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Abstract

Understanding the temporal relationship between key events in an individual’s infection

history is crucial for disease control. Delay data between events, such as infection and

symptom onset times, is doubly censored because the exact time at which these key

events occur is generally unknown. Current mathematical models for delay distributions

rely solely on heuristic justifications for their applicability. Here, we derive a new model

for delay distributions, specifically for incubation periods, motivated by bacterial-growth

dynamics that lead to the Burr family of distributions being a valid modelling choice.

We also incorporate methods within these models to account for the doubly censored

data. Our approach provides biological justification in the derivation of our delay

distribution model, the results of fitting to data highlighting the superiority of the Burr

model compared to currently used models in the literature. Our results indicate that

the derived Burr distribution is 13 times more likely to be a better-performing model to

incubation-period data than currently used methods. Further, we show that

incorporating methods for handling the censoring issue results in the mean of the

underlying continuous incubation-period model being reduced by a whole day, compared

to the mean obtained under alternative modelling techniques in the literature.

Author summary

In public health, it is important to know key temporal properties of diseases (such as

how long someone is ill for or infectious for). Mathematical characterisation of

properties requires information about patients’ infection histories, such as the number of

days between infection and symptom onset, for example. These methods provide useful

insights, such as how their infectiousness varies over time since they were infected.

However, two key issues arise with these approaches. First, these methods do not have

strong arguments for the validity of their usage. Second, the data typically used is

provided as a rounded number of days between key events, as opposed to the exact

period of time. We address both these issues by developing a new mathematical model

to describe the important properties of the infection process of various diseases based on

strong biological justification, and further incorporating methods within the

April 2, 2024 2/30

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2024. ; https://doi.org/10.1101/2024.04.07.24305311doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.07.24305311
http://creativecommons.org/licenses/by-nc-nd/4.0/


mathematical model which consider infection and symptom onset to occur at any point

within an interval, as opposed to an exact time. Our approach provides more preferable

results, based on AIC, than existing approaches, enhancing the understanding of

properties of diseases such as Legionnaires’ disease.

Introduction 1

In epidemiology, the temporal relationship between key events in an individual’s 2

infection history is important to understand. For example, a disease that has a long 3

delay from infection to onset of infectiousness may be amenable to contact tracing, and 4

the relationship between these two events can be important for disease control [1, 2]. 5

Often these events are a simplification of a continuous process (i.e., infectivity may not 6

start or end at specific times but instead increase and then decrease over time). For 7

diseases such as Legionnaires’ disease, which spread via airborne dispersion from 8

environmental sources (rather than person-to-person contact), characterisation of the 9

incubation period is critical for source identification (or reverse epidemiology). 10

Here, we consider the time from infection to symptom onset. The relationship 11

between viral or bacterial load in one’s body and onset of symptoms can be difficult to 12

describe. In brief, the presence of a virus or bacteria within an individual results in an 13

inflammatory immune response that leads to an observable response of symptoms. An 14

exact mathematical model accurately describing the infection process is not feasible to 15

develop due to the large number of different cytokines and cell interactions involved in 16

the immune response, as well as a lack of a clear understanding of how the 17

pro-inflammatory cytokines relate to the appearance of symptoms and a lack of data to 18

parameterise each specific process in the immune response. Previous models for the 19

incubation period provide parsimonious simplifications of the infection process, and 20

include in-host models (often assuming symptom onset is proportional to bacterial 21

load [3]), through to simpler probability models (justified on model parsimony or 22

computational capacity). In the latter case, popular distributions include the gamma, 23

log-normal and Weibull distributions [4–6]. 24

The validity of these distributions has not been explored, and application is based 25

solely on heuristic justification. The arguments for common distributions can be 26
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described as follows. The gamma distribution is the sum of n exponentially distributed 27

random events, and so fitting to data can help inform the structure of compartmental 28

models [7]. The log-normal distribution is a skewed distribution often applied to 29

biological processes in which the process mean time is relatively low, but its variance is 30

large and results from taking the exponential of a series of normally distributed events. 31

