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Abstract

Purpose: Understanding the intricate relationships between sleep quality and
cardiovascular outcomes can potentially offer new avenues in risk stratification for
cardiovascular diseases (CVD). This study aimed to evaluate the significance of
biological age predicted through the analysis of sleep stages and nocturnal heart
rhythms as a marker for cardiovascular risk.

Methods: We leveraged an unsupervised learning approach to generate time-series
clusters utilizing whole-night sleep data from N = 900 patients, focusing on identifying
shifts and consistencies in nocturnal heart rhythms that may indicate variations in
cardiac health. Following this, a deep learning model was applied to the time-series
clusters to estimate the biological age of the individuals, thereby delineating potential
relationships between predicted age, biological age, sleep patterns, and heart rhythms.

Results: In a distinct test set of 736 individuals, the predicted age based on this
experiment showcased a higher association with mortality (Hazard Ratio (HR) 2.27,
p<0.05) and CVD risk (HR 3.56, p<0.001). Conversely, the age estimated through only
nocturnal heart rhythms demonstrated a HR of 2.29 (p<0.05) for all-cause mortality
and 3.13 (p<0.01) for CVD risk.

Conclusion: Our findings underscore the high prognostic potential of sleep and
electrocardiography data in predicting cardiovascular risks. The method of utilizing
predicted biological age derived from sleep stages and nocturnal heart rhythms stands
as a significant metric in risk stratification for CVD. Further research in this area might
foster novel strategies for early interventions based on sleep quality and cardiac health
markers, potentially saving numerous lives through early detection and intervention.

Author summary

This study conducted on a large database of sleep data containing physiological signals
such as Electrocardiograms, Sleep Stages, anonymized patient information among others
shows that the heart behaviour during sleep is indicative of future cardiovascular (CVD)
risk and all-cause mortality. This study employs deep learning to predict biological age
which is in turn mapped to CVD risk. Through this study, we can see that while heart
rhythms during sleep and different stages of sleep (REM, light sleep, etc) does show an
association with CVD risk (this exists in previous literature), the more reliable
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association is found in heart behaviour during specific sleep stages (which is the novelty
of our work). We use deep learning to map ECG into different clusters (n=50) using
self-supervised learning, and also to find correlation between these clusters and sleep
stages while mapping them to their biological age.

1 Introduction 1

Electrocardiogram (ECG) represent a cornerstone in the diagnostic toolkit for 2

Cardiovascular Diseases (CVD), the leading cause of all-cause mortality globally [1]. 3

Leveraging the versatility of ECGs, researchers have utilized it to ascertain a range of 4

critical details including age, gender [2, 3], and historical cardiac events such as 5

Myocardial Infarction (MI) [4], alongside diagnosing cardiac arrhythmias such as Atrial 6

Fibrillation (AFib) and Supraventricular Tachycardia (SVT) [5, 6]. Through the 7

advancements in deep learning, research has now expanded the potential of ECG 8

beyond traditional applications, enabling the deduction of parameters such as sleep 9

apnea [7], ejection fraction [8], body fat percentage [9], etc. These types of approaches 10

may pave the way for deeper insights into a patient’s cardiac health. 11

Among the mentioned variables, age estimation via deep learning has been a 12

significant area of interest [10]. Despite the crucial role that chronological age plays, 13

offering a straightforward metric denoting the time elapsed since birth, it can be 14

somewhat limited in encapsulating an individual’s health status. This has prompted the 15

exploration of the concept of “biological age”, a potentially more subjective metric that 16

lacks a definitive ground truth. A lot of recent research has embarked on the journey to 17

infer biological ages using various methodologies, each tapping into different dimensions 18

of an individual’s health status - from physical activity levels to chest radiograph 19

assessments [11,12]. 20

Biological age can be defined as the measure that differs from chronological age by 21

considering not only the time elapsed but also a variety of biological and physiological 22

developmental factors, such as genetics, lifestyle, nutrition, and comorbidities, and is 23

also known as physiological or functional age. [13]. 24

It is imperative to recognize that the biological age inferred from different 25

methodologies might not be the same for a single individual, and it serves as an 26

indicator of specific health aspects represented in the source data rather than a holistic 27

measure of age. Drawing on this, our study delineates two distinctive levels of sleep 28

