1 ASCVD risk refinement with NT-proBNP for statin allocation

2 among low- and intermediate risk individuals

z	Jelena Pavlović	MD MSc^1 · M	arvam Kavousi	MD PhD ¹ · M	Kamran Ikram	MD $PhD^{1,2}$.
5		101D, $101DC$, 10	ai yani ixavousi	$, \mathbf{MD}, \mathbf{MD}, \mathbf{MD}$. Kannan Kiam,	MD, IMD,

4 Daniel Bos, MD, PhD^{1,3,4,5}; M. Arfan Ikram, MD, PhD¹; Maarten J.G. Leening, MD, PhD^{1,3,6}

-
_
-

6	¹ Department of Epidemiology,	Erasmus MC - Univ	versity Medical Center	Rotterdam, Rotterdam,	the Netherlands
	1 1 007		2	, , , ,	

- 7 ² Department of Neurology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
- 8 ³ Department of Radiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
- 9 ⁴ Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- ⁵ Department of Clinical Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, US
- ⁶ Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
- 12

13 Short title: Risk-refining with NT-proBNP for ASCVD prevention

14

15 Corresponding Author

- 16 Maarten J.G. Leening, MD, PhD
- 17 Departments of Epidemiology and Cardiology
- 18 Erasmus MC University Medical Center Rotterdam
- 19 P.O. Box 2040, 3000 CA Rotterdam
- 20 Tel: +31 10 70 44229 Fax: +31 10 70 44657 Email: m.leening@erasmusmc.nl
- 21

22 Abstract word count: 283

- 23 Manuscript text (without title page, abstract, references, tables, and figure legends): 3121
- 24 Total document word count: 6026
- 25

2

26 ABSTRACT

27	Background: Statin trials targeting low- to intermediate risk individuals, namely MEGA,
28	JUPITER, and HOPE-3, have demonstrated benefit of statin use for primary prevention of
29	atherosclerotic cardiovascular disease (ASCVD), but are poorly reflected in guideline
30	recommendations for primary prevention of ASCVD. N-terminal pro-B-type natriuretic peptide
31	(NT-proBNP) may refine ASCVD risk in low-to intermediate risk individuals eligible for HOPE-
32	3, JUPITER and MEGA, and aid statin initiation in low- to intermediate risk populations.
33	Methods: 5434 participants, aged 45 years and above from the prospective population-based
34	Rotterdam Study, free of ASCVD, heart failure, and diabetes, were included between 1997 and
35	2008. Eligibility criteria for MEGA, JUPITER, and HOPE-3 trials were checked for each
36	participant. ASCVD event rates, hazard ratios (HR), 5-year numbers needed to treat (NNT _{5y}),
37	and screen (NNS _{5y}) per trial eligible population and NT-proBNP category (\leq 50, 50-100, and
38	>100 pg/mL) were calculated.
39	Results: Median age was 61.6 years, 58.9% were women, median NT-proBNP was 60 pg/mL.
40	The proportions of participants eligible for MEGA, JUPITER and HOPE-3 were 34.9%, 10.4%
41	and 23.7%. Incidence rates per 1000 person-years for ASCVD were 10.4 (95%CI: 60.1-67.9) for
42	MEGA, 16.8 (95%CI: 13.6-20.6) for JUPITER, and 12.1 (95%CI: 10.3-14) for HOPE-3.
43	Adjusted HR in trial eligible individuals for NT-proBNP >100 pg/mL compared to \leq 50 pg/mL
44	level were 1.73 (95%CI: 1.21-2.47), 1.46 (95%CI: 0.80-2.66) and 1.50 (95%CI: 0.99-2.26),
45	respectively. Estimated NNT_{5y} among trial eligible individuals with NT-proBNP levels >100
46	pg/mL based on high-intensity statin treatment, varied from 23 to 34 to prevent one ASCVD
47	event, while NNS _{5y} ranged between 56 and 134.

48	Conclusions: NT-proBNP level >100 pg/mL identifies individuals at the highest ASCVD risk
49	among low- to intermediate risk populations who are likely to benefit from statin treatment at
50	acceptable NNT_{5y} and NNS_{5y} .
51	
52	Key words: Atherosclerotic cardiovascular disease, primary prevention, N-terminal pro-B-type

- natriuretic peptide, statin, randomized clinical trial, epidemiology, population-based.

4

54 Clinical Perspective

55 1. What is New?

56		•	NT-proBNP level >100 pg/mL can identify individuals at the highest ASCVD risk
57			among low- to intermediate risk populations who are likely to benefit from statin
58			treatment at acceptable numbers needed to treat and screen.
59		•	Among apparently healthy individuals without prior ASCVD and diabetes mellitus, 60%
60			was deemed to be at low- to intermediate risk by qualifying for at least one of three RCT
61			based on the trial eligibility criteria, and one out four individuals had NT-proBNP level
62			>100 pg/mL.
63	2.	W	hat are the Clinical Implications?
64		•	NT-proBNP level can be used for risk refining in low- to intermediate risk individuals
65			who are most likely to benefit from statin initiation for ASCVD primary prevention.
66			
67			
68			
69			
70			
71			
72			
73			
74			

5

75 Non-standard Abbreviations and Acronyms

- 76 ASCVD atherosclerotic cardiovascular disease
- 77 CHD coronary heart disease
- 78 HOPE-3 Heart Outcomes Prevention Evaluation-3 Trial
- 79 JUPITER Justification for the Use of Statins in Prevention: Intervention Trial Evaluating
- 80 Rosuvastatin
- 81 MEGA The Management of Elevated Cholesterol in the Primary Prevention Group of
- 82 Adult Japanese Trial
- 83 NNS number needed to screen
- 84 NNT number needed to treat
- 85 NT-proBNP N-terminal pro-B-type natriuretic peptide
- 86 RCT randomized controlled trial

