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Abstract 

Healthy repair of the alveoli requires alveolar stem cells to differentiate into cells designed for gas 

exchange. In chronic lung fibrotic disease like idiopathic pulmonary fibrosis (IPF), alveolar epithelial 

cells regenerate abnormally. The cause of this is unknown but its highly cellular, inflamed and 

structurally altered regenerating niche is likely to be relevant. Here, in unique sets of human lung 

tissues capturing advancing fibrosis, and with a 33-plex single cell imaging mass cytometry (IMC), we 

provide a high resolution and comprehensive temporo-spatial cell atlas of the regenerating alveolar 

niches.  Using a suite of mathematical tools, we expose an organized immune network and identify 

CD206
hi

 alveolar macrophages as a central immune cell in the immune-alveolar epithelial 

interactome. A spatially-directed receptor-ligand analysis offers an in-silico mechanism by which 

these macrophages influenced alveolar regeneration. Our study unravels a complex cellular 

environment and identifies key interactions that influence alveolar regeneration in a fibrotic lung.  

 
  



Introduction 
 
Tissue regeneration and the function of progenitor cells rely on a local  microenvironment that 

provides optimal signals for adult stem cells to proliferate and renew(1, 2). After injury, healthy 

lungs possess remarkable ability to regrow, served by adult stem cells including type II alveolar 

epithelial cells (ATII), club cells, KRT5- bronchoalveolar stem cells (BASCs) and the rarer airway-based 

KRT5hi basal stem cells(3). In contrast,  regeneration potential is low and often abnormal in chronic 

lung diseases like idiopathic pulmonary fibrosis (IPF).  

 

Idiopathic pulmonary fibrosis is a chronic progressive fibrotic disease with a devastating outcome. Half 

of patients die within 5 years of diagnosis and there are currently only two drugs, which slow down 

but do not halt deterioration(4). Activated fibroblasts lay down collagen as part of an exaggerated 

response to minor alveolar insults and expand the interstitium around the alveoli. There is a 

significant immune cell presence in the interstitium (5)and it is now established that some parts of the 

alveolar epithelium regenerates into bronchiolar-like rather than the type I alveolar epithelial (ATI 

)cells designed for optimal gas exchange (6, 7). 

 

With single cell transcriptomic technologies, several investigators have recently delineated a group of 

abnormal alveolar epithelial cells with ‘basaloid’ or bronchial epithelial features (8-10) These cells 

could hold the key to understanding why alveoli regenerate abnormally in IPF lungs(10). In addition 

to being ectopically found in the alveoli (instead of bronchi), these alveolar basaloid intermediate 

(ABI) cells are transcriptomically distinct from normal alveolar and airway stem and epithelial cells (8, 

9). Human alveolar organoid studies simulating IPF conditions suggest that these intermediate 

basaloid cells differentiate to KRT5
hi

KRT17
+
 basal cells, and could be the differentiation path that 

converts alveoli to non-functioning honeycomb-like cysts typically seen in IPF lungs(11). However the 

factors influencing this differentiation trajectory is unknown.  

 
We hypothesize that their diseased microenvironment, with new inflammatory signals, cross talk 

opportunities and growth factors, sustains the presence of ABIs in IPF lungs and alter the 

differentiation trajectory to basal cells. Understanding the immune cellular composition, their 

temporal organization and interaction within the regenerating alveolar tissue niche, is a crucial 

prerequisite to delineating how immune cells influence ABIs and regeneration. It has the potential to 

alter how we tackle some of the key barriers to stem cell regeneration therapy(12). 

 

In this paper, we provide a high resolution temporo-spatial cell atlas of the immune and epithelial 

cells, and their interaction in the regenerating alveoli in IPF lungs.  We use a 33-plex tissue mass 

cytometry method to define the identity and location of each cell (and abundance of each cell type) 

in a unique series of lung samples obtained over an area of advancing lung disease, providing an in-

tissue method of understanding the temporal evolution of disease. Then, with our bespoke suite of 

mathematical tools (SpOOx 2.0, available as an open access resource)  we investigate the interactions 

between the immune cells and regenerating alveolar epithelial cells at single cell level and in 

networks, their cellular neighborhood and identify the immune cells that interact spatially with each 

other and with different subtypes of alveolar epithelial cells above chance interaction.  

 
 



Results 
 
Defining the temporo-spatial niche of regenerating alveoli in IPF lungs 
 
The overall study steps are shown in Fig 1A-K and described in detail in Methods.  

 

Lung biopsies were obtained from patients with IPF (n=7 patients; 3 lung biopsies per patient) 

undergoing lung transplantation. Whole explanted IPF lungs were coronally sectioned and examined 

by an experienced thoracic pathologist to identify a lobe with macroscopic evidence of advancing 

disease stages. A 1x1cm2 biopsy was taken from each of three visually distinct lung areas 

representing sequential progression from early to advanced fibrotic disease [(Adv, or ‘A’); relatively 

normal lung (Early, or ‘E’) and the lung region in between (Intermediate or ‘Intm/I’) which represents 

the leading edge of disease] (Fig 1B). Disease-free tissue obtained from left upper lobe of un-used 

lungs from healthy organ donors(n=2) was obtained for comparison (table S1).  

 

Formal histopathological analysis showed an overall progressive increase in the amount of collagen, 

smooth muscle and a reduction in the numbers of fibroblastic foci as disease progressed from Early 

to Intm and Adv stages (Fig 1L, table S2). To address our aim of examining the immune interactome 

around regenerating alveolar epithelium, all ROIs (1mm2) were selected by an expert thoracic lung 

pathologist and two pulmonologists to fit the following criteria – histopathologically identified alveoli 

with (i) presence of cells and (ii) presence of type II alveolar metaplasia (a feature of alveolar 

regeneration) and (iii) lack of bronchi and bronchioles (Fig 1M). The ‘regenerating alveolar niche’ in 

this paper is defined as the area around type II alveolar metaplasia-containing alveoli. In total, 53 

ROIs were selected (n=19 ‘E’, n=20 ‘I’ and n=14 ‘A’).   

 

Sections were stained with a 33-plex metal-tagged antibody panel (Fig 1N, table S3), designed to 

capture the breadth of the immune cell profile, and to identify regenerating alveolar epithelium, 

including the ‘ABIs’ and basal cells described by Adams, Habermann and Kathiriya et al (8, 9, 11).   

Single cell segmentation, dimensionality reduction, cell clustering and annotation were performed 

according to the SpOOx 2.0 (Spatial Omics Oxford) pipeline, an extension of the SpOOx pipeline 

which we developed previously (13) (Fig 1F-K and Methods). A total lung area of 61.89mm2 was 

ablated and 313,818 single cells were obtained. 

 

With our step-wise and iterative annotation method (fig. S1), we identified 29 cell clusters – 12 

structural and 17 immune cell types (Fig 1O and table S4). Detailed annotation decisions, including 

criteria, and likely cells for ‘undefined’/UD and ‘adjacent’ ADJ cell clusters are provided in fig. S1, and 

table S4.  

 

This part of the work establishes our alveolar regeneration niche and the basis for single cell 

resolution characterization of this microenvironment. It also shows that alveolar regeneration niches 

are abundant and found in all stages of disease.  

 

 

 

 



Cellular composition of regenerating alveolar niche in IPF 

 

In total, five alveolar epithelial cell types were annotated in the regenerating alveolar niche (Fig 2A-

E). By morphology (type II alveolar metaplasia by histology) and presence of basaloid markers, and in 

conjunction with relative expression of ProSP-C, KRT5, EPCAM and KRT17/7 (in order of hierarchy of 

importance), three  groups of cells were referred to as ABIs.  These were classified as follows – 

‘ABI_a’ (KRT5
neg-lo

 ProSP-C
neg-lo

),  ‘ABI_b’ (KRT5
lo-mid 

proSpC 
neg-lo

) and ‘ABI_b-DC ADJ’ (Fig 2F-G).  ABI_b-

DC ADJ subcluster showed markers of ABI_b and were the only alveolar epithelial cells to show 

CD11c and low levels of CD45 expression in keeping with presence of adjacent dendritic cells (DC) 

(Fig  1F, and fig. S2A). An alveolar-based ‘basal cells’ (KRT5hi KRT17/7hi ProSP-Cneg), and a cell cluster 

containing AT II cells (‘ATII’)(KRT5neg/lo ProSpCmid/hi) were also identified  (Fig 2F, table S4, fig. S2B).  

 

We propose a link between our alveolar epithelial cells and points along the trajectory of ABI 

differentiation suggested by amalgamation of protein markers and transcriptomic data from 

Kathiriya, Adams and Haberman(8, 9, 11), shown in Fig 2H.  ABI_b has lower ProSP-C expression 

compared to ABI_a; so is likely to be later than ABI_a in the differentiation trajectory. This is also 

supported by slightly higher levels of KRT5 in ABI_b compared to ABI_a (Fig 2F and H). Our manual 

matching analysis between our and published data (fig. S3) suggests that the alveolar basaloid 

intermediate states (i.e. our ABI_a, ABI_b; Adam’s AB; Haberman’s KRT5-KRT17+ and transitional AT 

II; and, Kathiriya’s ABI1 and ABI2) are a mixture of cells along an approximate trajectory of 

differentiation suggested by Kathiriya’s organoid studies(11). 

