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Background: The genetic role of blood lipids (BL) in the shared genetic etiology between major 

depressive disorder (MDD) and myocardial infarction (MI) has not been fully characterized. 

Methods: We first evaluated genetic associations and causal inferences between MDD, MI and the 

quantitative traits of BL. To further unravel the underlying genetic mechanisms, we performed 

multi-trait association analysis to identify novel or pleiotropic genomic risk loci, and shared causal 

variants for diseases involving BL. Using multiple post-GWAS methods, we explored potential genes, 

pathways, tissues, cells, and therapeutic targets associated with diseases from different perspectives. 

Findings: We found extensive global and local genetic correlations between MDD, MI and the traits of 

BL. Mendelian randomization (MR) analyses showed that lipid metabolism mediated 26.5% of the 

mediating effect of MDD leading to MI. Multi-trait association analysis successfully identified 13 

MDD- and 36 MI- novel risk loci which have never been reported before. Notably, many pleiotropic 

loci and shared causal variants were identified across risk loci for both diseases, such as 11q23.3 

(rs117937125) and 12q13.3 (rs188571756), which also colocalized for traits of BL. Pathway 

enrichment analysis further highlighted shared biological pathways primarily involving synaptic 

function, arterial development, and lipid metabolism. Lastly, gene-mapping, gene-based, 

transcriptome-wide and proteome-wide association, and MR-proteomic analyses revealed candidate 

pathogenic genes and therapeutic targets (such as ANGPTL4 and TMEM106B). 

Interpretation: These findings not only provide novel insights into the role of BL in the comorbidity 

between MDD and MI, but also benefit the development of preventive or therapeutic drugs for 

diseases. 
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Introduction 

Major depressive disorder (MDD) and myocardial infarction (MI) are universal leading causes of 

disability worldwide1. The epidemiological observations have repeatedly demonstrated that these two 

diseases are highly comorbid2,3. However, the underlying mechanism between MDD and MI remains 

unclear. Abnormal blood lipids (BL) are established risk factors for MI, and MDD may lead to 

dyslipidemia4,5. Consequently, BL may play a significant role in the comorbidity of MDD and MI. 

Further exploration of their interplay could elucidate important disease pathways and interventions 

with added clinical benefit. 

Previous genome-wide association studies (GWAS) have identified several potential shared genomic 

loci affecting BL, MDD and MI6,7, providing further evidence of common biological pathways between 

these phenotypes. Using genetic variants as instrumental variables can infer the genetic role of BL in 

the relationship between MDD and MI. Multi-trait joint analysis can further unravel the genetic 

mechanisms underlying their comorbidities. Multi-trait analysis of GWAS (MTAG) enabled 

researchers effectively to increase the sample size from multiple related traits and has become an 

effective statistical method to improve statistical power to identify novel genomic risk loci for target 

traits8. The latest genetic association study of quantitative traits of BL in more than 1 million people 

showed significant polygenic heritability and numerous genomic loci9. Therefore, their multi-trait joint 

analysis with MDD and MI can not only borrow information from these traits to deeply explore 

disease-related genetic variations, but also identify pleiotropic loci shared by BL, MDD, and MI. 

In this study, using largest publicly available GWAS summary statistics, we evaluated genetic 

associations and causal inferences for BL, MDD, and MI, and then performed multi-trait analysis 

between these phenotypes. Our study aims to achieve two primary objectives. Firstly, we aim to 

discover novel or pleiotropic genomic risk loci, and shared causal variants for diseases involving BL, 

elucidate their genetic mechanism, and explore potential drug targets. Secondly, we aim to characterize 

the genetic roles of BL in MDD and MI, as well as investigate their shared genetic etiology basis.  

Methods 

1.Population samples and ethics 

We utilized the most recent and largest publicly available GWAS summary statistics from European 

ancestry individuals in this study. GWAS for MDD were obtained from the Psychiatric Genomics 

Consortium (PGC)10, which meta-analyzed 33 cohorts with 170,756 cases and 329,443 controls. 
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GWAS for MI were obtained from a meta-analysis study among 639,221 participants (61,505 cases and 

577,716 controls) from UK Biobank and CARDIoGRAMplusC4D consortium11. The Global Lipids 

Genetics Consortium (GLGC) consortium provided summary statistics for the quantitative traits of BL 

[high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total 

cholesterol (TC), and triglyceride (TG)] (N= 1,320,016)9. The Supplementary Table 1 provides access 

to the specific details of each GWAS summary statistics.  