Finally, the Weibull distribution is a classic reliability-theory distribution where the 32

hazard of an event occurring is strictly monotonic over time. 33

To illustrate the heuristic justification of distributions, we consider Legionnaires’ 34

disease and the statistical analysis that has been conducted in the literature for 35

studying the incubation period. In this case, several papers have used a range of days 36

(2–10) prior to symptom onset and consider all days in this period as a potential 37

infection date [8–14]. Alternatively, others have assumed a median incubation period of 38

either five days [15] or seven days [16], with infection dates obtained by subtracting the 39

median from the symptom onset date. Another common approach is to consider a 40

gamma-distributed incubation period [17]. All papers that take this approach have 41

followed the ideas and method proposed in [4] using a gamma distribution to describe 42

an outbreak in Melbourne [18]. 43

One issue arising is that incubation-period data is given as an integer number of 44

days, implying that each case becomes infected at the same moment from the exposure, 45

and that symptoms develop in an integer amount of days. To illustrate this issue, take 46

two cases in which symptom onset occurs the day after infection. The individual could 47

have been infected at 11:59pm and became symptomatic at 00:01am the next day, or 48

alternatively they could have been infected at 00:01am and became symptomatic at 49

11:59pm the next day. These two scenarios are 2 minutes and 1 day, 23 hours, 58 50

minutes long, respectively, but they both correspond to one integer day in the dataset. 51

These simplifications give a lower resolution of the time delay between these events due 52

to lack of knowledge of the exact infection and symptom onset times. Essentially, 53

continuous distributions are being fitted to discretized versions of continuous data, and 54

the result is interval data with censored start and end times. 55

This type of discretized data is commonly used for analysis without consideration for 56

the censoring issue. Using standard probability distributions, as well as censored 57

incubation-period data in statistical analysis, is likely to produce biased inference. Using 58
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incubation-period data expressed as an integer number of days will likely lead to a false 59

understanding of delays between key events for specific diseases, such as the incubation 60

period, and produce incorrect conclusions. A model describing the incubation period of 61

Legionnaires’ disease has been built with this type of data [4], but the model is flawed 62

and can be improved upon by accounting for the issues mentioned above. There are 63

various ways to handle the censoring issue, which we discuss in the next section. 64

In this paper, a new model for incubation periods is derived with potentially 65

stronger justification for its validity than methods currently used in the literature. We 66

apply our new model to a variety of diseases to provide statistically significant 67

improvements compared to currently accepted and used models. We also apply 68

techniques that remove the bias from fitting models to censored data and allow for 69

reliable model-fitting, providing a new understanding of the incubation periods of 70

various diseases. We apply these methods to anthrax, salmonellosis and 71

campylobacteriosis, as well as taking a specific focus on Legionnaires’ disease to 72

illustrate the typical kind of improvement achievable with these methods. For the 73

successful models, we develop some distribution theory, calculating their moments and 74

quantile functions, which can be found in S1 Appendix in the Supplementary Material. 75

Materials and methods 76

In this section, we develop methods for handling both of the problems discussed in the 77

introduction. First, we adapt the methods developed in [19] for use on 78

incubation-period data in order to account for its censored nature. Second, we consider 79

a probabilistic approach to develop a new model for incubation periods of diseases. We 80

assume exponential growth of bacteria early after infection, as well as a further 81

assumption of the probability of symptom onset being proportional to the bacterial load 82

within an individual until saturating once some load has been reached. Third, we 83

discuss the methods for analysing our fitted models and how we determine which model 84

performs better, so that we can conclude whether or not our developed model offers 85

more reliable results than using methods currently developed in the literature. Finally, 86

we introduce the data used for incubation-period analysis and discuss the reasons why 87

this data is considered censored. 88
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Doubly interval-censored modelling 89