behavior as mediums to infer biological age: 29

• Sleep Stages such as Rapid Eye Movement (REM) sleep, light and deep sleep 30

• Nocturnal Heart Rhythms acquired from ECG and interpreted through 31

unsupervised clustering 32

In the subsequent sections, we delve deeper into the rich data landscape available, 33

delineating our approach to harnessing sleep stages-which offer insights into sleep 34

quality, REM cycle durations, etc, and nocturnal heart rhythm behaviors to infer 35

biological age. This exploration holds a mirror to not just the individual’s chronological 36

age but offers a deeper understanding of their cardiovascular health landscape through 37

the lens of sleep-related behavior. 38

2 Methods 39

This section details the architecture and workflow we use to predict the sleep-related 40

biological age of an individual. 41

April 5, 2024 2/11

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2024. ; https://doi.org/10.1101/2024.04.09.24305561doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.09.24305561
http://creativecommons.org/licenses/by/4.0/


2.1 Heart Cluster Mapping 42

In this study, our objective was to discern the intricate connections between sleep 43

patterns and heart behavior, leveraging an architecture and workflow tailored to predict 44

biological age and its corresponding risk of cardiovascular diseases. Our analysis 45

pivotally relied on the Sleep Heart Health Study (SHHS) dataset [14], which offers 46

electrocardiogram (ECG) data containing the full span of a night’s sleep from the 47

moment of falling asleep to awakening. This dataset presented a vivid tableau of various 48

sleep stages, including REM cycles, light, and deep sleep phases, and instances where 49

patients woke up momentarily, furnishing a robust ground truth for our exploration. We 50

elaborate on this dataset in section 2.3. 51

Data Acquisition and Preprocessing: At the foundation of our analytical 52

pipeline is the preprocessing of the raw ECG signals captured in the SHHS dataset. Our 53

strategy involved dissecting the complex nature of these signals into discernible 54

segments to pave the way for a more nuanced analysis. To this end, we split the 55

continuous ECG recordings into non-overlapping segments, each encapsulating a 56

duration of 10 seconds. It was pivotal to establish a coherent representation of these 57

signals, forming the foundation for the subsequent analytical procedures. 58

Fig 1. Heart Cluster Vector Formation

Self-Supervised Modelling: In this work, we train our self-supervised model on a 59

separate database which is the PhysioNet 2020 Challenge [15]. Although the details of 60

the self-supervised work is out of the scope of this paper, we introduce the methodology 61

behind training this algorithm to make this paper self-contained. 62

The input signal is randomly masked 50% and its inverse mask is also applied to the 63

same signal. These two signals are trained in a non-contrastive manner using the cosine 64

similarity loss. Along with this branch, the first masked signal is also reconstructed to 65

its original signal to learn finer details missing inside the signal without the supervision 66

of the second signal. These two paths are trained simultaneously for 25K epochs. The 67

comparison of the performence of this method to BYOL and ResNet is provided in 68

Table 1 below:

Table 1. Quantitative Evaluation of our Self Supervised Model

Method AUC

Supervised (ResNet) 0.89
BYOL 0.68
Ours 0.79
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We compare our method with BYOL where we train the method with all the same 69

parameters and find an 11% increase from our method. We also show the accuracy of a 70

supervised ResNet classifier for a more clear performance comparison. 71

Feature Vector Construction: We then construct a rich feature vector using the 72

self-supervised model mentioned above, thereby mapping the segmented ECG signals 73

into a 128 dimension feature vector. This process aimed to encapsulate the dynamism 74

and intricacies of the heart’s behavior during various sleep stages in a structured digital 75

representation. Through this lens, we envisioned the heart’s nocturnal narrative 76

unfolding in a series of vectors of 128 dimensions, each narrating a 10-second chapter of 77

the heart’s activity during sleep. This step was essential in reducing the data 78

dimensionality while retaining the critical physiological signatures embedded in the 79

ECG signals, furnishing a repository of features primed for deeper analysis. 80

K-Means Clustering and Hyperparameter Tuning: With a rich feature 81

landscape at our disposal, we engaged in the clustering phase to delineate distinctive 82

patterns in the cardiac narratives crafted in the preceding stage. Implementing a 83

K-Means clustering algorithm [16], we explored a range of configurations for the 84

hyperparameter K, ultimately settling at a value of 50. This choice emanated from a 85

balanced approach, seeking to enhance the granularity of the analysis while forestalling 86

an over-complication that could potentially stem from an exceedingly high K value, 87

thereby striking a harmonious balance between detail and computational feasibility. 88