2.Statistical analysis  

Fig. 1 presents a schematic overview of our study. All GWAS summary statistics underwent genotypic 

quality control measures. Supplement Methods provide details of these methods.  

We used both linkage disequilibrium (LD) score regression (LDSC)12 and high-definition likelihood 

(HDL)13 to evaluate heritability of each trait and the genetic correlation between MDD, MI, and the 

quantitative traits of BL. Given the intricate genetic structure of each region, local analysis of 

[co]variant association (LAVA)14 was used to assess local genetic correlation. Next, we used Mendelian 

randomization (MR)15 to explore potential causal associations and mediating effects between them. 

Using genetic proxies for drug target genes, we further explored the effects of lipid-lowering drugs on 

MDD. For the above statistical analyses, we applied the Benjamini-Hochberg false discovery rate 

(FDR) approach with a threshold of 0.05 to correct for multiple testing. 

To further unravel the genetic mechanisms underlying the comorbidity, we utilized MTAG8 to identify 

potential pleiotropic SNVs through the interrelationships of pairwise traits with significant genetic 

correlation. We calculated the maximum false discovery rate (maxFDR) to evaluate the overall 

inflation caused by the violation of the assumption of homogeneity in MTAG analysis. The Functional 

Mapping and Annotation of Genetic Associations (FUMA)16 was applied to further characterize 

potential pleiotropic loci. By focusing on consecutive non-overlapping genetic risk loci for MDD and 

MI, we used hypothesis prioritization in multi-trait colocalization (HyPrColoc)17 analysis to identify 

shared causal variants within each genomic locus across traits. We considered a colocalized locus with 

the posterior probability of H4 (PP.H4) exceeded 0.75. 

Based on MTAG results, we further explored the shared biological mechanisms of these pleiotropic 

loci. Using the GO and KEGG databases, we conducted gene-set enrichment analyses to identify 

biological pathways. Using DESE (driver tissue estimation by selective expression)18, we explored the 

tissue/cell types specificity associated with diseases through the phenotype-cell-gene association 
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analysis (PCGA)18-21 website. 

To explore candidate pathogenic genes for MDD and MI in MTAG, we performed a combination of 

gene-mapping and multi-marker analysis of genomic annotation (MAGMA)22 to identify potential 

candidate genes (at FDR < 0.05). Next, we used transcriptome-wide association studies (TWAS)23 and 

proteome-wide association studies (PWAS)24 in combination with bayesian colocalization25 

(PP.H4>0.75) to generate hypotheses of target genes and directions of effects. We restricted the analysis 

to cardiovascular and brain tissues and considered FDR < 0.05 as the threshold of significant 

associations. We used precomputed cross-tissue weights from eQTL reference panels in GTEx v.8 

(across 5 cardiovascular and 13 brain tissues), as well as the weights for protein expression in plasma 

(ARIC study)26 and in dorsolateral prefrontal cortex (DLPFC) (ROS/MAP study27 and the Banner Sun 

Health Institute study28). To further identify therapeutic targets and enhance gene-driven drug discovery, 

we utilized proteome-wide MR15 (FDR < 0.05) and Bayesian colocalization25 (PP.H4 > 0.75) analysis 

to identify potential causal therapeutic plasma [UK Biobank Pharma Proteomics Project (UKB-PPP)29 

and deCODE genetics30] and brain (ROS/MAP study27) pleiotropic and specific protein targets for 

MDD and MI.  

3.Genomic Loci Characterization and Functional Annotation 

For significant pleiotropic single nucleotide variants (SNVs) from MTAG, we used the FUMA to 

characterize significant genomic loci (P < 5×10−8). Using LD information from the 1000 Genome 

Project phase 3 reference panel of European population, FUMA identified genome-wide significant 

independent SNVs with r2 less than 0.6 and lead SNVs with r2 less than 0.1 within 1 Mb. Risk loci 

were defined by combining lead SNVs that physically overlapped or had LD blocks within 250�kb 

apart. FUMA additionally provided functional annotations such as ANNOVAR analysis, combined 

annotation dependent depletion (CADD) scores, and RegulomeDB scores. Variants with CADD score 

exceeding 12.37 were deemed potentially deleterious. 