Methods for handling censored data in epidemiological studies have been proposed in 90

the literature to develop discrete analogues of continuous distributions that preserve 91

properties of their continuous counterparts [20]. However, most of these methods are 92

either too simple, do not result in valid probability mass functions, or assume that 93

infection occurs exactly at midnight. 94

The exact time at which symptoms occur in an individual can not be determined 95

based on when they reported their illness to authorities. Similarly, the exact time at 96

which an individual becomes infected is also difficult to ascertain. We need a method 97

for handling the fact that these times are unknown (i.e., to account for the uncertainty 98

within a model), so that analysis of any subsequent models is reliable. To consider 99

doubly censored data, a natural approach is to forget the assumption that the exact 100

infection and symptom onset times are known and introduce a time period in which 101

these two events may occur, with a probability distribution for the occurrence within 102

this period [19]. The method proposed in [19], which considers doubly interval-censored 103

(DI) data, is described as follows. 104

Define T and S to be the time of infection and symptom onset respectively (with t 105

and s being realisations of these random variables respectively), and Z = S – T as the 106

incubation period of the infection. Consider two intervals where T and S could lie 107

within because the exact times of T and S are not known. In other words, let 108

T ∈ (TL, TR) and S ∈ (SL, SR). The incubation period Z is given as a random variable 109

with p.d.f. f(s – t) (Fig. 1). 110

Fig 1. Diagram visualising the doubly interval-censoring method [19], highlighting 111

the data typically observed, but accounting for the fact that infection and symptom 112

onset times are not observed exactly and intervals of possible times must be considered. 113

T S

TL TR SL SR

time

Z = S–T
Unobserved

Observed

The p.d.f. of T is defined as fT (t) and the p.d.f. of S is defined as fS(s). The time 114

at which a person becomes infected and the time taken from infection to symptom onset 115
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are independent, which leads to fS(s | t) = f(s – t | t) = f(s – t). Finally, define the joint 116

p.d.f. of T and S as 117

p(t, s) = p(t)p(s | t) = fT (t)fS(s | t) = fT (t)f(s – t).

From this, the likelihood for a doubly interval-censored observation x is derived. 118

L(x) =

∫ TR

TL

∫ SR

SL

fT (t)f(s – t) ds dt.

To implement methods found in [19] to incubation-period data, the following approach 119

is taken. Because the data is rounded to the nearest day, a natural assumption is that 120

TL = 0 and TR = 1, so infection occurs at any point on the infection date. Defining x to 121

be the number of days from exposure to symptom onset, set SR = x and SL = x – 1, so 122

that the symptoms develop at some point on the stated date of symptom onset. There 123

is not much evidence to indicate what distribution fT (t) might be, so a reasonable 124

assumption would be to let fT (t) be uniform (i.e., fT (t) = 1 on t ∈ (0, 1), 0 otherwise). 125

Other options could be to permit a lower chance during nighttime or a higher chance 126

when people are outdoors, but these will depend on specific release scenarios and are 127

not likely particularly identifiable in data. As f(s – t) is the p.d.f. of the incubation 128

period, the log-likelihood is calculated as follows: 129

ℓ(X) =

n∑
j=1

log

[∫ 1

0

∫ xj

xj – 1

f(s – t) ds dt

]
=

n∑
j=1

log

[∫ xj

xj – 1

F (u) – F (u – 1) du

]
. (1)

In the next section, we develop various distributions to describe the incubation period, 130

and later fit the doubly interval-censored model to these distributions, to determine 131

which one provides the most optimal fit. 132

Derivation of the incubation period model 133

Incubation period data describes the cases who become symptomatic. Given the 134

knowledge that all individuals in the data will become symptomatic, this section 135

discusses different mathematical models for the occurrence of symptoms onset within a 136

population. We explore how the results for these different methods link and we develop 137
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a new model for incubation periods, by starting from a probabilistic approach of 138

symptom onset occurrence. 139

A probability-based approach 140

A mathematical model can be built considering probabilities of symptom onset 141

occurrence. Define N(t) as the population of individuals who are infected, but are not 142

yet symptomatic at time t, and Q(t) as the population of individuals who are 143

symptomatic at time t with N(0) = N0 and Q(0) = 0 and Q(t) +N(t) = N0, ∀t ∈ R+. 144