 

16 clusters of immune cells were identified, representing the breadth of adaptive and innate immune 

cells, including rarer, but relevant, specialized cells like Tregs and gd T cells, and subclusters of 

monocytes and macrophages (table S4).    

 

In  terms of abundance, ABIs and basal cells formed a large proportion of alveolar epithelial cells in 

the regenerating alveolar niche (63.7%) (Fig 2I left panel) (table S4]). There was a near 1:1 ratio for 

ATII:ABI_a.  

 

Of the immune cells, CD14lo monocytes [17% of all immune cells] were the most abundant immune 

cells (Fig 2I, right panel). These monocytes were distinct from CD14hi monocytes, both in location 

and association with other myeloid cells (fig. S4). CD14
lo

 monocytes were scattered throughout the 

lung sections, co-located with endothelial cells, most likely from alveolar capillaries, making these 

most likely to be patrolling monocytes(14). In contrast, CD14hi (classical) monocytes were found 

closely associated with DCs, forming the CD14hi mono-DC ADJ cell cluster, and were less abundant 

(5.6% of immune cells) (Fig 2I and fig. S4B).  

 

Macrophages can be divided into three subgroups according to CD206 and CD14 expression (table 

S4), reflecting their differentiation trajectory. CD206
hi

 and CD206
mid

 macrophages were found in the 

alveolar space whereas CD206
neg 

macrophages were found in the interstitium (fig. S5). There was 

also morphological differences between CD206mid-hi macrophages and the tissue-based CD206neg 

macrophages (fig. S5B-C). CD206mid and CD206hi macrophages have a distinctive basophilic cytoplasm 

on H&E staining and were invariably found as tightly packed cell clusters in the alveolar space. These 



macrophage subsets also differed in their CD11c, CD1c and CD206 expression levels in keeping with 

different maturation stages (table S4).  

 
Notably, neutrophils numbers (5.2%) were lower than monocyte and macrophage subsets (Fig 2I). 

 

In addition to myeloid cells, there was an unexpectedly high number of CD4 T cells (17.9 % of all 

immune cells), CD8 T cells (11.8%), and B cells (7.9%) (Fig 2I). We detected CD103+ resident CD4 T 

cells but not CD103
+
 CD8 T cells [in keeping with prior findings that resident CD8 T cells are found 

predominantly  in airways (rather than alveoli)](15) 

 

There was no statistical difference in the overall proportion, distribution, or abundance of these 

immune and epithelial cells in ROIs from Early, Intm and Adv lung sections (Fig 2J). The exception was 

ABI_b which was significantly more abundant in the advanced stages (Fig 2J).  

 

In contrast, lung sections from non-diseased donor lungs (HC) showed paucity of immune cells (as 

expected) (fig. S6A). Immunofluorescence staining of these healthy lung sections confirms scarcity of 

immune cells,  and lack of ABIs in normal alveoli (fig. S6B-D).  

 

A key finding from this part is that aberrant alveolar epithelium (ABI and basal cells) make up a large 

proportion (at least 64%) of the regenerating alveoli in IPF lungs.  This means that very few cells are 

functioning ATI cells in regenerating alveolar niches in IPF (less than 5%; compared to 1:2 ATI:ATII in 

healthy lungs). Another biologically significant result is that  immune cells in these regenerating 

niches were abundant even in the most advanced disease stage, dominated by CD14
lo

 monocytes, 

CD4 T cells, CD8 T cells and CD206hi macrophage, and the composition of immune cells did not 

change significantly in the different stages of disease. 

 

Strong positive correlation in numbers of specific immune cells with ABIs in regenerating alveolar 

niche 

 

Although there was no difference in the overall composition of immune cells between Early, Intm 

and Adv disease stages, we found striking and significant correlations in numbers between specific 

immune cells and alveolar epithelial cells at  different disease stages (Fig 2K, fig. S7). The highest 

number of significant ABI-immune cell correlates were found in the Intm stage (Fig 2K). Here,  ABIs 

correlated positively with CD103+ CD4 T cells, CD4 T cells, CD14lo monocytes, CD206hi macrophages, 

NK cells, proliferating monocyte-macrophages and neutrophils( r between 0.50 to 0.85; p <0.001  to 

0.03)(Fig 2K-L).   

 

Notably,  correlations in numbers between ABI and neutrophils and NK cells were found uniquely in 

Intm (disease leading edge) stage (Fig 2K).  CD206hi macrophages were the only cell type whose 

numbers increased with ABI numbers in all stages of disease (with ABI_b-DC ADJ) (Fig 2K, fig. S7). 

There was only one statistically significant negative correlation between ABIs and alveolar epithelial 

cells – CD206
neg

 macrophages with ABI_b-DC ADJ (r = 0.71; p =0.02).  

 

These findings suggest possible roles for specific  immune cells (CD103+ CD4 T cells, CD4 T cells, 

CD14lo monocytes, proliferating monocyte-macrophage cells, CD206hi macrophages and neutrophils) 



in the pathobiology of ABIs or vice versa. It is noteworthy that apart from the  correlation between 

CD206hi macrophages and ATII (in Early disease stage) all correlation in immune cell numbers were 

with ABIs.  

 

CD103
+
 CD4 T cells, CD206

mid 
macrophages

 
and CD206

hi
 macrophages spatially co-locate with 

aberrant regenerating alveolar epithelial cells  

 
We next determined, without a priori specification of neighborhood or types of cells, which cell 

types were spatially associated in each ROI and compared this across the three disease stages. We 

used an updated suite of mathematical tools (SpOOx 2.0) to:  (a) identify pairs of cells types that are 

more frequently co-located with each other than would be expected under complete spatial 

randomness (CSR) [via a 2-step sequential method -  quadrat correlation matrix (QCM) then, cross 

pair correlation function (cross-PCF)] (b) determine whether three cell types are co-located with 

each other more frequently than under CSR, [using a mathematical function called neighborhood 

correlation function (NCF)] and (c) construct a network of contacting cells [ via calculation of 

‘adjacency contact network(ACN) and then contacting cell network (CCN)] (Fig 1 F-J). This sequential 

pipeline is described in Methods.   

 

The cross-PCF, ����, quantifies co-location between cells of type A and B by measuring how 

frequently cells of type B are found in an annulus of inner radius � and width �� � 10	
, centred 

around cells of type A, compared to expected in CSR (Fig 1G) (16). We compute the cross-PCF at a 

fixed inner radius of r=20mm (and width dr = 10mm) as the diameter of any cell of interest in our 

study ranges from a mean of 8mm (T lymphocytes) to 21mm for macrophages (Fig 1G). We also 

calculate the 95% confidence intervals around ��� � 20�,  following the bootstrapping process 

described by Loh (17). To provide greater detail of the spatial distribution of co-located cells, a  ‘���� 

plot’ (fig. S8A) provides information for the entire range of radii from 5 to 300mm and a 

‘topographical correlation map’ (‘TCM’) allows visualization of how spatial co-location between cells 

of types A and B changes across a single ROI (fig. S8B).    

 
In total, 450 (from a possible 2187) pairs of cells  passed the first step of analysis (QCM) and were 

submitted for cross-PCF analysis (Fig 3A) (table S5). Of these, 184 pairs showed co-location above 

expected at CSR [��� � 20� 
 1 , (table S5)]. When these pairs were organized into disease stages, 

with epithelial cell types assigned as ‘anchor cells’ (around which the number of co-locating cells 

were counted), only three immune cell types were found to be co-located with any ABIs (ABI_b-DC 

ADJ and ABI_a) - CD206mid macrophages, CD206hi macrophages and CD103+ CD4 T cells (Fig 3B-C). All 

other interactions were epithelial-to-epithelial cell type or immune-to-immune cell type co-locations. 

Notably, no immune cells were significantly co-located with the ATII cell cluster,  nor with the more 

differentiated ABI (ABI_b) or basal cells (Fig 3B).  

 

We next examined how co-localisation of immune cells varied with disease stage. CD206hi 

macrophages were found significantly co-located with ABI_b-DC ADJ at all disease stages. The only 

other significant co-locations were between early CD103+ CD4 T cells and ABI_b-DC ADJ cells in the 

Early stage of disease, and CD206mid macrophages with ABI_a in the Adv stage (Fig 3B). Thus, despite 

highly significant and strong correlation in abundance between ABIs and the immune cells, CD103
+ 

CD4 T cells and neutrophils at the leading edge of disease (Intm stage) (Fig 2L-M), neither cell types 



were spatially associated with ABIs in this disease stage.  ���� plot for CD206hi macrophages - ABI_b-

DC ADJ pairs showed the same qualitative distribution across the three disease stages (Fig 3C) – the 

peak in co-location (‘g_max’) for CD206hi macrophages-ABI_b-DC ADJ cell pair was found near the 

centroid of ABI_b-DCs, indicating stronger co-location above CSR nearer to ABI. The highest values 

for g_max  was observed in ROIs from the most advanced disease stage (Adv) (Fig 3C), in keeping 

with the strongest co-location between the cell types. Examination of the individual cell centroid 

maps and topographical correlation map corroborated the ���� plot findings (Fig 3D-F). 