Results 

Genetic correlation and genetic causal inference 

Both LDSC and HDL results indicated that MDD demonstrated significant positive genetic correlations 

with MI (rgLDSC = 0.19 and rgHDL = 0.23) (Fig.2; Supplementary Table 2-3). LDL-C, TC and TG 

exhibited significant positive genetic correlations with both MDD and MI. Conversely, HDL-C 

displayed significant negative genetic correlations. LAVA discovered a total of significant bivariate 
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local genetic correlations for MDD with MI at 28 specific regions (FDR.P<0.05) (Fig.2; 

Supplementary Table 4). And we also found a total of 198, 505 specific regions of significant local 

genetic correlations (FDR.P<0.05) for quantitative traits of BL with MDD and MI, respectively. The 

coexistence of both negative and positive local genetic correlations suggests a multifaceted impact. The 

tendency of overall positive and negative local correlations aligned with the direction of their 

respective global correlations.  

MR analysis revealed that MDD increased the risk of MI unidirectionally (or = 1.23, se = 0.04; P = 

8.63×10-06) (Fig.3; Supplementary Table 5). Mediation analysis further indicated that LDL-C, TC, and 

TG mediated this effect, accounting for 7.5%, 5.7%, and 13.3% of the total effect, respectively (Fig.3; 

Supplementary Table 5). Subsequent drug-target MR (Supplement Methods) analysis demonstrated that 

while commonly prescribed lipid-lowering medications (HMGCR, PCSK9, and NPC1L1 inhibitors) 

effectively reduced the risk of MI, HMGCR and PCSK9 inhibitors were associated with an increased 

risk of MDD (Fig.3). Conversely, there was no discernible effect of NPC1L1 inhibitors on MDD. 

Multi-trait association analysis and functional annotation 

We performed a meta-analysis of -GWASMDD, -GWASMI, and -GWASall traits of BL using MTAG. MTAG 

analysis significantly increased the effective sample sizes and heritability of diseases. The polygenic 

heritability exhibited an impressive 1.04-, and 1.28-fold escalation for MDD and MI consideration 

(Fig.4). We calculated max-FDR values of 0.0006, and 0.0018 for MDD and MI, respectively, 

suggesting no overall inflation due to violation of the homogeneous assumption. We successfully 

identified 63 and 120 genomic risk loci from for MDD, and MI, of which 19 and 54 are novel 

(Supplementary Table 6-7). By comparing loci reported in GWAS catalog (Supplementary Table 8-9), 

we found that a total of 13 MDD- and 36 MI- loci which have not been reported previously. Multi-trait 

colocalization analysis from HyPrColoc highlighted 32 pleiotropic loci on the consecutive 

non-overlapping genetic risk loci for MDD and MI, which were colocalized to share a causal variant 

(Supplementary Table 10). Five of 32 pleiotropic loci were identified to be colocalized among MDD, 

MI and the quantitative traits of BL, including 1q41 (rs142709330), 11q23.3 (rs117937125), 12q13.3 

(rs188571756), 16p13.11 (rs112527105), 19p13.11 (rs145793672) locus. These findings supported the 

significant role of BL in the comorbidity.  

Functional annotation of the 202 independent significant SNVs across 63 MDD risk loci and 652 SNVs 

from MI loci revealed that most variants were intergenic or intronic (Supplementary Table 11-12). For 
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MDD, six (2.97%) of 202 MDD SNVs were exonic variants, including 4 messenger RNA (mRNA) 

exonic variants (1 synonymous SNVs, 3 nonsynonymous SNVs) and 2 noncoding RNA exonic variants. 

The index SNV rs2232423 was the most significant mRNA exonic variant (PMTAG = 1.59×10-21) at 

6p22.2 locus, regulating the expression of ZSCAN12. ZSCAN12 has been identified as a pivotal gene 

associated with depression and schizophrenia, exhibiting widespread expression in brain tissue31,32. For 

MI, we identified 28 (4.29%) exonic variants from 652 SNVs, of which 21 were missense variants (3 

synonymous SNVs, 18 nonsynonymous SNVs). The most significant exonic variant of coding RNA 

was rs116843064 (PMTAG = 1.07×10-54, gene: ANGPTL4) at 19p13.2 locus, followed by rs268 (PMTAG = 

2.10×10-54, gene: LPL) at 8p21.3 locus, and rs429358 (PMTAG = 5.30 ×10-54, gene: APOE) at 19q13.32 

locus. Further annotation by CADD scores predicted that 14 MDD- and 45 MI- SNVs were deleterious 

(CADD score > 12.37). The variant with the highest CADD score was also the exonic variant 

rs116843064 (CADD score 33 for MI), which encoding ANGPTL4 protein. ANGPTL4 can mediate 

inactivation of the lipoprotein lipase LPL, therefore playing an important role in the regulation of 

triglyceride clearance of lipid metabolism33. 