6

87 INTRODUCTION

Management of blood cholesterol is one of the cornerstones of primary prevention of 88 atherosclerotic cardiovascular disease (ASCVD).^{1,2} A variety of randomized clinical trials (RCT) 89 have demonstrated the efficacy of statin treatment among individuals free of ASCVD.^{3,4} Three 90 major RCT, namely the Management of Elevated Cholesterol in the Primary Prevention Group 91 of Adult Japanese (MEGA)⁵, Justification for the Use of Statins in Prevention: Intervention Trial 92 Evaluating Rosuvastatin (JUPITER)⁶, and Heart Outcomes Prevention Evaluation-3 (HOPE-93 3)^{7,8}, have established the benefit of statin treatment in low- to intermediate risk individuals free 94 of ASCVD. 95 We previously demonstrated that the findings of these three trials were poorly reflected in 96 the US and European cholesterol treatment guideline recommendations.⁹ In addition, extending 97 98 statin treatment recommendations to healthy individuals at low ASCVD risk raised concerns of statin overprescription.¹⁰⁻¹² Hence, the latest US and European guidelines suggest using 99 additional non-traditional risk factors, referred to as either risk enhancers or risk modifiers, to 100 refine, and thus improve risk assessment in individuals at low- or intermediate ASCVD risk.^{1,2} 101 In this regard, N-terminal pro-B-type natriuretic peptide (NT-proBNP) is a promising 102 biomarker with potential to improve ASCVD risk assessment in low- to intermediate risk 103 populations. NT-proBNP has been consistently associated with ASCVD risk,^{13,14} and is widely 104 available and affordable,¹⁵ which makes it an appealing tool for ASCVD risk refinement in 105 106 clinical practice. The value of NT-proBNP as a biomarker for risk refinement and statin allocation in primary prevention of ASCVD requires further evaluation. 107

7

In this study, we evaluate the application of NT-proBNP as a risk refining and decision making tool in community-dwelling individuals meeting the eligibility criteria for three low- to
 intermediate risk statin RCT for primary prevention of ASCVD.

111

112 METHODS

113 Setting and Study Population

114 We used data from the Rotterdam Study, a prospective population-based cohort study drawn

from the unselected population of a suburb in Rotterdam, designed to investigate etiology,

116 preclinical phase, prognosis, and potential intervention targets for chronic diseases in mid- and

117 late-life. The Rotterdam Study rationale and design have been described in detail previously.¹⁶

The Rotterdam Study recruited individuals in four subcohorts. Extensive examinations at baseline and follow-up visits were carried out every three to four years. NT-proBNP was measured in three subcohorts from 1997 to 2008. In total, 10,522 participants underwent examinations in these three visits combined, of which 9,326 participants had valid NT-proBNP measurement, informed consent, and follow-up (Figure S1).

All participants provided written informed consent to participate in the study and to have 123 124 their information obtained from treating physicians. The Rotterdam Study has been approved by the Medical Ethics Committee of the Erasmus MC (registration number MEC 02.1015) and by 125 the Dutch Ministry of Health, Welfare and Sport (Population Screening Act WBO, license 126 127 number 1071272-159521-PG). The Rotterdam Study has been entered into the Netherlands National Trial Register (NTR; www.trialregister.nl) and into the WHO International Clinical 128 129 Trials Registry Platform (ICTRP; www.who.int/ictrp/network/primary/en/) under shared 130 catalogue number NTR6831.

8

131 NT-proBNP Measurement

- 132 NT-proBNP was measured from blood samples stored at -80°C, collected in glass tubes with clot
- 133 activator and serum separation gel. NT-proBNP was measured using an
- electrochemiluminescence immunoassay (Elecsys proBNP; Hoffman-La Roche Ltd., Basel,
- 135 Switzerland) and Elecsys 2010 analyzer, as described previously.^{17,18}

136

137 Assessment of ASCVD

- 138 The main outcome was incident ASCVD, composed of myocardial infarction, coronary
- 139 revascularization, non-hemorrhagic stroke, and ASCVD mortality.^{19,20} Events were adjudicated
- 140 until January 1st, 2015. Follow-up and adjudication of outcome events was based on the general
- 141 practitioners' and medical specialists' reports and verified by the study physicians, in detail
- 142 described previously.^{19,20}
- 143

144 Assessment of Covariables

145 Information on medication use, smoking behavior, postmenopausal status, and medical history

146 was collected by trained interviewers using a structured home interview. Anthropometric

147 measures and laboratory testing were obtained during a visit to the research center.¹³ A detailed

148 description of ASCVD risk factors assessment and used definitions for blood pressure,

triglycerides, total, high-density and low-density cholesterol, glucose, c-reactive protein, thyroid-

- stimulating hormone, serum creatinine, estimated glomerular filtration rate, alanine
- aminotransferase, presence of diabetes mellitus and family history of premature coronary heart

disease are provided in the Supplemental Methods.

9

154 Statin Trial Eligibility

155	We followed eligibility criteria for three double blind placebo-controlled RCT on statin use in
156	primary prevention targeted at low- to intermediate risk individuals with hard ASCVD end
157	points: MEGA, ^{5,21} JUPITER, ⁶ and HOPE-3 ⁷ (Table 1, Table S1).
158	Inclusion criteria among the RCT varied due to differences in design and hypothesis.
159	Major RCT inclusion criteria included: age, sex, lipid levels, C-reactive protein levels, history of
160	diabetes mellitus, blood pressure, and postmenopausal status for women (Table 1, Table S1).
161	Data on a few minor exclusion criteria were not available in the Rotterdam Study, such as
162	creatine phosphokinase levels, illicit drug abuse, and rare medical conditions (Table S1).
163	
164	Finally, to select apparently healthy individuals and emulate eligibility criteria for three
165	RCT (Figure S1), in the present analysis we included a total of 5434 participants over 45 years of
166	age, without a history of diabetes mellitus, ASCVD, and heart failure, with low-density
167	lipoprotein (LDL) cholesterol levels below 190 mg/dL (4.9 mmol/L), not using a statin, and
168	without uncontrolled risk factors. The uncontrolled risk factors in essence reflected minor
169	exclusion criteria defined by three RCT, such as uncontrolled hypertension, hypothyroidism,
170	history of chronic liver disease, use of systemic corticosteroids or cyclosporin, and high levels of
171	serum creatinine and triglycerides, as defined in the Supplemental Methods. History of ASCVD
172	was defined as any of the following: myocardial infarction, coronary or other arterial
173	revascularization procedure, stroke, transient ischemic attack, or repeated prescription of nitrates
174	(as a proxy for angina pectoris). ^{19,20,22,23} We excluded individuals with age-specific levels of NT-
175	proBNP indicative of underlying heart failure (if age <50 years and NT-proBNP >450 pg/mL, or
176	age 50-75 years and NT-proBNP >900 pg/mL, or age >75y and NT-proBNP >1800 pg/mL). ²⁴