Temporal Heart Vector Construction: Once we had the cluster mapping, we 89

synthesized temporal heart vectors reflecting the heart’s activity trajectory throughout 90

the night for both the training and test cohorts. The visualization of this temporal 91

evolution offered a rich narrative, traversing through a spectrum of 50 potential states, 92

each symbolizing a unique cardiac state, potentially fluctuating through the night as the 93

individual transited between different sleep stages. 94

At this critical juncture, we crafted visual representations mapping the transitions 95

between different heart states over the course of the night, with a parallel track 96

delineating the various sleep stages. The integration of these narratives into a coherent 97

visualization presented a multifaceted view of the nocturnal cardiac landscape, bridging 98

the physiological narratives with the underlying sleep stages, and laying the groundwork 99

for a deeper exploration into the realms of sleep and cardiovascular health. 100

2.2 Age Regression Track 101

In our endeavor to ascertain an individual’s biological age as a function of our vital 102

signs cluster vector, we employed three distinct experimental setups, each building on 103

the knowledge and framework established in the preceding section. These setups are 104

detailed as follows: 105

1. Utilizing the Heart Cluster Vector alone (Heart Cluster model): The first 106

setup is grounded in the insights gleaned from the heart cluster vector detailed in 107

Section 2.1. 108

2. Employing the Sleep Stage Vector (Sleep Stage model): The second 109

experimental configuration exclusively leverages data encapsulated in the sleep 110

stage vector, a detailed record of a person’s sleep stages marked from 0 to 6, 111

illustrating the nuances of each sleep stage and their transitions. This is obtained 112

via the ground-truth annotation of sleep stages in the dataset, but can also be 113

estimated to a reasonable accuracy via EEG and/or ECG data [17,18]. 114

3. Correlating Heart Cluster and Sleep Stage Vectors (Cluster×Sleep model): 115

Venturing further, our third setup combines the insights drawn from both the 116
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heart cluster and sleep stage vectors and their correlation, fostering a rich ground 117

to explore the intricate correlations between cardiac activities and various sleep 118

stages. 119

Central to these approaches is a cohesive architectural methodology that slightly 120

diversifies when we marry the data streams in the third setup. Here is how we went 121

about it: 122

Mapping Time-Series Data to Learnable Projections: Our raw data comes in 123

time-series categorical format, a structured sequence of data points indexed in time 124

order. To mine this data for biological age predictions, we harnessed it to create 125

learnable projections through embedding layers, a type of neural network layer that 126

learns to map the inputs to a specified dimension space, set here at N = 6. This space 127

was envisioned to be a hotbed for learning, holding the potential to unravel complex 128

patterns through learning algorithms. 129

Transforming Vectors for Deep Insights: Post the mapping process, these 130

vectors underwent transformations to suit the neural networks’ analytical requirements, 131

designed to draw deep insights from the sleeping patterns. In scenarios one and two, 2D 132

convolutions were used with convolutions feature sizes of B × T ×N . Meanwhile, in the 133

third strategy, we devised a method to interlink the two vectors using 3D convolutions 134

of shape B × 2× T ×N , a rich tapestry holding threads of both heart clusters and sleep 135

stage vectors, ready for deep analysis. In this stage, we also use three parallel blocks of 136

different kernel sizes (5, 15, 31) to find patterns that may be both short and long. We 137

also use the appropriate padding to bring these vectors back to the same sizes. 138

Fig 2. Age Regression Architecture

Fine-Tuning and Regression Analysis: The next stage in this process is passing 139

these refined vectors through a shallow 1D convolution network, a structure devised 140

with four distinctive layers, each adding a layer of depth to the analysis, culminating in 141

a pooling stage adaptive to the source vectors’ varying lengths. 142

Anchoring our approach is the belief in treating age prediction not as a stark 143

classification task but as regression analysis, a mathematical approach attuned to 144

predicting outcomes within a continuous output spectrum. This, we believe, holds the 145

key to understanding the subtle, intricate interplays in the rhythmic data. 146

2.3 Dataset 147

The Sleep Heart Health Study Dataset [14] is a multi-center longitudinal cohort study 148

to determine cardiovascular and other sleep-disordered breathing. A total of 6,411 men 149

and women aged above 40 years old were enrolled between November 1, 1995, and 150