Gene-set enrichment  

MAGMA gene-set enrichment found 19 MDD- and 78 MI- significantly enriched pathways (FDR < 

0.05) (Supplementary Fig.1). These analyzes showed that MDD is significantly associated with 

biological processes involving various functions in the synapse, such as branching morphogenesis of 

nerves and synaptic assembly. In addition, this analysis revealed the association of MDD with 

pathways related to lipid metabolism, particularly with the biological processes of triglyceride-rich 

lipoprotein remnant particles and phosphatidylcholine-sterol O-acyltransferase (LCAT) activator 

activity molecular function. Gene-sets involved with this activity include important lipid-regulated 

genes such as APOA1, APOC1, and APOE. Of which, APOE was located at the novel MDD locus 

19q13.32. MI was significantly associated with biological processes or molecular functions related to 

lipid metabolism and arterial development, such as artery development and reactome plasma 

lipoprotein remodeling. Notably, MI also involves the molecular function of LCAT activator activity. 

Within the above gene-sets, angiopoietin-like protein 4 (ANGPTL4) is the key gene, implicated at the 

novel risk locus 19p13.2 of MI. Lipisense, an ANGPTL4 inhibitor, is a novel drug for the treatment of 

severe hypertriglyceridemia. Over all, these results demonstrate the important role of lipid metabolism 

in both diseases. 
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Tissue and cell type enrichment specificity association analysis 

To further illuminate the underlying biological causes of diseases, we investigated tissue/cell type 

specificity associated with diseases based on DESE (Supplement Methods). In 54 human tissues, we 

found that MDD was significantly associated with brain and pituitary tissues (Supplementary Fig. 2). 

These results highlighted almost all brain regions, including the cerebral cortex and subcortical 

structures such as the hypothalamus, hippocampus, and amygdala. The role of the pituitary in MDD 

may reflect the potential effects of hormones on cardiac metabolism. MI was primarily associated with 

heart and adipose tissues, such as coronary and visceral adipose. Using the 2,214 types of human cells 

reference dataset for cell type-specific analysis showed that MDD was predominantly associated with 

excitatory and inhibitory neurons, and other brain cells such as astrocytes, oligodendrocytes or 

microglial cells (Supplementary Fig. 3). MI was significantly enriched in cell types involving 

macrophages, endothelial cells, smooth muscle cells, and fibroblasts, which may reflect important 

processes in the inflammatory response, tissue repair, regulation of vascular function, and lipid 

homeostasis.  

Gene-based analyses and gene prioritization  

FUMA mapped 155 and 426 positional mapped genes for MDD and MI (within 0kb from the locus) 

(Supplementary Table 13-14). Based on the mapping genes, the MAGMA gene-based analysis found a 

total of 149 MDD, and 499 MI genes (FDR.P<0.05) (Supplementary Table 15-16). 

Using TWAS-Fusion and eQTL based on tissue-specific eQTL data (GTEx v8) form 5 cardiovascular 

tissues and 13 brain tissues, we identified 146 and 292 genes at the transcriptome-wide level 

(FDR.P<0.05) and colocalized (PP. H4>0.75) in at least one tissue for MDD and MI, respectively 

(Supplementary Table 17-18). 119 functional genes targeting MDD were mapped outside of the 

MDD-risk loci, and 198 MI genes were mapped outside of the MI-risk loci. Furthermore, using similar 

parameters in TWAS-Fusion, we conducted PWAS analyses with pQTL from plasma [ARIC study (n = 

7,213 European Americans, n = 4,657 proteins)] and DLPFC tissues [ROS/MAP study (n = 376 

individuals, n = 1,475 proteins) and Banner Sun Health Institute study (n = 152 individuals, n = 1,145 

proteins)]. PWAS analyses revealed 19 MDD and 46 MI genes with colocalization evidence 

(Supplementary Table 19-20). Overall, we observed extensive functional genes targeting both MDD 

and MI in brain and cardiovascular tissues and these genes have the same direction of effect on 

diseases in different tissues, which potentially revealed the importance of the heart-brain axis in MDD 
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and MI. In TWAS and PWAS, 33 pleiotropic transcript or protein abundances were associated with the 

risk of both MDD and MI.  