10

177 Statistical Analysis

178	First, we determined the cardiovascular risk factor profiles for each trial, and proportions of the
179	study population meeting eligibility criteria for MEGA, JUPITER, and HOPE-3. In addition, we
180	divided the trial eligible populations using three NT-proBNP thresholds (\leq 50 pg/mL, 50-100
181	pg/mL, and >100 pg/mL). ²⁵
182	Next, we calculated incidence rates for ASCVD events per 1000 person-years in the
183	entire study population, trial eligible subgroups, and by NT-proBNP categories.
184	To evaluate the risk refining properties of the three NT-proBNP categories, we applied
185	Cox regression models. Specifically, we analyzed associations of continuous natural-log-
186	transformed NT-proBNP, and NT-proBNP categories in relation to the incidence of ASCVD
187	events in the total population as well as in trial eligible subgroups. The reference for comparison
188	was the lowest NT-proBNP category (\leq 50 pg/mL). We report adjusted hazard ratios (HR) for
189	two models: model 1, adjusted for age and sex, and model 2, additionally adjusted for traditional
190	risk factors: current smoking, systolic blood pressure, total and high-density lipoprotein
191	cholesterol.
192	To explore the potential yield of NT-proBNP as a risk refining and statin allocation tool
193	in the context of ASCVD primary prevention, we calculated 5-year numbers needed to treat
194	(NNT _{5y}) and numbers needed to screen (NNS _{5y}) for each NT-proBNP category.
195	Based on the observed ASCVD event rates and the anticipated risk reduction with statin
196	therapy, we calculated NNT _{5y} . We calculated NNT _{5y} for 30% and 50% LDL cholesterol
197	reduction, corresponding to treatment with moderate- and high-intensity statins, respectively. ²⁶
198	For primary prevention, expected relative risk reduction of 25% in major ASCVD events was
199	used for each 38.7 mg/dL (1.0 mmol/L) of LDL cholesterol lowering. ³ We calculated NNT _{5y}

11

200	using the following formula: $NNT_{5y} = 1 / (5 * [observed ASCVD incidence rate] * [observed]$
201	median LDL in mmol/L] * [anticipated proportional LDL reduction] * [anticipated ASCVD
202	relative risk reduction]).

203 NNS_{5y} to prevent one ASCVD event were calculated based on the NNT_{5y} and NT-

204 proBNP level distributions for trial eligible subgroups. NNS_{5y} were calculated by multiplying

205 NNT_{5y} with inverse probability of the prevalence of the NT-proBNP threshold, in total

206 population and trial eligible subgroups.

207 Sensitivity analyses restricted to a composite coronary heart disease (CHD) outcome

208 were performed and presented the corresponding results in the Supplemental Material. The CHD

209 outcome was defined as a composite of myocardial infarction, coronary revascularization, and

210 CHD mortality.¹⁹ For CHD, the relative risk reduction of 29% in CHD events was used for each

211 38.7 mg/dL (1.0 mmol/L) of LDL cholesterol lowering to calculate respective NNT_{5y} and

212 NNS_{5y}.³

We had complete data for 95.7% of traditional cardiovascular risk factors. Missing values were handled by single imputation using an expectation-maximization algorithm, separately for each sex, using age and all other traditional risk factors.²⁷ We used IBM SPSS Statistics version 25.0 (IBM Corp, Armonk, NY, USA) and R version 4.0.4 (R Foundation for Statistical Computing, Vienna, Austria) for all analyses.

218

219 **RESULTS**

220 Median age in the total population was 61.6 years and 58.9% were women. The median NT-

proBNP was 60 pg/mL (Table 2). MEGA eligible individuals were younger and had lower

12

222	median NT-proBNP	levels compared	to JUPITER	and HOPE-3	eligible individuals.	The HOPE-

- 223 3 eligible population had the most unfavorable lipid profile.
- 224 Overall, 1896 (34.9%, 95%CI: 33.6-36.2), 567 (10.4%, 95%CI: 9.6-11.3), and 1287
- 225 (23.7%, 95%CI: 22.6-24.8) individuals of the total study population fitted the eligibility criteria
- for MEGA, JUPITER, and HOPE-3, respectively (Figure 1). JUPITER had the highest
- proportion of eligible individuals with NT-proBNP levels >100 pg/mL (41.1%), as compared to
- MEGA (21.7%) and HOPE-3 (30.6%) eligible individuals (Table 2).
- In total population, during a mean (SD) follow-up of 9.9 (4.2) years, 681 first ASCVD
- events in total were observed, corresponding to an ASCVD event rate of 12.6 (95% CI: 11.7-

13.6) per 1000 person-years. Among trial eligible individuals with NT-proBNP levels >100

pg/mL, JUPITER had the highest ASCVD incidence rate (24.0 per 1000 person-years), and

233 MEGA the lowest (15.0 per 1000 person-years) (Table S2).

234 NT-proBNP >100 pg/mL was significantly associated with ASCVD incidence after

adjusting for traditional risk factors (model 2) in the total study population and among

236 individuals eligible for MEGA (Figures 2). Multivariable adjusted HR for ASCVD events

comparing NT-proBNP levels of >100 pg/mL and \leq 50 pg/mL were 1.56 (95% CI: 1.27-1.91;

238 P<0.001) in the total population, 1.72 (95% CI: 1.20-2.45; P=0.003) among MEGA eligible, 1.46

239 (95% CI: 0.80-2.67; P=0.213) among JUPITER eligible, and 1.50 (95% CI: 1.00-2.27; P=0.052)

among HOPE-3 eligible individuals (Figure 2). Adjustment for traditional risk factors only

241 marginally affected the HR (Table S3). The ASCVD free survival was lowest across all trial

eligible individuals when NT-proBNP levels were >100 pg/mL (Figure 3).