 
Remarkably, despite their high numbers, CD4 and CD8 T cells, and B cells were not found significantly 

co-located around any alveolar epithelial cells (Fig 3B). Similarly, although there were striking 

correlations in numbers between ABI cell types and CD14lo monocytes (Fig 3B), there were no 

significant spatial associations between these cell types. The highest g(r=20), as expected, were 

found  for alveolar epithelial cells amongst themselves (e.g. ABI_b-DC ADJ and basal cells) (Fig 3B, 

table S15). 

 

We also detected co-locations between the vasculature cell cluster and some immune cell types (Fig 

3B) - NK cells and neutrophils were co-located around the vasculature cluster in Early disease stage, 

and CD14lo monocytes around vasculature in all disease stages. This is consistent with NK and 

neutrophil influx into areas of regenerating alveoli in the early stages of disease and CD14lo 

monocyte (purportedly patrolling monocytes) presence  in the blood vessels at all stages of disease.   

 

Altogether, these mathematical tools drew out statistically supported spatial changes in immune 

cells-ABI connections over the pseudotime provided by the in-tissue linear progression of disease, 

which would not have been possible with visual inspection or correlation analysis alone. Specifically, 

we found that CD206hi macrophages were co-located with ABI_b- DC ADJ cell clusters across all 

disease stages, while CD103+ CD4 T cells were found co-located with this ABI earlier in disease.  NK 

cells and neutrophils were found spatially associated with ‘vasculature’ in Early disease, and by the 

Intm stage, were found correlated in numbers with ABI_a and ABI_b respectively, though not co-

located with them. 

 
 

CD206
mid

 macrophages, CD206
hi

 macrophages and ABI-DC cells form strongest spatially-connected 

foci at the leading edge of disease.  

 

Having identified CD206hi macrophages, CD206mid macrophages and CD103+ CD4 T cells as the main 

immune cell types paired spatially with ABI_a and ABI_b-DC ADJs, we reasoned that these immune 

and ABI cell types could also be spatially connected with each other (beyond pair-wise connections). 

To test this, we applied a mathematical method which examines co-location of triplets rather than 

pairs of cell types(18).  The neighbourhood correlation function (NCF), ������������, uses the 

concept of a minimum enclosing circle (MEC) – the smallest circle drawn which encompasses all 

three specified cells, of types ��, �� and �� described in Methods and fig. S9). The smaller the radius 

of MEC, the closer the three cell types spatially (fig. S9). The NCF is a numerical representation of the 

strength of co-location of these triplets, obtained by comparing the distribution of MECs with radius 

� against the distribution expected if all three cell types were distributed under CSR. Our relevant 

MECs are those with low radii but these radii have to be greater than the combined maximal 



diameter of the three cell types [which ranged from 8mm (T lymphocytes) to 21mm for 

macrophages] if they were found in closest proximity to each other (fig. S9).  Accordingly, NCF for 

MECs with 20mm and 30 mm were considered most relevant biologically. All combination of triplets 

of CD206hi and CD206mid macrophages,  CD103+ CD4 T cells,  ABI_b-DC ADJ and ABI_a were 

examined.  

 
Using this method, we observed  spatial co-location above CSR (FDR q < 0.05) for all triplet 

combinations of the specified ABI -immune cells, across all disease stages, apart from 9 triplets (Fig 

3G).   The co-localisation was less pronounced (lower NCF)  for triplets of CD103
+
 CD4 T cells, 

macrophage and ABIs (Fig 3G and J). All triplets containing macrophages and ABI subsets, and 

without CD103+ CD4 T cells were co-located  in all disease stages but most strongly in the Adv  stage  

(NCF >2, MEC with radii of 20 and 30mm). The CD206mid macrophage, CD206hi macrophage and 

ABI_b-DC ADJ triplet at the leading edge of disease showed the highest NCF values (Fig 3G-I).   

 

These analyses augment and support the spatial picture gained from our cross-PCF analysis. It shows 

that amongst the co-locating pairs detected by cross-PCF method, most cell types are also co-located 

with each other. The most strongly co-located were ABI_b-DC ADJ, CD206mid macrophages and 

CD206hi macrophages at the leading edge of disease (Intm stage) and ABI_b-DC ADJ, ABI_a and 

CD206hi macrophages at Adv stage. Thus at the leading edge of disease, cellular activity between ABI 

and immune cells could centre around CD206 mid-hi macrophages, DC and ABI_b.  

 

Neighborhood analysis for ABI cells supports involvement of CD206
hi

 macrophages in 

differentiation of ABI cells to basal cells 

  

To provide a complete picture of the neighborhood of ABIs, we collated  all cell types (i.e. not just 

immune cells) that are  significantly co-located with ABI_a and ABI_b-DC ADJ, revealing two further    

information about these ABIs. Firstly,  ABI_a cells (purportedly, the earlier cells in the differentiation 

trajectory)  are co-localized with the ‘vasculature’ cell cluster in Early and Intm stages [albeit a 

relatively weak co-location ; g(r=20)=1.1]. Basal cells are a co-located cell type for ABI_a in the Adv 

stage only , together with CD206
mid 

macrophages (Fig 4A).   In contrast, ABI_b-DC ADJ cell cluster 

form foci of cells with consistent presence of CD206hi macrophages and basal cells from Early to Adv 

stage (Fig 4B).   

 

The differences in neighborhoods for these two ABIs supports the concept  that ABI_b-DC ADJ 

clusters are a  more established aberrant alveolar regeneration foci, particularly with the presence of 

basal cells across all stages of disease. Contemporaneous presence of CD206
hi 

macrophage with basal 

cells in the ABI_b-DC ADJ’s  but its absence around the younger ABI_a cells supports a role for 

CD206hi macrophages in ABI differentiation    

 

 

Network analysis of contacting cell pairs shows significantly more CD206
hi

 macrophages in direct 

contact with ABIs and reveals networks of immune and aberrant epithelial cells which evolves as 

disease progresses. 

 



In the final part of the spatial analysis, we questioned which pairs of cell types are in direct physical 

contact [rather than merely in higher abundance within a radius of 20mm around these cells, [as 

shown by the cross-PCF, g(r=20)], since this will enable us to infer a potential receptor-ligand 

interaction.  

 
To do this, we used the cell segmentation masks to identify co-located cells that are also in direct 

physical contact with each other, as previously described (we termed this the Adjacency cell network 

or ACN) (13) (fig. S10). In an extension to the ACN, for each cell type pair (e.g., cell types A and B), we 

then calculate the proportion of type A cells that is in contact with at least one of cell type B,  and 

then the z-score [ i.e. the deviation of the number of A- B contacts observed in our tissue compared 

to CSR (CSR here is derived by shuffling all cell type labels computationally by 1000 permutations, 

without moving the cell positions in the cell mask)]. A p value is computed for the z-score associated 

with each pair of cell types. The data are then filtered to retain pairs of cell types with g(r=20)>1, 

positive z-scores and p < 0.05 to create a network in which each connection (‘edge’) between cell 

pairs encompasses these three calculations. To differentiate this final network from the ACN (which 

only determines which cells are in contact with each other), we termed this network the contacting 

cell network (CCN).   

 

CCN revealed that two immune cell types are in direct contact with ABIs above CSR - CD206hi 

macrophages and CD206mid macrophages, with ABI_b-DC ADJ and ABI_a cells respectively(Fig 5A-C). 

CD206hi macrophages-ABI_b DC ADJ pairs were found in direct contact across all disease stages while 

CD206
mid

 macrophage- ABI_a pairs were only observed in the Adv disease stage, adding and 

corroborating findings from the neighbourhood analysis (Fig 4A-B). 

 

Additional cell networks, associated with distinct disease stages, were also uncovered by the CCN. In 

the Early disease stage, ABIs, basal cells and ATII were found in direct contact with each other (Fig 

5D). CD206mid and CD206hi macrophages were the only immune cells found within this alveolar 

epithelial cell community.  All other immune cells in the Early disease stage were spatially co-located 

forming a separate ‘community’ of cells (Fig 5D). The pattern of spatial co-location  changed at the 

leading edge of disease (Intm), where CD206
hi

 macrophages appear to be the central connector for 

the ABI and immune cell communities (Fig 5E), linking the entire ABI network to the immune 

network. The highest numbers of directly contacting pairs of cell types were also found at the leading 

edge (Intm stage). This mega ABI-immune networks was not seen in Adv (Fig 5F). Here, the immune 

cell community split into two main sub-CCNs: a myeloid-dominant network (comprising CD206hi 

macrophages, CD14
hi 

monocyte-DC ADJ cluster, proliferating monocyte-macrophage cluster and 

CD206
mid

 macrophages),  a T cell-dominant network (comprising CD8 T cells, CD4 T cells, CD103
+
 CD4 

T cells, Tregs, CD11b
mid

 UD and CD14
lo

 monocytes) (Fig 5F).  Persistence of a myeloid-dominant
 

network with the ABI network in the Adv disease stage, signifies the co-existence of an active 

network of immune cells with aberrant alveolar epithelial cells, even at the most advance stage of 

fibrosis. Of note, while co-location of CD103+ CD4 T cells with ABIs was identified by cross PCF and 

NCF analyses, they were not found to be in direct contact with the ABIs, suggesting that any cross 

talk is likely to be via humoral communications.  