Proteome-wide plasma and brain therapeutic targets 

We used cis-pQTL as the genetic instrument for MR analysis to systematically assess the evidence for 

causal effects of plasma and DLPFC proteins on MDD and MI. Combining two-sample MR (FDR. 

P<0.05) and colocalization (PP. H4>0.75) analyses, a total of 22 MDD and 68 MI protein target genes 

were successfully identified in at least one dataset (Fig.5; Supplementary Table 21-22). Sensitivity 

analyses indicated no reverse causation (steiger test) and no horizontal pleiotropy (MR- Egger 

regression intercept test). Four target genes (MDD: PSMB4 and TMEM106B; MI: ACP1 and ALDH2) 

reached significant levels in both plasma and DLPFC tissues. In addition, we identified eleven 

pleiotropic proteins (ANGPTL4, APOA1, APOC3, ATP13A1, CNNM2, DUSP13, GCKR, GPN1, 

NRBP1, TMEM106B, and ZPR1) targeting MDD and MI. Notably, these proteins had effects in the 

same direction on both MDD and MI, which are expected to be potential therapeutic targets for the 

comorbidities.  

Discussion 

The intertwined connections between heart and brain health are under increasing attention, with the 

metabolism potentially playing an important role in the heart-brain axis34. In this study, we found 

extensive genome-wide genetic correlations and genetic overlap between MDD, MI, and the 

quantitative traits of BL, and determined their causal roles. MTAG analysis significantly improved the 

statistical power to identify novel genomic risk loci for the comorbidity and identified 13 MDD- and 36 

MI- novel risk loci which have never been reported before. Further comprehensive post-GWAS 

analyses highlighted the pleiotropic loci, potential shared causal variants, potential genes, pathways, 

tissues, cells,and therapeutic targets. These findings furthered our understanding of the role of BL in 

the shared genetic etiology in the co-morbidity between MDD and MI, and provided novel insights for 

therapeutic intervention. 

MR analyses showed that lipid metabolism mediated 26.5% of the mediating effect of MDD leading to 

MI. Therefore, patients with MDD are required intensive monitoring and/or treatment of lipids. In 

addition, we found that commonly used lipid-lowering drugs (HMGCR and PCSK9 inhibitors) in turn 

increased the risk of MDD, which may pose a challenge to the existing pharmacologic treatment of MI 

and MDD co-morbidities. This situation may also explain part of the potential cause of new-onset 
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MDD in patients with MI35,36. However, some previous studies have yielded opposite or negative 

conclusions, so the effects of lipid-lowering drugs on depression may need to be interpreted with 

caution37,38. 

With the investigation of the underlying pleiotropic associations, MTAG analysis deepened our 

understanding of the genetic mechanisms underlying them. Overall, pleiotropic variants between MDD 

and MI were extensively distributed, with some loci especially highlighted the important role of lipids. 

For instance, the 11q23.3 locus, which was identified as novel risk loci for both MDD and MI, was 

colocalized between MDD, MI, and all quantitative traits of BL, with the same potential shared causal 

variant rs117937125 identified (mapped gene: ZNF259). Previous studies reported that ZNF259 is 

associated with dyslipidemia in the whole population and that its transcriptional upregulation increases 

the sensitivity of coronary endothelial cells to oxidative stress and inflammation39. These results 

highlighted the important role of lipids in the comorbidity. In addition, enrichment analyses have also 

pointed to the presence of important lipid metabolic pathways in MDD. For example, both MDD and 

MI involved the molecular function of LCAT activator activity. LCAT is an enzyme that play a critical 

role in lipid metabolism, and it binds to both HDL and LDL in plasma40,41. LCAT activation facilitate 

removal of excess cholesterol from the arterial wall and prevents the formation of atherosclerotic 

plaques.  

We conducted tissue-specific multi-omics analyses (TWAS, PWAS, MR with pQTL) to provide genetic 

evidence for pathophysiological mechanisms and therapeutic targets for MDD and MI in both brain and 

heart. Of note, colocalization analyses confirmed that the above significant associations observed did 

not represent random correlations between gene expression and non-causal variants. Our findings 

indicated the existence of widely expressed pleiotropic functional genes in both brain- and heart-related 

tissues, and these genes have the same effect direction on disease in different tissues. MR-proteomic 

analyses uncovered the putative causal role of human proteins in MDD and MI, which improves the 

success of clinical trials for co-morbid drug discovery. 