Estimated NNT_{5v} to avoid one ASCVD event were lowest for JUPITER eligible

individuals, except for those with NT-proBNP levels \leq 50 pg/mL (Figure 4, Table S4). Among

245	MEGA, JUPITER and HOPE-3 eligible with NT-proBNP levels >100 pg/mL, 48, 39 and 56
246	individuals would need to be treated with moderate-intensity statins for 5 years to prevent one
247	ASCVD event. With high-intensity statins, NNT_{5y} were 29 for MEGA, 23 for JUPITER, and 34
248	for HOPE-3.
249	Among individuals with NT-proBNP levels >100 pg/mL for MEGA, JUPITER, and
250	HOPE-3 eligible, NNS_{5y} based on the NNT_{5y} with high-intensity statins were 134, 56 and 111,
251	respectively (Figure 4). Estimated NNT_{5y} and NNS_{5y} were lower for high-intensity statin
252	treatment compared to moderate-intensity statin treatment (Table S4).
253	Results for CHD outcomes followed a similar pattern to those for ASCVD (Tables S5
254	and S6, Figures S2 and S3). Estimated NNT_{5y} and NNS_{5y} to prevent an ASCVD event were
255	lower than those needed to prevent a CHD event (Table S4).
256	
257	DISCUSSION
257 258	DISCUSSION NT-proBNP levels >100 pg/mL identify individuals at an increased risk of ASCVD among
257 258 259	DISCUSSION NT-proBNP levels >100 pg/mL identify individuals at an increased risk of ASCVD among individuals at low- to intermediate risk who are eligible for statin RCT for primary prevention of
257 258 259 260	DISCUSSION NT-proBNP levels >100 pg/mL identify individuals at an increased risk of ASCVD among individuals at low- to intermediate risk who are eligible for statin RCT for primary prevention of ASCVD. ⁵⁻⁷ We found comparable numbers needed to treat to those reported by the three original
257 258 259 260 261	DISCUSSION NT-proBNP levels >100 pg/mL identify individuals at an increased risk of ASCVD among individuals at low- to intermediate risk who are eligible for statin RCT for primary prevention of ASCVD. ⁵⁻⁷ We found comparable numbers needed to treat to those reported by the three original trials. Our results imply that NT-proBNP could be considered as a risk refining tool among
257 258 259 260 261 262	DISCUSSION NT-proBNP levels >100 pg/mL identify individuals at an increased risk of ASCVD among individuals at low- to intermediate risk who are eligible for statin RCT for primary prevention of ASCVD. ⁵⁻⁷ We found comparable numbers needed to treat to those reported by the three original trials. Our results imply that NT-proBNP could be considered as a risk refining tool among individuals at low- to intermediate risk for primary prevention of ASCVD.
257 258 259 260 261 262 263	DISCUSSION NT-proBNP levels >100 pg/mL identify individuals at an increased risk of ASCVD among individuals at low- to intermediate risk who are eligible for statin RCT for primary prevention of ASCVD. ⁵⁻⁷ We found comparable numbers needed to treat to those reported by the three original trials. Our results imply that NT-proBNP could be considered as a risk refining tool among individuals at low- to intermediate risk for primary prevention of ASCVD. The percentages of eligibility for three statin primary prevention trials were 34.9% for
257 258 259 260 261 262 263 263	DISCUSSION NT-proBNP levels >100 pg/mL identify individuals at an increased risk of ASCVD among individuals at low- to intermediate risk who are eligible for statin RCT for primary prevention of ASCVD. ⁵⁻⁷ We found comparable numbers needed to treat to those reported by the three original trials. Our results imply that NT-proBNP could be considered as a risk refining tool among individuals at low- to intermediate risk for primary prevention of ASCVD. The percentages of eligibility for three statin primary prevention trials were 34.9% for MEGA, 10.4% for JUPITER and 23.7% for HOPE-3, with minimal overlap between trials,
257 258 259 260 261 262 263 264 265	DISCUSSION NT-proBNP levels >100 pg/mL identify individuals at an increased risk of ASCVD among individuals at low- to intermediate risk who are eligible for statin RCT for primary prevention of ASCVD. ⁵⁻⁷ We found comparable numbers needed to treat to those reported by the three original trials. Our results imply that NT-proBNP could be considered as a risk refining tool among individuals at low- to intermediate risk for primary prevention of ASCVD. The percentages of eligibility for three statin primary prevention trials were 34.9% for MEGA, 10.4% for JUPITER and 23.7% for HOPE-3, with minimal overlap between trials, meaning that these trials differentially selected low- to intermediate risk profiles in the general
257 258 259 260 261 262 263 264 265 266	DISCUSSION NT-proBNP levels >100 pg/mL identify individuals at an increased risk of ASCVD among individuals at low- to intermediate risk who are eligible for statin RCT for primary prevention of ASCVD. ⁵⁻⁷ We found comparable numbers needed to treat to those reported by the three original trials. Our results imply that NT-proBNP could be considered as a risk refining tool among individuals at low- to intermediate risk for primary prevention of ASCVD. The percentages of eligibility for three statin primary prevention trials were 34.9% for MEGA, 10.4% for JUPITER and 23.7% for HOPE-3, with minimal overlap between trials, meaning that these trials differentially selected low- to intermediate risk profiles in the general population free of ASCVD. Overall, 57.2% of the general population sample free of ASCVD and

14

268	evidence of the statin efficacy to prevent ASCVD is established. This finding emphasizes the
269	broad evidence base for statin use in primary prevention of ASCVD, which is in stark contrast
270	with the small number of selected very high-risk individuals that is currently strongly
271	recommended statin therapy in the most recent European prevention guidelines. ²⁸ Although NT-
272	proBNP >100 pg/mL was significantly associated with ASCVD incidence in the total study
273	population and MEGA eligible individuals (Figures 2), but not among JUPITER and HOPE-3
274	eligible, the association was comparable across trial eligible populations. The lack of significant
275	association might be explained with limited number of events during follow-up, given that
276	substantially fewer individuals qualified for JUPITER and HOPE-3 compared to MEGA (Table
277	S3).
278	In this study we used NT-proBNP as a tool to refine ASCVD risk to identify low- to
279	intermediate risk individuals for whom evidence supports preventive statin treatment. To
280	examine the yield of statin treatment in the trial eligible population we calculated NNT_{5y} and
281	NNS _{5y} . NNT is commonly used in clinical trials to assess the acceptability of the investigated
282	intervention. ^{29,30} Generally, the lower the NNT, the more acceptable the intervention is. NNT
283	over approximately five years of statin treatment reported by the three evaluated statin trials
284	ranged from 25 to 119 (Table 1). ⁵⁻⁸ In the present study, we report comparable NNT _{5y} varying
285	from 23 to 34 for ASCVD for high-intensity statins to prevent one event among trial eligible
206	
200	individuals with NT-proBNP levels >100 pg/mL. In addition, NNS provides an estimate of the

proBNP levels >100 pg/mL, and subsequently prevent one ASCVD event in the coming five
years. In our study, among trial eligible individuals, NNS_{5y} ranged between 56 to 134 with high-

intensity statins. Our results indicate that NT-proBNP level >100 pg/mL can identify individuals

15

at the highest ASCVD risk among low- to intermediate risk populations who are likely to benefit from statin treatment at acceptable NNT_{5y} and NNS_{5y} . Ultimately, whether these estimated NNT_{5y} and NNS_{5y} are acceptable for clinical practice is highly dependent on the healthcare system. Although NNT has its limitations,³⁰ it can inform a shared decision-making between patient and healthcare provider regarding the pros and cons of statin use in primary prevention of ASCVD.