 

In summary, analysis of contacting cell types at pair-wise level shows significantly more CD206hi 

macrophages in direct contact with ABIs than CSR, and they (and to a lesser degree, the CD206mid-



ABI_a pairings in Adv stage only) were the only pairs of cell types that achieved this. In addition, the 

networks of contacting cell pairs exposes networks of immune and aberrant epithelial cells which 

evolved temporally as disease progresses. Importantly, at the leading edge of disease, CD206hi 

macrophages connect communities of immune cells with communities of aberrant alveolar epithelial 

cells.  These findings elevate the potential importance of CD206hi macrophages and ABIs interaction 

and prioritises ligand-receptor cross talk between these two cell types.  

 

 

Fibronectin and MIF signalling is are key signalling pathways between CD206hi macrophages and 

ABIs. 

 

In the last part of our study, we explored the potential functional significance of direct contact 

between CD206
hi 

macrophages and ABIs.  To do this, we obtained publicly single cell transcriptomic 

data (which provides depth in cell identity but had no information on location or spatial interaction) 

from Habermann et al [single cell RNA sequencing data on explanted lungs, from six groups of 

patients, with lung diseases including IPF (n = 12), and non-fibrotic controls from lung donors (HC; n 

= 10)](9). We chose Habermann’s data as some of our trajectory analysis of ABIs was based on 

Kathiriya’s organoid studies (11), and they matched their findings with Habermann’s transcriptomic 

dataset (9).  

 

We extracted the single cell metadata from the IPF and HC datasets, and  first, re-clustered monocyte 

and macrophage clusters (Fig 6A). This was then resolved transcriptomically to identify a subset with 

a clear, discriminating level of CD206 expression (which we termed CD206hi macrophages) (Fig 6B-C). 

Habermann’s KRT5-KRT17lo ABI subset and transitional AT II subset were extracted for analysis, the 

former having been matched to our ABIs (fig. S3), and the latter as a comparator.  Habermann’s 

dataset did not allow determination of whether their ‘basal cells’ were the airway-based basal stem 

cells or the alveolar-based basaloid cells which were ectopically sited in alveoli. Therefore, we did 

not include this cell type in the analysis. As we had a population of ABI closely associated with DCs 

(ABI_b-DC ADJ), we also extracted the plasmacytoid DC (pDC)  and classical DC (cDC) populations 

from the IPF dataset. The CD206hi macrophages, pDCs and cDCs were then submitted for receptor-

ligand analysis using CellChat(19).  We directed CellChat to examine interactions between these 

three immune cell types and KRT5-KRT17lo ABI and transitional AT II in both directions (e.g., with 

CD206
hi

 macrophages as senders (ligand) and ABI as receivers (receptors) and vice versa).  

 

Communication probabilities (calculated in CellChat based primarily on receptor-ligand gene 

expression profile)(19) identified several receptor-ligand pathways  between ABIs and their directly 

contacting immune cells. Amongst these, those with  ‘high’ communication probabilities (defined by 

us, as those higher than 2 S.D. from the mean communication probability value) were  (a) 

macrophage migration inhibitory factor (MIF) (as the ligand produced by ABIs) that engages the 

CD74-CD44 and CD74-CXCR4 complexes on CD206
hi

 macrophages, and CXCR4 on DCs (Fig 6D) and (b)  

fibronectin  (as a ligand produced by CD206
hi

 macrophages) that engages with  integrin (ITGA3, 

ITGAV, ITGB 1 and 6), Syndecan (SDC1 and 4) or CD44 receptors on ABI (Fig 6E). ). Identification of  

APP (amyloid beta precursor protein), a cell surface receptor is intriguing, with very little known 

apart from its role in Alzheimer disease and amyloidosis(20, 21). 

 



To place this CD206hi macrophages cluster  in the context of known macrophage subclusters in IPF, 

we re-interrogated the transcriptome of the macrophages in Habermann’s dataset and identified the 

two established macrophage subsets found in single cell analysis of IPF lungs - the FABP4+ 

macrophages [purportedly resident alveolar macrophages (22)] and the pro-fibrogenic SPP1+TREM2+ 

macrophages (8, 22, 23)  (clusters 0 and 1 respectively in Fig 6C). CD206hi macrophages (cluster 9) 

were distinct from these two macrophage subsets and, interestingly, expressed conspicuously higher 

levels of a fibronectin (Fig 6F).  We validated this FN expression by immunofluorescent staining in our 

IPF samples and found differential presence of FN expression on CD206+ macrophages, supporting 

the transcriptomic findings (Fig 6G). The potential functional consequence of receptor-ligand 

engagement is summarised in Fig 6H. 

 

Our data suggest that the CD206hi macrophage subset identified in our IPF lung tissue is the 

CD206
hi

FN
hi

 alveolar macrophage subset in Habermann’s lung digest dataset. This CD206
hi

FN
hi

 

alveolar macrophage is distinct from previously established resident and pro-fibrotic macrophage 

subsets in IPF lungs. Our in silico analysis highlights fibronectin and MIF as potential ligands in this 

interaction.  

 

 

 

Discussion 

 

In this paper, we present spatial data in regenerating fibrotic alveoli from the largest number of 

single cells to date.  We use a unique set of lung sections capturing a timeline in progression as 

disease advances, and specifically characterized ROIs to denote regenerating fibrotic alveoli. 

Critically, our unbiased spatial analytical methods scan the entire cellular interactome in these ROIs 

to identify mathematically determined cellular interactions, networks and spatial organization 

between cells.  

 

We show that just over half (51%) of the alveolar epithelium is made up of ABIs, with an immune 

landscape that is numerically dominated by CD14lo monocytes, CD206hi alveolar macrophages, B 

cells, CD4 and CD 8 T cells. The overall proportions of these alveolar epithelial and immune cell types 

do not change from one disease stage to another but the way they are organized does. In the early 

stage or where there is less disease, resident CD103
+ 

CD4 T cells feature prominently in spatial 

association with ABIs, whether in pair-wise interaction, as triplets with CD206
hi

 macrophages and 

ABI_b-DC ADJ cell clusters or within co-located cells in the immediate neighborhood of ABI_b-DC ADJ 

cells. As the disease advances, the only interacting cells are the CD206mid and  CD206hi macrophages 

with ABI_a and ABI_b-DC ADJ cells. In both cases, the neighborhood contained co-located basal cells 

in keeping with an epithelial differentiation trajectory from ABI to basal cells as disease progressed 

from early to advance stage.  

 

A key outcome from our analysis is the co-location of specific immune cells with aberrant basaloid 

intermediates but not any other epithelial cells. This means that ABIs are likely to be key points in the 

differentiation trajectory where immune cell cross talk occurs, and a priority target point for 

therapeutics. ABI cells are more prevalent than hitherto known (8, 9), and found in all regenerating 

alveolar epithelium, into  advanced disease where there is scarce fibroblastic foci and maximal 



collagen deposition in the interstitium. This means that even at the point of severe end stage 

disease, alveolar epithelium is attempting to regenerate, and ABIs are still interacting with CD206hi 

macrophages; possibly providing opportunities for therapeutically targeting even at this late point to 

prevent progression to basal cells. 

 

The receptor-ligand analysis takes current similar analyses forward by providing a spatial dimension 

where cell types that are actually directly in contact with each other are selected for receptor-ligand 

interrogation. This significantly enhances the precision of receptor-ligand analysis compared to single 

cell studies where all possible receptor-ligand interactions are put forward in silico.  Of the several 

receptor-ligand signalling pathways identified by CellChat, a highly relevant one is the FN- 

αvβ6 integrin pathway. Integrins are a family of cell adhesion molecules which mediate many key cell–

cell and cell-matrix interactions during fibrosis(24). They are a major node of communication 

between the stroma, immune cells and fibroblasts and closely involved in the initiation, maintenance 

and resolution of tissue fibrosis.  αvβ6 integrin is required for fibrosis, and has been a therapeutic 

target in several clinical trials in IPF(25, 26) .It is specifically found on epithelial cells and upregulated 

after injury, activating TGF-β, a key profibrogenic cytokine(27) which activates fibroblasts and 

facilitates epithelial-mesenchymal transition (EMT). Very little is known of FN or αvβ6 integrin’s 

impact  on the differentiation trajectory of ABIs but here, a possible consequence is the alteration of 

the epithelial regeneration and downstream effect on fibroblastic activity. Another receptor-ligand 

signaling pathway that may be relevant to ABI regeneration is the  syndecan-1(SDC1)-FN-mediated 

ABI-macrophage cross talk. SDC1 is involved in regulating epithelial cell migration and adhesion(28, 

29) and could augment Wnt signaling(30). In acute lung injury soluble Syndecan -1 mediates 

chemokine mobilization, and influx and activation of neutrophils, whose numbers are found to 

correlate with ABI_b-DC numbers at the leading edge of disease (Fig 2K-L)  (29, 31, 32). The converse 

cross-talk, with production of macrophage migration inhibitory factor (MIF) by ABIs and engagement 

of CD74, CXCR4 and CD44 receptors on CD206
hi

 macrophages, could be important in maintenance of 

ABIs. MIF sustains pro-inflammatory immune responses by inhibiting p53-dependent apoptosis of 

macrophages (33) and controlling the expression of NLRP3, an essential step for activation of the 

NLRP3 inflammasome and subsequent activation of the IL-1b family of cytokines(34, 35). Its level 

have been shown to be increased in IPF lungs(36). This may be significant as IL1-b -mediated 

inflammation appears critical in accumulation of basaloid intermediates (or damage-associated 

transient progenitors, DATP) in murine models of alveolar injury (10).  