January 31, 1998. There were two recordings- one at the baseline visit and another 3 151
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years later. Polysomnographic data including but not limited to 1 lead 152

electrocardiogram, Electroencephalogram (EEG), and blood pressure was recorded at 153

these times during the individual’s sleep period. Cardiovascular outcome data were 154

monitored between baseline and 2011. 155

We use recordings from this dataset that are relevant to our analysis like all night’s 156

ECG data, patient information like age and sex, cardiac outcomes after baseline, and 157

other important information like existing medical conditions like diabetes, hypertension, 158

etc. 159

In our study, we define a cardiovascular outcome when an individual experiences one 160

or more of the following: Stroke, Chronic Heart Failure, MI, and AFIB. We also only 161

consider patients who do not have any of the mentioned cardiovascular diseases at 162

baseline and assign them as high risk if they experience any of the mentioned outcomes 163

in the following period. 164

2.3.1 Ethics Statement 165

The SHHS is a large, multi-center, community-based, prospective cohort study that 166

sought to determine the cardiovascular and other consequences of sleep-disordered 167

breathing (ClinicalTrials.gov Identifier: NCT00005275). The study was performed in 168

accordance with the Helsinki Declaration and each participant provided written 169

informed consent. The current project was approved in April 2020 by the Ethics 170

Committee of National Center of Neurology and Psychiatry (project number: 171

A2020-012). All analyzed data are publicly available (sleepdata.org). 172

3 Results 173

In this study, we introduce and analyze different estimations of age derived from a 174

variety of biological indicators observed through our series of experiments. The distinct 175

outputs from these experiments provide insights into specific aspects of an individual’s 176

health. 177

Firstly, the age estimation obtained from sleep stage data offers a glimpse into the 178

quality of an individual’s sleep behavior, effectively quantifying the efficacy and nature 179

of one’s sleep cycle. On the other hand, age estimations drawn from the heart cluster 180

vector experiment depict nocturnal heart activity, offering a distinct yet complimentary 181

lens through which to analyze an individual’s well-being. Though these estimated ages 182

are rooted in divergent biological mechanisms, they do not operate in isolation. Our 183

findings, delineated in Figure 3, suggest that these predictions exhibit a degree of 184

correlation, highlighting a nuanced interrelationship between different facets of 185

biological age. We also find that the chronological age of the patient is correlated with 186

the ages predicted by the Cluster×Sleep model with an R2 = 0.295 (p = 7.2e−58) and 187

the Heart Cluster model with an R2 = 0.305 (p = 4.5e−60). We found no significant 188

correlation for the Sleep Stages model. 189

To further elucidate the distinctions and correlations between these estimated ages, 190

we segregated the participant pool into differentiated patient groups. Figure 4 191

showcases box plots that encapsulate the divergences between the chronological age and 192

the predicted ages stemming from all three experimental setups. 193

By aligning these findings with the risk parameters for cardiovascular diseases, a 194

discernible pattern emerges. It is evident that individuals with a heightened risk of 195

CVD consistently exhibit a chronological age that surpasses their predicted age, 196

indicating that our age estimation metrics are attuned to the underlying health 197

trajectories and risk profiles of the individuals. This potentially paves the way for a 198

more nuanced understanding and assessment of health risks anchored in empirically 199
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Fig 3. Correlation Plot

(a) Heart Cluster (b) Sleep Stage

(c) Cluster×Sleep

Fig 4. Mean difference across groups for all three experiments for CVD

derived age estimations, opening avenues for more personalized healthcare approaches 200

based on individual biological markers. 201

In each of the three experiments conducted, we delineated the mean disparity as well 202

as the HRs pertaining to all-cause mortality and CVD risk, the details of which are laid 203

out in Table 2. It should be noted that the comprehensive CVD risk encompasses 204

potential hazards stemming from a spectrum of heart-related complications such as 205
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strokes, and heart failures, among other ailments detailed in the SHHS database [14]. 206

A critical assessment of the regression setting reveals a substantial mean error as 207

shown in Table 2. However, determining an optimal benchmark for this metric is not 208

straightforward. A scenario where the regression model operates flawlessly, recording a 209

mean error of zero, implies that the predictive power of the model is synonymous with 210

the chronological age in gauging the patient’s risk profile. It is only through the 211

manifestation of a substantial divergence between the predicted and chronological ages 212

that we can foster a metric capable of evaluating risk beyond the limitations of just 213

chronological age. 214

Table 2. Summary of Risk Stratification of all three experiments. Values are calculated
over 10 different seeds and are shown as Mean (Standard Deviation). We show that age
computed using the correlation of sleep and heart rhythms gives the most statistically
significant result with the highest Hazard Ratio (shown in bold).