297

298 Implications

299 As apparently healthy individuals at low- to intermediate ASCVD risk are more likely to have ASCVD risk around the decision thresholds, in this population NT-proBNP can further 300 inform decision regarding the allocation of statin treatment. We demonstrated that statin 301 302 initiation in this population based on NT-proBNP level of >100 pg/mL could be acceptable in terms of how many individuals would need to be screened and treated with statins to avoid one 303 ASCVD event. Current US and European ASCVD prevention guidelines do not yet recommend 304 the use of NT-proBNP as a risk enhancer or modifier for risk stratification.^{1,2} In contrast, NT-305 proBNP has been endorsed in the latest iteration of the ESC guidelines for peri-operative cardiac 306 care to identify apparently healthy individuals at increased risk for peri-operative cardiac 307 events.³¹ Furthermore, compared to imaging methods endorsed by the US and European ASCVD 308 prevention guidelines, the price of a single NT-proBNP measurement is considerably lower. In 309 310 addition, NT-proBNP testing could be easily integrated into routine clinical practice. Our results suggest that the application of NT-proBNP as a risk refining tool for primary prevention warrants 311 312 further evaluation, including defining optimal age- and sex-specific thresholds for clinical 313 decision-making in ASCVD risk refinement. For example, NT-proBNP levels are higher in

16

women,³² NT-proBNP increases with age,²⁴ and co-morbidities further affect levels of NT proBNP.³³

316

317 Limitations

318 Specific limitations of our study need to be addressed. As most of the Rotterdam Study

population is of European descent (95.7% white), our findings require validation in other

320 ethnicities. Although large differences across ethnicities are not expected, it is relevant to

321 establish generalizability in different populations. Due to the healthy volunteer effect observed in

the Rotterdam Study cohort, the prevalence of cardiovascular risk factors and ASCVD incidence

rates during follow-up are likely somewhat lower than in real-world data setting.³⁴ Therefore, our

results need to be interpreted with caution when extrapolating findings to the broader population

325 accessing healthcare services.

326

327 Conclusions

328 NT-proBNP levels >100 pg/mL identify individuals at the highest ASCVD risk among low- to 329 intermediate risk populations who are likely to benefit from statin treatment at acceptable NNT_{5y} 330 and NNS_{5y}. Almost 60% of the general population free of ASCVD and diabetes was eligible for 331 at least one of three statin RCT, and one out four had NT-proBNP levels >100 pg/mL.

17

332 Acknowledgments

- 333 The dedication, commitment, and contribution of inhabitants, general practitioners, and
- pharmacists to the Rotterdam Study are gratefully acknowledged.
- 335

336 Sources of Funding

- 337 The Rotterdam Study is supported by the Erasmus MC and Erasmus University Rotterdam; the
- 338 Netherlands Organization for Scientific Research (NWO); the Netherlands Organization for
- Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly;
- the Netherlands Genomics Initiative; the Ministry of Education, Culture, and Science; the
- 341 Ministry of Health, Welfare, and Sports; the European Commission (DG XII); and the
- 342 Municipality of Rotterdam. Dr Pavlović was supported by Erasmus Mundus Western Balkans, a
- project funded by the European Commission. The funders had no role in the design and conduct
- of the study; collection, management, analysis, and interpretation of the data; preparation,
- review, or approval of the manuscript; and decision to submit the manuscript for publication.

346

347 Disclosures

- 348 All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts
- of Interest. Dr Leening reports receiving speaker fees from Sanofi; Daiichi Sankyo; and
- 350 Novartis; and served on an advisory board for Boehringer Ingelheim. No other disclosures were

351 reported.

352

354 Supplemental Material

- 355 Supplemental Methods
- 356 Tables S1-S6
- 357 Figures S1-S3
- 358 References 35-36

19

359 **References**

- 1. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de
- 361 Ferranti S, Faiella-Tommasino J, Forman DE. 2018
- 362 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA
- 363 guideline on the management of blood cholesterol: a report of the American College of
- 364 Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J
- 365 *Am Coll Cardiol*. 2019;73:e285-e350.
- 2. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, Benetos A,
- 367 Biffi A, Boavida J-M, Capodanno D, et al. 2021 ESC Guidelines on cardiovascular
- 368 disease prevention in clinical practice: Developed by the Task Force for cardiovascular
- 369 disease prevention in clinical practice with representatives of the European Society of
- 370 Cardiology and 12 medical societies With the special contribution of the European
- Association of Preventive Cardiology (EAPC). *Eur Heart J.* 2021;42:3227-3337. doi:
- 372 10.1093/eurheartj/ehab484
- 373 3. Cholesterol Treatment Trialists' (CTT) Collaborators. The Effects of Lowering LDL
- 374 Cholesterol with Statin Therapy in People at Low Risk of Vascular Disease: Meta-
- analysis of Individual Data from 27 Randomised Trials. *Lancet*. 2012;380:581-590. doi:
- 376 10.1016/S0140-6736(12)60367-5
- 4. Taylor F, Huffman MD, Macedo AF, Moore TH, Burke M, Davey Smith G, Ward K,
- 378Ebrahim S. Statins for the primary prevention of cardiovascular disease. Cochrane
- 379 *Database Syst Rev.* 2013;1:CD004816.
- 380 5. Nakamura H, Arakawa K, Itakura H, Kitabatake A, Goto Y, Toyota T, Nakaya N,
- 381 Nishimoto S, Muranaka M, Yamamoto A, et al. Primary prevention of cardiovascular