 

Numerically, the immune cell landscape is populated equally by adaptive and innate immune cells 

but there are clear differences in the way immune cells interact spatially with ABIs, and how they are 

organized spatially at different stages of disease. Our mathematical analysis  allow us to generate an 

interactome which can be organized by a hierarchy of interactions - direct contact [positive 

correlation in numbers, g(r=20)>1 and CCN FDR < 0.05 - CD206mid and CD206hi macrophages], short 

range interactions  [positive correlation in numbers and g(r=20)>1 but CCN > 0.05 e.g. resident 

(CD103
+
) CD4 T cells] and potentially long range interactions (positive correlation in numbers only 

e.g. CD4 T cells, CD14
lo

 monocytes, proliferating  monocyte-macrophages, neutrophil and NK cells) 

(Fig 3A, 3D,4C). Thus, foci of ABI-CD206hi macrophages  together with less spatially intimate immune 

cells (e.g. NK and neutrophil) could drive the growth of ABI at the leading edge of disease. Studies 

showing resident CD103+ CD4 T cells interacting with MHCII-expressing epithelial cells (37) and 

augmenting homing of neutrophils to epithelium are (38) particularly interesting in this context since 



they suggest possibilities around initiation of injury in early disease stage  by the CD103+CD4 T cells 

and ABI_b_DC ADJs as trigger for formation of ABIs. 

 

Another noteworthy mention is the abundance of CD14lo monocytes, its correlation with that of  ABI 

numbers, co-location with vascular endothelium in Early and Intm disease stages. By their markers, 

CD14
lo

 monocytes are likely patrolling (or non-classical) monocytes (CX3CR1
high

CD14
dim

CD16
+
 in 

humans)(14, 39, 40). Their co-location with vessels in our tissue further supports this. Resting, 

patrolling monocytes actively scan the vasculature. Inflamed or injured endothelium releases further 

chemoattractant to attract these monocytes(14). Presence of CD14lo monocytes with blood vessels is 

indicative of inflamed vasculature in IPF, and supports an involvement, or association, between 

aberrant vascular health and aberrant alveolar regeneration.  

 

Our main limitations are the following. We were unable to detect ATI cells, in main because at the 

time of study, we did not have specific ATI protein markers. Some ATI cells could be found within 

clusters of KRT5neg-lo ABIs (e.g. ABI_a) but the morphology of these cell types were examined on H&E 

sections  (Fig 2G) and were not compatible with ATI cell types. We believe they are probably found 

within the 27 UD cluster which formed 2.6% of epithelial cells.  We focused on breadth of immune 

cells rather than depth and functional protein markers within the 33-plex panel so our immune cell 

profile lacked the deeper layer of markers that could indicate the subtypes of adaptive immune cells 

in particular. However as these cell types did not co-locate with alveolar epithelial cells. Finally our 

studies are descriptive and further work will be required to definitively determine the interactions 

observed and in silico mechanisms.  

 

In conclusion,  we present a robust mathematical method of spatial analysis which, without a priori 

specification of type of immune cells or alveolar epithelial cells,   identifies CD206hi macrophages as a 

key immune influence in the differentiation trajectory of alveolar regeneration in IPF lungs, and 

expands our knowledge of the regenerating alveolar niche in IPF. Our results emphasize the 

importance of ABI cells as an immune interaction point in the differentiation of alveolar 

regeneration, directing focus to these cells and its accompanying immune cells and pathways, 

underlining these cellular interactions as new avenues for therapeutic explorations to alter abnormal 

stem cell differentiation, even in the most advanced stages of IPF.  
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Material and Methods 

 

Table of antibodies and reagents used in imaging mass cytometry and immunofluorescence 

All antibodies, their catalogue numbers, final dilutions, and source are documented in Table S6. 

 

Patients, samples, and ethical approvals 

Diseased lung tissue was obtained from patients with a diagnosis of Idiopathic pulmonary Fibrosis 

(IPF) based on standard diagnostic criteria (41) and multi-disciplinary team (MDT) consensus, at the 

point of lung transplantation at the Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS 

Foundation Trust.  All patients provided informed consent for use of their tissue via the Cellular and 

Molecular Mechanisms in Chronic Lung Diseases (EXPLANT) study which was approved by the NHS 

Research Ethics Service (11/NE/0291) and was sponsored by Newcastle Upon Tyne Hospitals NHS 

Foundation Trust ( R&D ref 5885). 

 

Formal histopathological analysis showed an overall progressive increase in the amount of collagen, 

smooth muscle and a reduction in the numbers of fibroblastic foci as disease progressed from Early 

to Intm and Adv stages (Fig 1L, Suppl Table 2). In keeping with  histopathology features of ‘usual 

interstitial pneumonia’ (UIP) in the IPF disease(41), lung sections displayed temporal and geographic 

heterogeneity in the fibrotic and inflammatory features across the Early, Intm and Adv regions. Given 

this, we subsequently treated each ROI as a single independent entity within each disease stage in 

our analysis.  

 

Sections were stained with a 33-plex metal-tagged antibody panel (Fig 1N, Suppl Table 3), which we 

designed to capture the breadth of the immune cell profile, and to identify regenerating alveolar 

epithelium, including the ‘ABIs’ and basal cells described by Adams, Habermann and Kathiriya et al 

(8, 9, 11).   Single cell segmentation, dimensionality reduction, cell clustering and annotation were 

performed according to the SpOOx 2.0 (Spatial Omics Oxford) pipeline, an extension of the SpOOx 

pipeline which we developed previously (13) (Fig 1F-K and Methods). A total lung area of 61.89mm2 

was ablated and 313,818 single cells were obtained. 

 

Disease-free control tissue was obtained from healthy donor lungs which were not used in 

transplantation and where the donor’s next of kin had consented for NHS REC approved research on 

the tissue (REC 16/NE/0230). Sections were taken again from the upper lobe as a direct comparison 

to the IPF tissue samples. Further samples from non-cancerous areas of lung cancer patients from 

the Oxford Biobank were also obtained under the NHS REC Number 14/SC/1060 for H&E exemplar 

staining.  

 

Slide preparation  



Tissue sections for each donor were cut serially, at an IMC optimum thickness of 8 µm and mounted 

onto SuperFrost Plus™ Adhesion slides (Epredia). The primary slide from each serial deck was subject 

to H+E staining, followed by dual IHC staining of the following serial slide, with KI67 and PROSPC 

using the Discovery Ultra Research Staining System (Roche). Staining was performed by Novopath 

Research Service (NovoPath, Department of Pathology, Newcastle Hospitals NHS Foundation Trust, 

Newcastle upon Tyne, UK). Stained slides were scanned using the Aperio A2 slide scanner (Leica 

Biosystems).  In combination, both H&E and IHC stains were used to navigate to areas of epithelial 

damage and repair in order to aid ROI selection. Slides were viewed and annotated in QuPath(42) 

 

Antibody Validation and Metal Labelling  

A 33-plex antibody panel was created to target the immune, structural and functional components of 

the IPF lung samples, and to identify the regenerating alveolar epithelial niche (Table 1). Antibody 

clones were pre-validated as described in Hunter et al. (43) In brief, validation and optimisation was 

carried out using two-colour immune-fluorescence staining of appropriate positive control and lung 

tissue. Here, slides were imaged using a Axio Scan Z1 fluroscence microscope (Zeiss). Using Zeiss 

software, the microscope was configured for AF405, AF488, AF568, AF647, and AF750, and the entire 

area of the tissue section is selected using the software for higher resolution scanning, utilizing a 

plan apochromat 40x 0.95 korr M27 objective. Images were saved on a computer for further 

processing using custom Fiji/Image J macros (44, 45).  

 

Following verification of staining pattern and performance quality, approved antibodies were subject 

to lanthanide metal conjugation using a Maxpar X8 metal conjugation kit following manufacturer’s 

protocol (Standard Biotools). Successful metal conjugation was verified by binding the antibody to 

iridium labelled antibody capture beads AbC™ Total Antibody Compensation Beads (Thermo Fisher) 

and acquiring on a Helios system (Standard Bio-tools). 