Next, assume that there is a probability p(t) that a not-yet-symptomatic individual will 145

start to experience symptoms at a point in time t, then 1 – p(t) will be the probability 146

that the individual will remain asymptomatic. Hence (1 – p(t))N(t) is the probability 147

that nobody who is not-yet-symptomatic will start experiencing symptoms at this point 148

in time, and (1 – p(t))N(t)δt is the probability that nobody new will experience 149

symptoms in a time increment δt. Following this, define δQ(t) = 1 – (1 – p(t))N(t)δt to 150

be the probability that there is at least one individual who starts to experience new 151

symptoms in time increment δt. By writing µ(t) = – log(1 – p(t)), the probability of any 152

new symptom onset appearance can be written as δQ(t) = 1 – e–µ(t)N(t)δt. Using a 153

Taylor expansion on the exponential term, dividing by δt, and taking the limit δt → 0 154

changes this probability to a rate as follows: 155

dQ(t)

dt
= µ(t)N(t) = µ(t)(N0 –Q(t)). (2)

This approach leads to a separable ordinary differential equation analogous to the 156

cumulative distribution of the exponential distribution with a time-varying rate 157

parameter. 158

It can be deduced that F (t) = 1 – exp( –
∫ t

0
µ(τ) dτ) and that

∫ t

0
µ(τ) dτ is the 159

accumulated hazard. Hence the rate of symptom onset, µ(t), is the hazard function of 160

an individual becoming symptomatic. Therefore, the hazard of an individual becoming 161

symptomatic at a point in time is equal to the rate of symptom onset at that time. The 162

scenario discussed here can be considered from an inhomogeneous Poisson-process 163

perspective, and the results of the hazard are identical to the inhomogeneous 164

exponentially distributed model. It can be noted here that if µ(t) is constant that this 165
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would lead to the exponential distribution and if µ(t) ∝ ta for some constant a this 166

would suggest the incubation period is a Weibull distributed random variable. The 167

gamma distribution arises by assuming the incubation period is the sum of a number of 168

stages of constant length µ. 169

However, symptom onset is likely proportional to bacterial load at low loads (i.e., 170

the early stages of infection) before saturating at large loads. The bacterial population 171

early after infection will be approximately some exponential function of time [3, 21,22]. 172

Therefore, the left tail of the c.d.f. of the incubation-period distribution is given by 173

some function eG1(t), whilst in the later stage, the c.d.f. should tend to 1 exponentially 174

given by a function G2(t), as is the case of the hazard function above. Mathematically, 175

with a median T , and considering the case where G(t) = G1(t) = G2(t), an equation for 176

the c.d.f. that satisfies these conditions is given as follows: 177

dF (t)

dt
= F (t)(1 – F (t))g(t), (3)

where G(t) =
∫ t

0
g(s) ds for some function g(s). The ODE that arises in (3) defines the 178

Burr family of distributions and is discussed in further detail in the next section. 179

Burr distribution 180

A Burr distribution is a distribution whose c.d.f., F (t), 181

F (t) =
eG(t)