382		disease with pravastatin in Japan (MEGA Study): a prospective randomised controlled
383		trial. Lancet. 2006;368:1155-1163. doi: 10.1016/s0140-6736(06)69472-5
384	6.	Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto Jr. AM, Kastelein JJ, Koenig W,
385		Libby P, Lorenzatti AJ, MacFadyen JG, et al. Rosuvastatin to prevent vascular events in
386		men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195-2207.
387	7.	Yusuf S, Bosch J, Dagenais G, Zhu J, Xavier D, Liu L, Pais P, Lopez-Jaramillo P, Leiter
388		LA, Dans A, et al. Cholesterol Lowering in Intermediate-Risk Persons without
389		Cardiovascular Disease. N Engl J Med. 2016;374:2021-2031. doi:
390		10.1056/NEJMoa1600176
391	8.	Bosch J, Lonn EM, Jung H, Zhu J, Liu L, Lopez-Jaramillo P, Pais P, Xavier D, Diaz R,
392		Dagenais G, et al. Lowering cholesterol, blood pressure, or both to prevent cardiovascular
393		events: results of 8.7 years of follow-up of Heart Outcomes Evaluation Prevention
394		(HOPE)-3 study participants. Eur Heart J. 2021;42:2995-3007. doi:
395		10.1093/eurheartj/ehab225
396	9.	Pavlović J, Greenland P, Deckers JW, Kavousi M, Hofman A, Ikram MA, Franco OH,
397		Leening MJ. Assessing gaps in cholesterol treatment guidelines for primary prevention of
398		cardiovascular disease based on available randomised clinical trial evidence: The
399		Rotterdam Study. Eur J Prev Cardiol. 2018;25:420-431. doi:
400		10.1177/2047487317743352
401	10.	Ioannidis JP. More than a billion people taking statins? Potential implications of the new
402		cardiovascular guidelines. JAMA. 2014;311:463-464.
403	11.	Abramson JD, Redberg RF. The opinion pages: Don't give more patients statins. In: The
404		New York Times. 2013:A33.

405	12.	Navar AM. Questioning the Benefit of Statins for Low-Risk Populations-Medical
406		Misinformation or Scientific Evidence?—Reply. JAMA Cardiology. 2019. doi:
407		10.1001/jamacardio.2019.5123
408	13.	Kavousi M, Elias-Smale S, Rutten JHW, Leening MJG, Vliegenthart R, Verwoert GC,
409		Krestin GP, Oudkerk M, de Maat MPM, Leebeek FWG. Evaluation of Newer Risk
410		Markers for Coronary Heart Disease Risk Classification: A Cohort Study. Ann Intern
411		Med. 2012;156:438-444. doi: 10.7326/0003-4819-156-6-201203200-00006
412	14.	Lemos JAd, Ayers CR, Levine BD, deFilippi CR, Wang TJ, Hundley WG, Berry JD,
413		Seliger SL, McGuire DK, Ouyang P, et al. Multimodality Strategy for Cardiovascular
414		Risk Assessment. Circulation. 2017;135:2119-2132. doi:
415		doi:10.1161/CIRCULATIONAHA.117.027272
416	15.	Ledwidge MT, O'Connell E, Gallagher J, Tilson L, James S, Voon V, Bermingham M,
417		Tallon E, Watson C, O'Hanlon R. Cost-effectiveness of natriuretic peptide-based
418		screening and collaborative care: a report from the STOP-HF (St Vincent's Screening TO
419		Prevent Heart Failure) study. Eur J Heart Failure. 2015;17:672-679.
420	16.	Ikram MA, Kieboom BCT, Brouwer WP, Brusselle G, Chaker L, Ghanbari M,
421		Goedegebure A, Ikram MK, Kavousi M, de Knegt RJ, et al. The Rotterdam Study.
422		Design update and major findings between 2020 and 2024. Eur J Epidemiol. 2024.
423	17.	Rutten JHW, Mattace-Raso FUS, Steyerberg EW, Lindemans J, Hofman A, Wieberdink
424		RG, Breteler MMB, Witteman JCM, Meiracker AHvd. Amino-Terminal Pro-B-Type
425		Natriuretic Peptide Improves Cardiovascular and Cerebrovascular Risk Prediction in the
426		Population. Hypertension. 2010;55:785-791. doi:
427		doi:10.1161/HYPERTENSIONAHA.109.143313

428	18.	Yeo KT, Wu AH, Apple FS, Kroll MH, Christenson RH, Lewandrowski KB, Sedor FA,
429		Butch AW. Multicenter evaluation of the Roche NT-proBNP assay and comparison to the
430		Biosite Triage BNP assay. Clin Chim Acta. 2003;338:107-115. doi:
431		10.1016/j.cccn.2003.08.016
432	19.	Leening MJG, Kavousi M, Heeringa J, van Rooij FJ, Verkroost-van Heemst J, Deckers
433		JW, Mattace-Raso FU, Ziere G, Hofman A, Stricker BH, et al. Methods of Data
434		Collection and Definitions of Cardiac Outcomes in the Rotterdam Study. Eur J
435		Epidemiol. 2012;27:173-185.
436	20.	Berghout BP, Bos D, Koudstaal PJ, Ikram MA, Ikram MK. Risk of recurrent stroke in
437		Rotterdam between 1990 and 2020: a population-based cohort study. Lancet Reg Health
438		Eur. 2023;30:100651.
439	21.	Nakamura H. Design and baseline characteristics of a study of primary prevention of
440		coronary events with pravastatin among Japanese with mildly elevated cholesterol levels.
441		<i>Circ J.</i> 2004;68:860-867.
442	22.	Bos MJ, van Rijn MJ, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM. Incidence
443		and Prognosis of Transient Neurological Attacks. JAMA. 2007;298:2877-2885. doi:
444		10.1001/jama.298.24.2877
445	23.	Maitland-van der Zee AH, Klungel OH, Stricker BHC, van der Kuip DA, Witteman JC,
446		Hofman A, Leufkens HG, de Boer A. Repeated Nitrate Prescriptions as a Potential
447		Marker for Angina Pectoris. A Comparison with Medical Information from the
448		Rotterdam Study. Pharm World Sci. 2003;25:70-72. doi: 10.1023/a:1023292830670
449	24.	Januzzi JL, van Kimmenade R, Lainchbury J, Bayes-Genis A, Ordonez-Llanos J,
450		Santalo-Bel M, Pinto YM, Richards M. NT-proBNP testing for diagnosis and short-term