 

 

IMC Staining  

Sections for IMC analysis were baked at 60°C for 2 hours, deparaffinised in two changes of 

Histological grade xylene (Merck), followed by rehydration in decreasing grades of ethanol ; 100%, 

90%, 75% and 50%. Samples were washed twice in MiliQ ultrapure water and then submerged in 

Tris-EDTA 0.05% Tween 20, pH 9.0. Heat induced epitope retrieval was performed in the microwave 

for 20 mins. Slides were cooled to 70°C, washed twice in MiliQ water followed by two washes in PBS 

(Gibco). Blocking of non-specific binding sites was performed using 3% BSA solution in PBS for 45 

mins at room temperature. Sections were then subject to staining with a cocktail of 2 DNA probe and 

31 conjugated antibodies diluted in PBS containing 0.5% BSA and left to incubate overnight. Slides 

were washed in 0.2% Triton X-100 (ThermoFisher), followed by two washes in PBS. Nuclei were 

stained with Cell-ID™ Intercalator-Ir (Standard Biotools) for 30mins at room temperature. Slides were 

washed in MiliQ water and left to air dry before IMC analysis. 

 

Hyperion (IMC) set up, quality control (QC) and sample acquisition 

ROIs were ablated using the Hyperion Imaging System using CyTOF7 Software v7.0 (Standard 

BioTools) as described in Hunter et al(43). Sample data was acquired over 4 balanced batches. Prior 

to each sample acquisition, the Hyperion Tissue Imager was calibrated and rigorously quality 

controlled to achieve reproducible sensitivity based on the detection of 175Lutetium. Ablations were 



performed at 200Hz laser frequency to create a resultant MCD file per sample containing all data 

from ROIs. Raw MCD files were opened in MCD Viewer (Standard BioTools) where visual QC of the 

staining intensity and pattern was performed. All images were exported as 16-bit single multi-level 

TIFFs using the “export” function. 

 

 

Immunofluorescence 

Paraffin-embedded human lung tissue sections were deparaffinized and each section was pre-

treated using heat-mediated antigen epitope retrieval with sodium citrate buffer (pH 6) for 20 

minutes. Then sections were blocked in 10% normal goat serum (Thermo Fischer Scientific, 50062Z) 

for 20 minutes and then incubated with Alexa Fluor® 488 Anti-Cytokeratin 17 antibody 1:200 dilution 

(Abcam, AB185032), CD15 antibody 1:200 dilution (Cell signalling Technology, 4744S), Pro-Surfactant 

Protein C Antibody 1:400 dilution (Abcam AB90716), Alexa Fluor® 647 Anti-Cytokeratin 5 antibody 

1:200 dilution (AB193895), Anti-MRC1 Antibody 1:500 dilution (Atlas antibodies, AMAB90746), Anti-

BDCA-2 antibody 1:100 dilution (Merck Millipore, MABF94), Alexa Fluor® 647 Anti-Fibronectin 

antibody 1:200 dilution (Abcam, AB198934) overnight at 4˚C. Each section is washed three times in 

TBS-T (0.1% Tween) and stained with Alexa Fluor 750 conjugated Goat anti Rabbit IgG or Alexa Fluor 

488 or 568 conjugated goat anti-mouse IgM secondary antibody or Alexa Fluor 568 conjugated goat 

anti-mouse IgG1 for 30 minutes and washed three times in TBS-T (0.1% Tween) and mounted with 

Prolong platinum antifade Mountant with DAPI (Fischer Scientific) and the section slides were 

imaged using a Axio Scan Z1 fluroscence microscope (Zeiss). 

 

Data analysis 

Software and algorithms  

We utilized the SpOOx pipeline for data processing and analysis (13) The SpOOx pipeline 

incorporates Python and R based command line tools implemented as a semi-automated pipeline 

within a Ruffus framework. This pipeline provides end to end processing of imaging mass cytometry 

data encompassing processing of .TIFF files, segmentation and cell mask generation, extraction of 

signal intensity, dimensionality reduction, clustering and spatial analysis. For this work we improved 

the prior version of the SpOOx pipeline to include additional functionality for neighbourhood 

correlation function analysis and generation of statistically robust adjacency cell networks. 

 

Processing of MCD to .TIFF files 

MCD files were checked for staining and data acquisition quality using MCD viewer (provided by 

Standard BioTools). Following this initial QC assessment, images were converted to OME-TIFF format 

for segmentation. 

 

Segmentation and mask generation 

Cell segmentation was performed with the Mesmer library in DeepCell(46). Nuclear markers DNA1 

and DNA3 and cytoplasmic markers (CD45, CD68, CD206, HLA DR, CD14, CD15, CD11b, BDCA2, CD1c, 

CD11c, CD103, CD20, CD3, CD8a, CD4, CD69, CD56, EPCAM, KRT17, KRT5, CD31, aSMA, ProSP-C, 

CD127, Amphireg, CD161) were extracted and Z projected to generate single channel nuclear images 

and cytoplasmic TIFF images. These were contrast adjusted and processed with the Mesmer library 

reference as nuclear and cytoplasmic channels to generate a final single cell segmentation mask. 

 



 

 

Extraction of signal intensities 

Mean arcsinh transformed marker signal intensities were extracted from the segmentation masks 

with no filter for cell size area. 

 

Dimensionality reduction and clustering  

Clustering was performed with R phenograph (47) with parameter k = 15 on data following 

integration for condition (IPF) with Harmony for correction of sample and batch effects. Markers 

used for clustering are shown in Suppl Table 3. 

 

Annotation workflow  

Cell phenotype annotation was performed using a sequential approach as described in Weeratunga 

et al. 2023.(13) Briefly, clusters were initially defined using i) heatmaps showing median marker 

expression, ii) scaled expression density histograms and iii) cluster distribution plots. Based on this 

analysis we excluded clusters with uniformly low/negative marker expression and clusters found in 

only one sample. We termed a cluster undefined (UD) if they expressed markers which were found in 

more than two cell types e.g. variably, epithelial, several immune cell type and endothelial markers. 

We then examined the spatial location of these annotated clusters using cell centroid maps mapped 

on to the corresponding segmentation mask and an adjacent H and E region of interest. Some 

clusters demonstrated markers expressed uniquely on 2 different cell types and these markers 

showed adjacent expression in IMC images and IF. These clusters were denoted with ‘ADJ’ (13). 

 

Analysis of differential cell abundance 

Differential cell abundance was examined between the defined states of IPF (early, intermediate and 

advanced) using the glmFit and glmLRT functions from the diffcyt package (48). To account for 

differences in area of the analysed ROIs, area was used as a normalizing factor. 

 

Spatial analysis 

The spatial analysis pipeline in this manuscript follows (13), with the addition of Neighbour 

Correlation Functions (NCF)(18). Here we give a brief technical overview of the components of this 

pipeline described in (13) (the Quadrat Correlation Matrix, cross-Pair Correlation Function, Adjacency 

Cell Network and Topographical Correlation Matrix), before a more detailed description of the NCF. 

 

Quadrat Correlation Matrix 

The QCM follows methods described by Morueta – Holme et al for inferring species associations 

from co – occurrence data (49), and provides a high-level overview of whether counts of each pair of 

cell types are observed to be correlated at short-range (a square of edge length 100 microns) more 

or less frequently than would be anticipated. Briefly, the QCM uses random shuffling of cell labels to 

generate a null distribution reflecting the correlation coefficients between each pair of cell types 

under random labelling. Observed correlation coefficients are compared against this distribution, to 

identify whether correlations occur by chance due to the underlying spatial structure of the points. 

The QCM produces p-values for the significance of the correlation, which account for multiple 

comparisons between a large number of different cell types. See Morueta Home 2014 (49) and 

Weeratunga 2023 (13) for further details. 



 

Cross Pair Correlation Function  

Cross pair correlation function was performed as described previously(13). Briefly, the cross pair 

correlation function (PCF), , is a spatial statistic which describes the correlation between pairs of 

points with specified labels A and B(18). It describes this correlation at multiple length scales 

according to the variable , with  indicating that more pairs of points with label A and label 

B are observed separated by distance  than would be expected under an assumption that the points 

are distributed by complete spatial randomness. Similarly,   indicates that cell pairs are 

observed less frequently than expected at this distance. For full details of the PCF and its 

mathematical definition, see (13) or (18).  

 

Topographical Correlation Map (TCM) 

TCM was performed as described in (13). The TCM is an example of a local indicator of spatial 

association (LISA)(18) , and overlays a topographic “map” onto the ROI to show the local strength of 

positive or negative spatial association between cells of types A and B across the ROI(13, 18). It can 

be considered to represent the contribution of each cell of type A to the PCF for values of  up to a 

given threshold, here 100 mm, or equivalently as a spatially resolved representation of contributions 

to Ripley’s K function at  (50). 