Heart Cluster Sleep Stages Cluster × Sleep

Hazard
Ratio

P-
Value

Hazard
Ratio

P-
Value

Hazard
Ratio

P-
Value

Total CVD Risk 3.13
(0.16)

0.01
(0.04)

1.58
(0.17)

0.13
(0.22)

3.56
(0.11)

3.2e-4
(9.6e-
4)

All-Cause Mortality 2.29
(0.05)

0.02
(0.02)

2.23
(0.08)

0.02
(0.04)

2.27
(0.08)

0.02
(0.04)

Mean Error (in years) 14.3 (1.2) 12.4 (0.4) 15.1 (1.3)

Therefore, in the grander scheme of the analysis, the mean deviation emanating from 215

the regression model holds a secondary position in importance. The essence of the 216

inquiry is to capture a significant and meaningful difference between the chronological 217

and predicted ages, facilitating a more nuanced understanding of risk, leveraged by 218

parameters beyond mere age. This approach steers us toward a path where risk 219

assessment is a more holistic and intricate endeavor, leveraging a richer set of data and 220

insights. 221

4 Discussion 222

In this research, we model and assess the deeper correlations between nocturnal heart 223

activity and sleep patterns with the overarching goal of innovating the current methods 224

of stratifying cardiovascular risk. Leveraging the rich data from the SHHS [14] database, 225

we could extract meaningful insights, painting a clearer picture of an individual’s health 226

landscape through our novel age estimation techniques. 227

The approach of using heart rhythm and sleep stage vectors not only unveiled a rich 228

source of information hidden in nocturnal biological processes but also illustrated the 229

importance of individualized health metrics. The distinction between the predicted age 230

and chronological age brought forth a unique perspective, allowing for a more rounded 231

understanding of an individual’s health and potential risks. 232

While the correlations found in this study denote a significant step forward in 233

personalized healthcare, it is pertinent to find explainable causes for the differences in 234

the two ages. Though it stands as a limitation in the current study, it opens avenues for 235

further research to refine these models, perhaps by introducing more variables or 236

leveraging more advanced machine learning algorithms to enhance predictive accuracy. 237
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(a) Heart Cluster (b) Sleep Stage

(c) Cluster×Sleep

Fig 5. Survival Curves for the three experiments

Moreover, understanding that the predicted age carries a meaningful divergence from 238

the chronological age promotes a metric grounded not just in time but in individual 239

biological processes. This represents a shift from a linear perception of age to a 240

multidimensional one, enabling a more granular approach to health risk assessment. 241

5 Conclusion 242

Through this research, it becomes abundantly clear that the nocturnal sleep and heart 243

rhythm data possesses critical information that holds the potential to transform 244

cardiovascular risk stratification. 245

We introduced an analytical framework leveraging deep learning models to decipher 246

patterns in time-series data of nocturnal heart rhythms. The emergence of a meaningful 247

difference between the predicted and chronological ages, as unveiled in our research, 248

stands testimony to the potential of this approach in carving out a more individualized, 249

nuanced, and potent tool for risk assessment in cardiovascular healthcare. 250

The promising results from this endeavor signal a fertile ground for further 251

exploration and refinement of this technique, with a view to constructing a predictive 252

tool that is not just accurate but carries a deep resonance with individual biological 253

rhythms and patterns. 254

It is our hope that this study acts as a catalyst, encouraging further nuanced 255

research in this direction, and steering the global healthcare community toward a future 256

where risk assessment is not just a function of chronological age but a rich source of 257

individual biological narratives formed through empirical data and innovative analytical 258

techniques. 259
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List of Acronyms 260

CVD Cardiovascular Diseases 261

ECG Electrocardiogram 262

HR Hazard Ratio 263

AFib Atrial Fibrillation 264

SVT Supraventricular Tachycardia 265

REM Rapid Eye Movement 266
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