			23
451		prognosis in acute destabilized heart failure: an international pooled analysis of 1256	
452		patients: the International Collaborative of NT-proBNP Study. Eur Heart J. 2006;27:33	30-
453		337. doi: 10.1093/eurheartj/ehi631	
454	25.	Ndumele CE, Matsushita K, Sang Y, Lazo M, Agarwal SK, Nambi V, Deswal A,	
455		Blumenthal RS, Ballantyne CM, Coresh J, et al. N-Terminal Pro-Brain Natriuretic	
456		Peptide and Heart Failure Risk Among Individuals With and Without Obesity: The	
457		Atherosclerosis Risk in Communities (ARIC) Study. Circulation. 2016;133:631-638.	
458	26.	Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, Blumenthal R,	
459		Danesh J, Smith GD, DeMets D, et al. Interpretation of the Evidence for the Efficacy and	nd
460		Safety of Statin Therapy. Lancet. 2016;388:2532-2561. doi: 10.1016/S0140-	
461		6736(16)31357-5	
462	27.	Dempster AP, Laird NM, Rubin DB. Maximum Likelihood From Incomplete Data via	
463		the EM Algorithm. Journal of the Royal Statistical Society Series B (Methodological).	
464		1977;39:1-38. doi: 10.1111/j.2517-6161.1977.tb01600.x	
465	28.	Mortensen MB, Tybjærg-Hansen A, Nordestgaard BG. Statin Eligibility for Primary	
466		Prevention of Cardiovascular Disease According to 2021 European Prevention	
467		Guidelines Compared With Other International Guidelines. JAMA Cardiol. 2022;7:836)—
468		843.	
469	29.	Elliott MH, Skydel JJ, Dhruva SS, Ross JS, Wallach JD. Characteristics and Reporting	of
470		Number Needed to Treat, Number Needed to Harm, and Absolute Risk Reduction in	
471		Controlled Clinical Trials, 2001-2019. JAMA Intern Med. 2021;181:282-284.	
472	30.	Saver JL, Lewis RJ. Number Needed to Treat: Conveying the Likelihood of a	

473 Therapeutic Effect. *JAMA*. 2019;321:798-799. doi: 10.1001/jama.2018.21971

474	31.	Halvorsen S, Mehilli J, Cassese S, Hall TS, Abdelhamid M, Barbato E, De Hert S, de
475		Laval I, Geisler T, Hinterbuchner L, et al. 2022 ESC Guidelines on cardiovascular
476		assessment and management of patients undergoing non-cardiac surgery: Developed by
477		the task force for cardiovascular assessment and management of patients undergoing non-
478		cardiac surgery of the European Society of Cardiology (ESC) Endorsed by the European
479		Society of Anaesthesiology and Intensive Care (ESAIC). Eur Heart J. 2022;43:3826-
480		3924. doi: 10.1093/eurheartj/ehac270
481	32.	Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC.
482		Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll
483		Cardiol. 2002;40:976-982.
484	33.	Bernstein LH, Zions MY, Alam ME, Haq SA, Heitner JF, Zarich S, Seamonds B, Berger
485		S. What is the best approximation of reference normal for NT-proBNP? Clinical levels
486		for enhanced assessment of NT-proBNP (CLEAN). Journal of Medical Laboratory and
487		Diagnosis. 2011;2:16-21.
488	34.	Leening MJG, Heeringa J, Deckers JW, Franco OH, Hofman A, Witteman JC, Stricker
489		BH. Healthy Volunteer Effect and Cardiovascular Risk. <i>Epidemiology</i> . 2014;25:470-471.
490		doi: 10.1097/EDE.00000000000000000000000000000000000
491	35.	Friedewald Levy R. I. FDS, William T. Estimation of the concentration of low-density
492		lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin
493		Chem. 1972;18:499-502.
494	36.	Expert Panel. Executive Summary of The Third Report of The National Cholesterol
495		Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of
496		High Blood Cholesterol In Adults (Adult Treatment Panel III). Expert Panel on

497		Detection, Evaluation and Trea. JAMA. 2001;285:2486-2497. doi:
498		10.1001/jama.285.19.2486
499	37.	Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, Dallongeville J, De
500		Backer G, Ebrahim S, Gjelsvik B, et al. European guidelines on cardiovascular disease
501		prevention in clinical practice: executive summary: Fourth Joint Task Force of the
502		European Society of Cardiology and Other Societies on Cardiovascular Disease
503		Prevention in Clinical Practice (Constituted by r. Eur Heart J. 2007;28:2375-2414.
504		
505		

RCT characteristics	MEGA, 2006	JUPITER, 2008	HOPE-3, 2016
Statin	Pravastatin 10-20 mg	Rosuvastatin 20 mg	Rosuvastatin 10 mg
Sample size	7,832	17,802	12,705
Mean follow-up, y	5.3	1.9*	5.6*
Age, y	40-70	50-97	≥55
Major entry criteria ⁺			
Cholesterol (mg/dL)	Total 200-270	LDL <130	None
Other major criteria	Postmenopausal women	Men ≥50 y, women ≥60 y; C-reactive protein ≥2 mg/L	Men \geq 55 y, women \geq 65 y; \geq 1 additional risk factor
Outcomes			
Definition	 Composite of major CHD, sudden cardiac death, angina, and revascularization; Composite of all CHD, stroke, and CVD death. 	- Composite of non-fatal MI, non- fatal stroke, revascularization, hospital admission for angina, and confirmed CVD death.	 Composite of CVD death, non-fatal MI, and non-fatal stroke; Composite of CVD death, resuscitated cardiac arrest, non-fatal MI, non-fatal stroke, heart failure, and revascularizations.
Control events (event rate per 1000 pys)	101/3966 (5.0); 172/3966 (8.5)	251/8901 (13.6)	304/6344 (9.8 [‡]); 363/6344 (11.5 [‡])
Treatment events (event rate per 1000 pys)	66/3866 (3.3); 125/3866 (6.4)	142/8901 (7.7)	235/6361 (7.7 [‡]); 277/6361(9.0 [‡])
Treatment effect, HR	0.67 (95% CI: 0.49-0.91; P=0.01); 0.74 (95% CI: 0.59-0.94; P=0.01)	0.56 (95%CI: 0.46-0.69; P<0.001)	0.76 (95% CI: 0.64–0.91; P=0.002); 0.75 (95% CI: 0.64–0.88; P<0.001)
NNT		8	01
Per outcome definition	119; 91	25 ^s	91; 73

507 Table 1. Overview of the clinical trial characteristics

508 ^{*} Median.

