difference between neighbors and non-neigh-
bors with 𝐵6𝑟!"7 = 𝑏, 𝑟!. ≤ 𝑛 and 𝐵6𝑟!"7 = 0, 𝑟!. > 𝑛, where 𝑏 is a constant (examples of distri-
butions using different parameter values are shown in Fig. 17). 

 
Fig. 17. Illustration of the sigmoid distribution for 60 examples and 20 neighbors. Green: neighbors; 
red: non-neighbors, 𝒓𝒊𝒋 is the ranked distances. (A–D) Effect of using 𝑺 0.1, 0.25, 1, or 5 and 𝒃 = 𝟎. (E–
H) Effect of using 𝑺 0.1, 0.25, 1, or 5 and 𝒃 = 𝟓. 

To further promote data points belonging to the same cluster being close, the ranked 
distances were conditional on cluster. This mean that during training, data points belonging to 
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the same cluster were automatically ranked lower compared to the remaining data points. The 
distribution was computed before training and stored as an array, and during training exam-
ples could be assigned their values based on rank. Most of the processing time is due to com-
puting the ranks, so using this approach does not add much time to training compared to using 
the two-valued distribution. In this project, parameters were set to 𝑛 = 5, 𝑆 = 1, and 𝑏 = 1,000. 

The encoder was trained on the PDs. Each example had a duration of 64 samples (256 
ms). During training, the input EEG-interval to the encoder was randomly shifted ±16 samples. 
In parallel, the distance computed for the HDR was based on independently randomly shifted 
input EEG-interval. The intention was to dissociate the exact position of the marker from the 
HDR (Fig. 18). 

 
Fig. 18. Example of the effect of shifting position of data. O1-electrode. (A) Waveform with centered 
position. (B) Waveform with maximum displacement backwards. (C) Waveform with maximum dis-
placement forwards. 
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