 

Neighbourhood Correlation Function 

The Neighbourhood Correlation Function (NCF) extends the standard pair correlation function to 

identify correlation between three (or more) classes of cell simultaneously(18). We consider a point 

pattern in a finite 2D domain uch that each point i has coordinates . Suppose that 

each point is associated with a categorical label ,  or  and there are ,  and  points with 

labels ,  and  respectively. Then there are  possible ways to select a set of three 

points such that we have one point with each label. For each such set of three points , we calculate 

the smallest circle which can enclose all three points, which we call a “neighbourhood” and define to 

have radius . 

The NCF at radius r compares the total number of neighbourhoods of radius r against the number of 

neighbourhoods of size r that would be expected if points were distributed according to complete 

spatial randomness (CSR). Thus, the NCF for points with labels ,  and  is defined as: 

 

 

 

where  if , 

, and  is the probability of three points chosen under CSR being found within a 

neighbourhood of radius .  is defined within  as , where 

,  and  are locations sampled under CSR within . Practically,   is approximated by taking 

large  (here ). Values of the NCF greater than 1 are consistent with clustering of the three 

cell types together at distance r, while values less than 1 are consistent with exclusion of one or more 

cell types from the others at the length scale r. For more details, please see(18). 

 

The resulting radii were the binned into 5 µm intervals to produce a histogram. Bootstrapping was 

performed by randomly shuffling the location of the three cell types and calculating the appropriate 



histogram. The average and 0.05 and .95 percentiles for each interval from the 1000 bootstrapped 

histograms were used for comparison with the observed value. 

 

To calculate NCFs for a condition, comprising several ROIs, the radii for all ROIs in a condition were 

combined and the histogram recalculated. For bootstrapping, the bootstrap histograms for each ROI 

in a condition were combined resulting in 1000 histograms. Again, the average and 0.05 and .95 

percentiles for each interval from these histograms were used for comparison with the observed 

value. 

 

Contact Cell Networks 

Adjacency cell networks were calculated as previously described(13) – for each co-locating cell pair 

A/B [g(r=20)>1], the total number of B cells in contact with A cells was calculated. For  the contact 

cell network (CCN), we ask  if contacts were significantly different. Z -scores were calculated by 

randomly shuffling cell labels and recalculating contacts(51). The average and standard deviation (sd) 

of a thousand bootstrap values were the used to calculate z-scores. 

 

 

where:  

• ��� is the z-score between cell types A and B 

• ���  is the number of observed contacts 

• 	����) and ������ represent the mean and standard deviation of the number of contacts in 

the bootstrapped data 

 

P-values were calculated using the norm.sf function from scipy package(52) and corrected for 

multiple comparisons with multitest from the statsmodel package(53):- 

 

from scipy.stats import norm 

from statsmodel.stats import multitest  

pvalues = norm.sf(np.asbsolute(z_scores)) *2 

fdr_corrected_pvalues = multitest.fdrcorrection(pvals) 

 

To obtain the z-score for an A/B interaction in a condition, comprising several ROIs, a weighted 

average was used, based on the number of A Cells in in the interaction. This was calculated by the 

sum of 

A/B zscore * A count / sum of A counts 

 

p-values for each condition were calculated combining the individual p-value for each ROI using the 

stouffer method and weighted by the A counts. This was implemented by the combine_pvalue 

method in the in scipy package(52) 

from scipy.stats import combine_pvalue 

combine_pvalues(pvalues,”stouffer”,Acounts) 

 

Again, the p-values were corrected using the multitest function from the statsmodel package (see 

above) 

 

��� � ���� � �������/
����� 



Single cell transcriptomic interrogation 

 

Within the single cell data from Haberman et al. (9) macrophage, monocytes, cDCs and pDCs from 

control and IPF patients were further sub clustered using Seurat R package (ver 4.3.0)(54). Highly 

variable genes were identified by fitting the mean variance relationship for each sample to avoid 

sample-to-sample variation and to retain variance within the samples. We then performed principal-

component analysis using top 2,000 highly variable genes. Scree plots and Jackstraw permutation 

tests were used to determine significant principal components (with Pacut-off <0.01) in the data. 

Subsequently, we performed batch correction using Harmony (ver 0.1.1) (55). A k-nearest neighbor 

(kNN) graph was constructed from cells in the reduced dimension space in Seurat based on the top 

20 batch-corrected components. Cells were then clustered in this on this neighborhood graph using 

the Leiden algorithm for modularity optimization where the resolution parameter was set to 0.7.  

 

Based on cluster marker gene expression Plasmacytoid dendritic cells (pDC), classical DCs (cDC), 

monocytes and macrophages were identified, and the monocyte and macrophage clusters re-

clustered as a single entity to identify the CD206hi macrophage subset. We then merged these with 

annotated KRT5-/KRT17+ cells and transitional AT-II for downstream receptor ligand analysis. 

 

Potential ligand receptor (LR) interaction between different celltypes was analysed using CellChatDB 

statistical analysis (ver 1.6.1) with built in human ligand-receptor database(19). Potential ligand–

receptor pairs, cell–cell interactions were identified based on mass action models, along with 

differential expression analysis and statistical tests on cell groups. We used the standard workflow; 

Preprocessing functions, identifyOverExpressedGenes and identifyOverExpressedInteractions with 

the default parameters were applied followed by communication probability computation between 

interacting cell groups with tri-mean set at 0.1. Subsequently we ran the core functions 

computeCommunProbPathway and aggregateNet using the standard parameters.  Finally, the 

functions, netVisual_bubble were applied to the network to determine the senders and receivers 

and to generate a LR interaction plot. 

 

Data availability 

The analysis results are presented as a dynamic online resource in Multi-Dimensional Viewer (MDV) 

(https://mdv.molbiol.ox.ac.uk/projects/mdv_project/7430).  All source data for the figures are found 

within the project 7430 in the MDV link. 

 

Code availability 

The complete code for the Spatial Omics Oxford (SpOOx) pipeline and the SpOOx v2.0 (as an update) 

is available as a GitHub repository under the GPL license – 

https://github.com/LingPeiHo/Ho_Taylor_Byrne-SpOOx-2.0. The Multi-Dimensional Viewer code is 

available under the GPL license: https://github.com/Taylor-CCB-Group/MDV.  

 

Software source and identifier: 

 

Name of 

software 
Source Identifier 

imctools https://github.com/BodenmillerGroup/ RRID:SCR_017132 



imctools  

Deepcell https://vanvalen.github.io/about/ RRID:SCR_022197 

Phenograph 
https://github.com/JinmiaoChenLab/Rp

henograph  

RRID:SCR_016919 

Harmony 
https://github.com/slowkow/harmonyp

y 

RRID:SCR_022206 

Ruffus http://www.ruffus.org.uk/  RRID:SCR_022196 

QuPath https://qupath.github.io/  

https://doi.org/10.1038/s41598-

017-17204-5  

MCD 
https://www.standardbio.com/product

s-services/software  

RRID:SCR_023007 

Catalyst R 
http://bioconductor.org/packages/CATA

LYST/ 

RRID:SCR_017127 

Harmony 
https://github.com/immunogenomics/

harmony 

RRID:SCR_022206 

diffcyt R 

package 

(version 

1.8.8) 

https://www.bioconductor.org/package

s/release/bioc/html/diffcyt.html  

RRID:SCR_023006 

Cellchat https://github.com/jinworks/CellChat RRID:SCR_021946 

Seurat 

(version 4.0) https://satijalab.org/seurat/ RRID:SCR_007322 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Legends 

Figure 1. Overall outline of study, the regenerating alveolar niche in IPF lungs and its cellular 

constituents . A-K overall workflow of study from macroscopic selection of lung biopsy (B) to final 

analysis(K).  L. Examples of  ROIs from lung sections obtained in Early, Intermediate (Intm) and 

Advance (Adv) lung regions (shown in B)  showing histopathology features of collagen deposition, 

alveolar metaplasia, inflammatory infiltrate and smooth muscle hyperplasia (top panel).  Matching 

MCD images stained with metal tagged antibodies – five of 33 markers shown. M. Representative 

ROI  from an H&E-stained IPF lung section showing criteria for ROI selection (presence of AT II 

metaplasia, immune cell infiltrate and lack of airways. N. Metal-tagged antibody panel used for 

Imaging Mass Cytometry (IMC) staining O. UMAP (front and back of 3 dimensional projection) of 

annotated cell clusters derived from 33 plex IMC staining. H&E – hematoxylin and eosin, FFPE – 

formalin fixed paraffin embedded, AT II – type 2 alveolar epithelial cells, Neut – neutrophils, mac – 

macrophages, mono – monocytes, SM – smooth muscle, ABI – aberrant basal intermediates.  

 

Figure 2. Composition of alveolar epithelial and immune cells and their correlations in 

regenerating alveolar niche in IPF lungs. A. Representative  ROI from Early disease stage showing 

KRT17/7 and CD206 protein expression (IMC staining). Two areas of interest (AOIs) (‘a’ and ‘b’) are 

highlighted for later morphological analysis. B-E.  Corresponding cell centroid maps for ROI in (A) 

generated using cell outline mask for the ROI,  highlighting the location of ABIs, basal cells and AT II 

cells. No ABI_b is visible in keeping with very low number of ABI_b. F. Expression density plot (scaled 

between 0 and 1) for markers EPCAM, KRT17/7, KRT5, Ki67 and ProSP-C for all 5 defined epithelial 

cell clusters in alveolar niche. Blue broken vertical lines represent point above background staining. 