[†] Major criteria presented in the table were simplified for didactic purposes. Detailed inclusion and exclusion criteria per RCT, and

- 510 data availability are presented in Table S1.
- [‡] Event rates for treatment and control group were only provided for the follow-up period of 8.7 years (i.e., including 3.1 years of post
 RCT follow-up).⁵
- [§]As JUPITER trial ended earlier, the trial authors calculated NNT over an average period of 5 years to be 25.⁶

514

515 Abbreviations: CHD, coronary heart disease; CVD, cardiovascular disease; HOPE-3, Heart Outcomes Prevention Evaluation-3; HR,

516 hazard ratio; JUPITER, Justification for the Use of Statins in Prevention: Intervention Trial Evaluating Rosuvastatin; LDL, low-

- 517 density lipoprotein; MEGA, The Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese; MI,
- 518 myocardial infarction; NNT, number needed to treat; RCT, randomized controlled trial.

Table 2. Population characteristics

	Total population (n=5434)	MEGA eligible (n=1896)	JUPITER eligible (n=567)	HOPE-3 eligible (n=1287)
Age, y	61.6 (56.7-69.1)	60.8 (57.2-64.5)	67.0 (61.8-75.1)	65.6 (61.2-72.4)
Women	3199 (58.9)	1128 (59.5)	281 (49.6)	620 (48.2)
Total cholesterol, mg/dL	220 (197-242)	205 (181-230)	191 (174-204)	239 (229-251)
HDL cholesterol, mg/dL	54 (45-66)	51 (44-62)	51 (42-64)	55 (46-67)
LDL cholesterol, mg/dL	140 (119-159)	126 (108-149)	113 (102-123)	157 (146-169)
Triglycerides, mg/dL	109 (83-149)	106 (83-144)	104 (81-146)	120 (91-160)
Systolic blood pressure, mmHg	134 (122-147)	133 (122-146)	138 (126-150)	132 (122-143)
Diastolic blood pressure, mmHg	78 (71-85)	79 (72-86)	77 (70-85)	76 (69-83)
Current smoking	1208 (22.2)	468 (24.7)	149 (26.3)	210 (16.3)
Body mass index, kg/m^2	26.3 (24.0-29.0)	26.5 (24.2-29.0)	27.1 (24.5-30.5)	26.6 (24.3-29.3)
Waist-hip-ratio, ratio	0.88 (0.82-0.95)	0.88 (0.82-0.94)	0.92 (0.86-0.98)	0.93 (0.88-0.97)
Glucose, mg/dL	97 (92-104)	99 (92-106)	99 (94-106)	97 (92-104)
CRP, mg/L	1.4 (0.6-3.2)	1.2 (0.5-2.6)	4.1 (2.8-6.9)	1.6 (0.6-3.6)
eGFR, mL/min/1.73m ²	83 (72-94)	84 (75-94)	77 (67-87)	78 (68-89)
Blood pressure lowering medication use	201 (3.7)	49 (2.6)	34 (6.0)	56 (4.4)
NT-proBNP, pg/mL	60 (33-110)	50 (29-89)	79 (42-152)	64 (35-116)
NT-proBNP ≤50 pg/mL	2296 (42.3)	946 (49.9)	183 (32.3)	519 (40.3)
NT-proBNP 50-100 pg/mL	1589 (29.2)	539 (28.4)	151 (26.6)	375 (29.1)
NT-proBNP >100 pg/mL	1549 (28.5)	411 (21.7)	233 (41.1)	393 (30.6)

521 Values are medians (IQR) or counts (%).

- To convert total, LDL, and HDL cholesterol from mg/dL to SI (mmol/L) divide by 38.7, and for triglycerides by 88.6; glucose from
 mg/dL to SI (mmol/L) divide by 18; CRP from mg/L to SI (nmol/L) multiply by 9.5; NT-proBNP from pg/mL to SI (pmol/L) multiply
 by 0.12.
- 525
- 526 Abbreviations: CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; HOPE-3, Heart
- 527 Outcomes Prevention Evaluation-3; JUPITER, Justification for the Use of Statins in Prevention: Intervention Trial Evaluating
- 528 Rosuvastatin; LDL, low-density lipoprotein; MEGA, The Management of Elevated Cholesterol in the Primary Prevention Group of
- 529 Adult Japanese; NT-proBNP, N-terminal pro-B-type natriuretic peptide.

30

530 Figure 1. General population eligibility for statin trials in primary prevention of ASCVD

531 targeting low- and intermediate risk individuals

- 533 Abbreviations: ASCVD, atherosclerotic cardiovascular disease; HOPE-3, Heart Outcomes
- 534 Prevention Evaluation-3; JUPITER, Justification for the Use of Statins in Prevention:
- 535 Intervention Trial Evaluating Rosuvastatin; MEGA, The Management of Elevated Cholesterol in
- the Primary Prevention Group of Adult Japanese.

31

537 Figure 2. Adjusted hazard ratios for incident ASCVD

538

540

transformed NT-proBNP values, comparing two NT-proBNP categories with NT-proBNP \leq 50

543 pg/mL (reference group) in total population and per trial eligible subpopulations.

544

545 Abbreviations: ASCVD, atherosclerotic cardiovascular disease; HDL, high-density lipoprotein;

546 HOPE-3, Heart Outcomes Prevention Evaluation-3; JUPITER, Justification for the Use of

547 Statins in Prevention: Intervention Trial Evaluating Rosuvastatin; MEGA, The Management of

- 548 Elevated Cholesterol in the Primary Prevention Group of Adult Japanese; NT-proBNP, N-
- 549 terminal pro-B-type natriuretic peptide.

550 Figure 3. ASCVD free survival curves by NT-proBNP level and trial eligibility

551

552

554 Prevention Evaluation-3; JUPITER, Justification for the Use of Statins in Prevention:

555 Intervention Trial Evaluating Rosuvastatin; MEGA, The Management of Elevated Cholesterol in

the Primary Prevention Group of Adult Japanese; NT-proBNP, N-terminal pro-B-type natriuretic

557 peptide.

34

560 Figure 4. Numbers needed to treat and screen for five years to avoid a single ASCVD event

561 with high-intensity statins

562

563 Panel A, Numbers needed to treat for five years to avoid a single ASCVD event with high-

intensity statins, by NT-proBNP level. Panel B, Numbers needed to screen for five years to avoid

a single ASCVD event with high-intensity statins, by NT-proBNP level.

566

567 Abbreviations: ASCVD, atherosclerotic cardiovascular disease; HOPE-3, Heart Outcomes

568 Prevention Evaluation-3; JUPITER, Justification for the Use of Statins in Prevention:

- 569 Intervention Trial Evaluating Rosuvastatin; MEGA, The Management of Elevated Cholesterol in
- 570 the Primary Prevention Group of Adult Japanese; NT-proBNP, N-terminal pro-B-type natriuretic
- 571 peptide.