There are limitations acknowledged in this study. Our analyses were restricted to individuals of 

European ancestry only and the results may not be generalized to other ancestries. We excluded all rare 

variants (MAF < 1%) from the genotypic quality control and consequently from all following analyses. 

Therefore, we may not be able to identify rare variants with large effects. In MR analyses, we 

exclusively utilized cis-regulatory regions as instrumental variables, which may mitigate horizontal 
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pleiotropy to some extent and result in reduced statistical efficacy. Finally, our study was limited to 

analyzing and validating pQTL data with available instrumental variables, which may overlook some 

potential therapeutic targets. 

Conclusion 

In summary, this multi-trait association study revealed the role of BL in the shared genetic etiology 

between MDD and MI. We found that pleiotropic genetic variants, loci, and genes were extensively 

distributed across the genome. We highlighted underlying potential biological mechanisms and 

therapeutic targets. These findings not only provide novel insights into the shared genetic basis for the 

co-morbidity between MDD and MI, but also benefit the development of preventive or therapeutic 

drugs for diseases. 
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Legend 

Fig.1 Design schematic of the present study. MDD: major depressive disorder, MI: myocardial 

infarction, HDL-C: high-density lipoprotein cholesterol, LDL-C: low-density lipoprotein cholesterol, 

TC: total cholesterol, TG: triglyceride. 

Fig.2 Genetic correlations between major depressive disorder, myocardial infarction, and the 

quantitative traits of blood lipids. a, the correlation heat-map shows the global genetic correlations 

between major depressive disorder, myocardial infarction and the quantitative traits of blood lipids. b, 

chord diagram shows their local genetic correlations. See Supplementary Table 2-4 for complete details 

of genetic correlations estimates. LDSC: linkage disequilibrium score regression, HDL: high-Definition 

Likelihood. 

Fig.3 Summary of the causal evidence from mendelian randomization analyses. See 

Supplementary Table 5 for complete details of Mediation Mendelian randomization results. MDD: 

major depressive disorder, MI: myocardial infarction, HDL-C: high-density lipoprotein cholesterol, 

LDL-C: low-density lipoprotein cholesterol, TC: total cholesterol, TG: triglyceride. 

Fig.4 Manhattan plots of MTAG results for major depressive disorder and myocardial infarction. 

The red line marks the genome-wide significance threshold (5 × 10−8). Novel genomic risk loci are 

highlighted in red, and the loci previously reported in GWAS are in orange. Annotated genes include 

only these nearest genes to the top signals from novel and colocalized loci. See Supplementary Table 

6-7 and 10 for complete details of genomic risk loci. †:colocalized loci, h2: heritability (LD score 

regression), se: standard error, gcov_int: genetic covariance intercept, λGC: the genomic control 

inflation factor based on the median, maxFDR: maximum FDR. 

Fig.5 Forest plots of protein targets for major depressive disorder and myocardial infarction 

indicated by proteome-wide Mendelian randomization analyses. The forest plot displayed 22 

MDD- and 68 MI- protein targets that satisfied the statistical significance of both Mendelian 

randomization (FDR.P<0.05) and colocalization (PP.H4>0.7) in at least one cohort. The square 

symbolizes the odds ratio, the horizontal line represents the 95% confidence interval. See 

Supplementary Table 21-22 for complete details of the proteome-wide Mendelian randomization 

results. MDD: major depressive disorder, MI: myocardial infarction, UKB-PPP: UK Biobank Pharma 

Proteomics Project; deCODE: deCODE genetics, ROSMAP: Religious Orders Study/Memory and 

Aging Project. 
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Supplementary Materials 

Supplementary Methods 

Supplementary Tables 1-22: Table of contents, S1-S22. 

Supplementary Fig. 1 Significantly enriched pathways for major depressive disorder and 

myocardial infarction in GO/KEGG enrichment analysis. a, enriched pathways for major 

depressive disorder. b, enriched pathways for myocardial infarction. GO: Gene Ontology, MF: 

molecular function, CC: cellular component, BP: biological process, KEGG: Kyoto Encyclopedia of 

Genes and Genomes. 