Note ATII cells are the only cells with high ProSP-C expression and have no or low KRT5 staining by 

further gene expression analysis (see fig. S3B-C) and immunofluorescence staining (fig. S6), hence 

the higher level of background staining for KRT5. G. High magnification of H&E images from AOI ‘a’ 

and ‘b’ from figure 2A showing the morphology of ABI_a and ABI_b-DC ADJ cells which are in keeping 

with formal histopathology feature of type II alveolar metaplasia, representing abnormal alveolar 

regeneration. AM- alveolar macrophages H. Proposed points for ABIs, basal cells and ATII cells on 

differentiation trajectory of abnormal alveolar epithelium as shown by Kathiriya’s (11) human 

alveolar organoid studies. Broken blue boxes identifies markers used in our study. Diagram adapted 

from Kathiriya JJ et al 2021(11); AEC 2 – type 2 alveolar epithelial cells. I. Proportion (mean, for all 53 

ROIs) of different epithelial and immune cells (as % of total epithelial and immune cells respectively) 

J. Number (cells/mm2 of tissue) of immune (left graph) and epithelial (right graph) cells in Early, Intm 

and Adv disease stages. *** p<0.001 **p<0.01; comparison derived using generalised linear model 

(GLM) model, with area as a normalizing factor. K. Correlation in abundance of cells  (per mm
2 

 of 

tissue) between alveolar epithelial cell types and immune cells. Only significant correlation shown; 

values are ‘r’ derived using Pearson’s correlation. Only positive correlation shown. **p<0.01; 



***p<0.001; Pearson's correlation with Benjamini-Hochberg correction for multiple comparisons.  

Note no significant correlations were observed between ATII cells and any immune cells.  I. 

Correlation plots for the pairs of ABI-immune cell pairs with top three highest r values for each 

disease stage 

 

Figure 3. Spatial co-location between aberrant regenerating alveolar epithelial cells and immune 

cells. A. Work flow and findings for each step, from derivation of 313,818 single cells and their 

location on lung tissue to identification of three co-locating pairs of alveolar epithelial-immune cell 

types. B. Heat map showing g(r=20) values for all structural cell types vs all immune cells. Red 

rectangular outline indicates g(r=20) for alveolar epithelial vs immune cell types. Broken white circles 

indicate alveolar epithelial - immune cell pairs with g(r=20) >1. Red filled-in arrows indicate these 

pairs. Black squares indicate no co-location above complete spatial randomness [g(r=20)<1]. Only 

targeted cell pairs shown for ease of reading. Full spatial data in table S6.  C. g(r) plots for the 5 co-

locating alveolar epithelial-immune cell pairs which shows g(r) for r=0-300mm from cell centroid of 

specified ABIs. g_max  is the peak g(r) value in the area around cell centroid of specific cell type 

described by r=0-300um; g(r=20) is value  of g(r) at 20mm. D-F. Cell centroid maps for CD206hi 

macrophage-ABI_b-DC ADJ pairs across  the three disease stages. This is matched to the 

topographical correlation map  (TCM) which visualises how the spatial correlation between cells of 

types A and B changes across an ROI. Γ�� indicate  spatial proximity of cells of type B to cells of type 

A within a radius of r, in this case 100mm; high values indicate close spatial proximity and negative 

values indicate that there are few cells of type B in proximity to cells of type A. In this TCM,  our cell 

of type A is ABI_b-DC ADJ and cell type B is CD206hi macrophages. G. Output for Neighbourhood 

Correlation Function (NCF) which interrogates co-location of 3 (rather than 2) cell types; here, any 

three cell types of the cell types ABI_b-DC ADJ ,ABI_a, CD206hi macrophages, CD206mid macrophages 

and CD103+ CD4 T cells, selected due to their co-location as pairs (Fig 3B). Graphs shows 

N���
�
�
�
�
�

��� for all triplet (C1C2C3) combinations of ABI (ABI_b-DC ADJ and ABI_a) to immune cells 

(CD206hi macrophages, CD103+ CD4 T cells) at MEC radius of 20 mm (top panel) and 30 mm (bottom 

panel).  Green pane – triplets containing CD103+ CD4 T cells; blue pane – triplets without CD103+ CD4 

T cells H-I. Individual ����
�
�
�
�
�

���plots for r = 0 to 150mm for triplets that are most strongly spatially 

associated with each other compared to one which did not show association (J) 

 

Figure 4. Cellular neighborhood of aberrant regenerating alveolar epithelial cells. A-B. Donut charts 

show g(r=20) values for all structural, epithelial and immune cell types that are co-located above CSR 

with ABI_a cell type (A) and ABI_b-DC ADJ cell type (B) for the different stages of disease. Size of 

segment is proportional to the relative value of g(r=20). C.  Cell centroid maps showing  the location 

of all cell types depicted in A and B in one representative ROI from Early, Intm and Adv for ABI_b(C) 

and ABI_b-DC ADJ (D). Colour of the different cell types are matched to the colour of the cell types in 

the donut charts in A and B.  

 

Figure 5. Cell contact networks.  A-C Output for Cell Contact Network (CCN) for alveolar epithelial -

immune cell pairs, depicting pairs of cell type (A; here alveolar epithelial cell) which are in contact 

with at least one of cell type B ( immune cell types) at a frequency greater than expected under 

complete spatial randomness (CSR), and where z score between observed and random contact has 

p<0.05. Presence of a bubble  for any pairs of contact above CSR indicates that there is a significant 

increase in frequency. Size of bubble is proportional to z score and intensity of colour, to the FDR for 



the z score. Broken circle identifies pairs of alveolar epithelial cell-immune cell types. All other 

bubbles picks out immune-immune or epithelial- epithelial pairings. Pairs with ‘UD’ cell clusters are 

not circled. Left upper quadrant - 'anchor cells' are alveolar epithelial cell; right lower quadrant 

output mirrors the left upper quadrant but 'anchor cells' are immune cell types. D-F. CCN network 

for all cell type pairs showing 'communities' of directly contacting cell pairs (grey and lime coloured 

spaces). Connecting lines join cell type pairs  that are in direct contact with each other with greater 

frequency than complete spatial randomness, and with z scores that have FDR p values <0.05. Size of 

nodes represents number of cells per mm2 , thickness of lines represents number of contacts 

between cell types A and B. Grey spaces – communities of immune cells (purple nodes); lime spaces 

– communities of alveolar epithelial cells (yellow nodes). Note we have included the UD's  in the 

network to show all cell types . Broken circles highlight ABI_b-DC ADJ and CD206hi macrophage pairs, 

which at all stages, link up aberrant alveolar epithelial communities with immune cell communities. 

 

Figure 6. Receptor-ligand analysis between aberrant basaloid intermediates and CD206
hi

 

macrophages. A. Data extracted from of single cell RNA sequencing of lung digest cells from IPF 

(n=12) and healthy control (n=12) lungs deposited by Habermann et al  (Sci Adv 2020) (9) reproduced 

here to demonstrate starting point for further clustering of macrophages. This UMAP retains 

Habermann’s annotations. Text in red identifies Habermann's aberrant basaloid intermediate cells 

(KRT5-KRT17+ cells) and transitional AT II cells, and in blue the two clusters of DCs. Monocytes 

(Mono) and Macrophage (Mac) cell clusters in broken blue circle are re-clustered (using 0.7 

resolution in Seurat) to discriminate levels of CD206 (MRC1) gene expression and where there is a 

clear CD206hi subcluster (subcluster 9) shown in (B) and (C). Cluster 9 (in broken box) (C) showing the 

highest CD206 expression is annotated as CD206hi macrophages. D-E. Receptor-ligand analysis using 

CellChat, with ABI as sender and CD206hi macrophages, cDC and pDC as receivers (D) and vice versa 

(E). Red circles - highest probability of communication (>0.5); large bubbles indicate probability of 

communication >0.3, and small bubble <0.3; no bubble – no communication detected. Colour of the 

bubble represents levels of communication probability. Y axis – ligand-receptor; x axis ABI - immune 

cell pairs. tAT2 – Transitional AT II; prob – communication probability F. Marker gene list for Cluster 9 

(CD206hi macrophages) compared to the established macrophage subclusters (FABP4+ macrophage 

and SPP1+ macrophage)(8, 22, 23) found in IPF. Note that cluster 9 (CD206hi macrophages) shows a  

distinct difference in fibronectin (FN) expression compared to  FABP4+ macrophage and SPP1+ 

macrophage subsets. G. Confocal picture of immunofluorescent staining of FN in CD206+ 

macrophages in one of our IPF lungs (one of 16 ROIs shown, n=3 patients). H. Schema proposing 

location of ABIs and CD206
hi

 macrophages, and functional consequences of receptor-ligand 

engagement. MIF – macrophage migration inhibitory factor, mac – macrophages.  

 

 

 



Spatial analysis workflow

H&E analysis and selection of 3-5 
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Figure 3
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