Supplementary Fig. 2 Tissue specificity association for major depressive disorder and myocardial 

infarction. a, associated tissues for major depressive disorder. b, associated tissues for myocardial 

infarction. 

Supplementary Fig. 3 Cell specificity association for major depressive disorder and myocardial 

infarction. a, associated cell types for major depressive disorder. b, associated cell types for 

myocardial infarction. 
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Major Depressive Disorder

Myocardial Infarction

liability-scale h2 (se): 0.0704 (0.0027) λGC: 1.4709 mean Chi^2: 1.6293

gcov_int (se): 0.9889 (0.0096) maxFDR: 0.0006 effective sample size (MTAG): 468431

liability-scale h2 (se): 0.278 (0.0167) λGC: 1.3034 mean Chi^2: 1.5714

gcov_int (se): 0.9017 (0.0117) maxFDR: 0.0018 effective sample size (MTAG): 278716

liability-scale h2 (se): 0.0678 (0.0027) λGC: 1.4494 mean Chi^2: 1.5892

gcov_int (se): 1.0007 (0.0096) effective sample size (GWAS): 449855.9

liability-scale h2 (se): 0.2175 (0.0129) λGC: 1.2431 mean Chi^2: 1.3851

gcov_int (se): 0.972 (0.0096) effective sample size (GWAS): 222348.3

GWAS:MTAG:

GWAS:MTAG:

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2024. ; https://doi.org/10.1101/2024.04.08.24305481doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.08.24305481
http://creativecommons.org/licenses/by/4.0/


ANGPTL2
APOA1
DUSP13
ZPR1

0.012
3.12e-03
5.35e-03
8.40e-14

1.193(1.099−1.296)
1.171(1.096−1.252)
0.965(0.951−0.981)
1.410(1.302−1.528)

0.0 0.4 0.8 1.2

P.adjusted OR (95%CI)Gene

UKB-PPP

ANGPTL4
APOC3
CCS
DUSP13
GCKR
GPN1
IGLON5
NEGR1
NRBP1
PRG3
PSMB4
TMEM106B

2.33e-04
2.87e-27
8.98e-05
1.15e-03
8.74e-12
1.14e-08
6.41e-03
6.90e-10
7.14e-09
3.27e-04
7.03e-05
4.52e-11

1.114(1.066−1.164)
0.848(0.824−0.872)
1.097(1.058−1.137)
0.940(0.914−0.966)
0.828(0.790−0.869)
1.220(1.150−1.294)
0.915(0.876−0.955)
0.901(0.875−0.927)
1.345(1.233−1.467)
0.880(0.835−0.928)
1.024(1.014−1.033)
0.869(0.838−0.902)

0.0 0.4 0.8 1.2

P.adjusted OR (95%CI)Gene
deCODE

ATP13A1
B3GALTL
BTN2A1
CNNM2
GMPPB
P2RX7
PSMB4
RAB27B
TMEM106B

1.16e-06
6.76e-06
2.31e-04
1.21e-05
3.88e-05
2.31e-03
6.77e-04
6.84e-06
5.62e-11

0.736(0.665−0.815)
0.915(0.887−0.944)
1.058(1.034−1.083)
0.671(0.580−0.776)
1.151(1.091−1.214)
0.977(0.967−0.988)
1.042(1.023−1.060)
1.088(1.056−1.120)
0.945(0.931−0.959)

0.0 0.4 0.8 1.2

ROSMAP
P.adjusted OR (95%CI)Gene

ALDH2
ANGPTL4
ANTXR1
APOB
APOC3
ASGR1
B3GNT8
CSK
FN1
GAS6
GCKR
GPN1
IL1RN
IL6R
INHBC
ITIH4
KPNA2
NRBP1
SERPINH1
TAGLN2
TIMD4
ULK3

2.85e-05
8.22e-52
2.51e-03
3.28e-03
2.66e-169
3.52e-03
0.010
1.44e-03
1.17e-03
4.25e-05
1.73e-42
8.55e-26
2.39e-04
0.030
3.36e-09
3.81e-03
7.44e-06
3.19e-25
2.05e-03
3.81e-03
0.010
5.49e-03

1.205(1.124−1.292)
1.587(1.497−1.682)
1.274(1.138−1.426)
1.167(1.085−1.255)
0.626(0.606−0.647)
1.118(1.060−1.179)
0.971(0.957−0.986)
1.206(1.109−1.311)
0.921(0.889−0.955)
0.944(0.923−0.965)
0.640(0.602−0.681)
1.538(1.425−1.660)
1.063(1.036−1.089)
0.984(0.974−0.993)
1.019(1.013−1.024)
1.130(1.065−1.199)
1.331(1.202−1.474)
1.866(1.668−2.087)
0.847(0.785−0.914)
1.127(1.064−1.194)
0.951(0.927−0.976)
1.142(1.070−1.220)

0.0 0.5 1.0 1.5 2.0

P.adjusted OR (95%CI)Gene

deCODE

ACP1
ADSL
ALDH2
ATP13A1
CCDC92
CNNM2
GPSM1
GPX1
ICA1L
MAP1S
MTAP
PDLIM5
PGS1
SERGEF
TMEM106B
TOM1L2
UFL1

1.23e-03
1.88e-03
1.15e-06
7.56e-07
1.44e-13
6.07e-08
9.49e-04
1.38e-04
8.39e-15
9.97e-06
1.17e-05
1.70e-06
5.65e-05
3.61e-03
1.81e-07
2.22e-07
1.08e-03

1.076(1.040−1.113)
1.191(1.096−1.295)
1.234(1.149−1.327)
0.678(0.595−0.773)
2.007(1.697−2.372)
0.564(0.473−0.674)
1.304(1.156−1.470)
1.124(1.071−1.179)
1.597(1.435−1.777)
0.779(0.710−0.854)
1.221(1.133−1.315)
1.332(1.206−1.472)
1.318(1.182−1.471)
1.157(1.077−1.244)
0.942(0.924−0.960)
0.664(0.581−0.758)
0.634(0.514−0.781)

0.0 1.0 2.0

P.adjusted OR (95%CI)Gene
ROSMAP

ACP1
ACRBP
ANGPTL3
APOA1
APOE
ASGR1
ATRAID
CD300LG
CELSR2
CIAPIN1
CSF1
DAG1
DUSP13
FES
FN1
GALNT2
GRK5
HMOX2
HYOU1
IL1RN
LMOD1
LPL
NCAN
PCSK9
PDLIM7
PLTP
SH2B3
SPINK8
TFPI
TIMD4
TPPP3
VAMP5
VAMP8
WARS1
ZPR1

3.62e-03
8.64e-04
1.57e-09
6.22e-08
8.15e-03
3.05e-03
0.021
2.18e-11
1.58e-04
3.22e-03
2.39e-03
2.59e-04
3.06e-04
3.35e-08
3.99e-04
1.27e-07
0.022
6.43e-04
1.22e-04
3.45e-04
1.45e-06
3.89e-06
4.55e-03
6.43e-04
3.47e-03
1.32e-05
1.03e-08
1.32e-03
0.018
1.58e-04
6.19e-03
1.32e-05
2.88e-05
1.74e-04
2.05e-81

P.adjusted
1.032(1.016−1.048)
1.082(1.044−1.120)
1.070(1.050−1.091)
1.314(1.208−1.429)
0.949(0.924−0.975)
1.075(1.038−1.114)
0.954(0.929−0.980)
0.928(0.910−0.946)
0.936(0.911−0.961)
0.824(0.749−0.905)
1.058(1.030−1.087)
0.791(0.718−0.872)
0.953(0.935−0.973)
0.877(0.843−0.913)
0.969(0.956−0.982)
0.914(0.888−0.940)
0.961(0.940−0.983)
1.115(1.063−1.170)
1.077(1.046−1.109)
1.049(1.028−1.071)
0.917(0.890−0.944)
0.930(0.907−0.954)
1.074(1.036−1.114)
1.054(1.030−1.078)
0.774(0.682−0.877)
0.966(0.953−0.978)
1.296(1.201−1.398)
1.034(1.018−1.050)
0.952(0.927−0.979)
0.949(0.929−0.969)
1.162(1.076−1.256)
1.214(1.131−1.303)
0.913(0.882−0.945)
1.058(1.034−1.082)
2.876(2.587−3.199)

OR (95%CI)

0.0 1.0 2.0 3.0

UKB-PPP

Major Depressive Disorder Myocardial Infarction

Gene

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2024. ; https://doi.org/10.1101/2024.04.08.24305481doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.08.24305481
http://creativecommons.org/licenses/by/4.0/