1 + eG(t)
=

1

1 + e –G(t)
(4)

is the solution of (3). Theoretically, there are no constraints on G(t) in (4). Twelve 182

main distributions within the Burr family have been characterized [23], named as Burr 183

type I, Burr type II, up-to Burr type XII, but we only consider Burr distributions 184

defined over a domain of (0,∞). 185

Some delay distributions arising in epidemiology do permit negative values. For 186

example, the time from symptom onset in infector to symptom onset in infectee could 187

be negative. In this paper we limit consideration to strictly positive cases. A negative 188

incubation period is not possible, nor is a fixed upper limit constraint expected. The 189

only biologically feasible distributions are types III, X and XII. The type III 190
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distribution could be derived from the flexible generalized gamma distribution with the 191

scale parameter following an inverse Weibull distribution [24]. Similarly, type XII could 192

be derived from the Weibull distribution where the scale parameter follows an inverse 193

generalized gamma distribution [24]. 194

The Burr distributions and the gamma distribution have parameters which share the 195

same symbols for notational simplicity, although they have different interpretations and 196

their fitted estimates can not be directly compared. To avoid confusion, we provide a 197

subscript for each parameter to clarify which distribution this parameter corresponds to 198

(i.e., αIII for the α parameter in the type III Burr model) in the text but drop this in 199

tables and figures for brevity. Further, we note that the types III, X and XII used in 200

this research are a generalization of types III, X and XII Burr distributions used in the 201

literature [23], where the time variable is scaled by an additional parameter. Type X is 202

defined with two variables that provide models as parsimonious as the three previously 203

trialled: gamma, log-normal, and Weibull. Further, both type III and XII have a scale 204

parameter γIII,XII and two shape parameters αIII,XII and βIII,XII . 205

General derived Burr distribution 206

In (3) g(t) has a physical interpretation; the function tends to the rate of symptom onset, 207

µ(t), in individuals at a time t as t increases. Given F (t) = (1 + e –G(t))−1, in general, 208

then G(t) → t/βD (or g(t) → 1/βD) for some constant βD as t → ∞ on the basis that 209

relatively long incubation periods are memory-less Markovian random variables. In 210

principle, F (0) = 0, so G(t) → –∞ for t → 0 (or G(0) is very large if not actually 211

infinite). Taking the above into account, we propose g(t) = 1/βD + αD/t, and as such 212

G(t) = t/βD + αD log(t) +C, where C is a constant of integration. We define TD as the 213

median, which satisfies G(TD) = 0. Hence, C = – TD/βD – αD log(TD) and thus 214

G(t) =
t – TD

βD
+ αD log

(
t

TD

)
.

Equations for the c.d.f. and p.d.f. for the derived Burr, as well as the gamma and other 215

Burr distributions, are given in Table 1. As discussed, TD is the median of the 216

distribution. The reciprocal of βD is the eventual Markovian rate of symptom onset in 217

individuals for t ≫ TD. Additionally, there are two details worth noting when analysing 218
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the physical interpretation of αD. First, αD is an exponent of t controlling the growth 219

of probability, as F (t) ≈ (t/TD)αDe(t−TD)/βD for t ≪ TD. Second, the general derived 220

Burr distribution approaches the exponential distribution for t ≫ TD. The rate at 221

which the derived Burr approaches the exponential distribution increases for decreasing 222

αD. Therefore, the parameter αD can be interpreted as a parameter that limits the rate 223

at which the symptom onset process in an individual becomes Markovian. Finally, all 224

parameters must be strictly greater than zero. 225

Table 1. The Burr distributions valid over (0,∞) and previously trialled 226

distributions [4] with their corresponding p.d.f and c.d.f., as well as the parameters in 227

each model. 228

Distribution p.d.f. c.d.f. Parameter Range

Gamma β – α

Γ(α) t
α – 1e – t

β 1
Γ(α)γ(α, βt) α, β > 0

Log-normal 1
tσ

√
2π

e–
(log(t) – µ)2

2σ2 1
2

[
1 + erf

(
log(t) – µ

σ
√
2

)]
µ ∈ R, σ > 0

Weibull k
λ

(
t
λ

)k – 1
e – (t/λ)k 1 – e – (t/λ)k k, λ > 0

Type III αβ
t

(
t
γ

) – α (
1 +

(
t
γ

) – α) – β – 1 (
1 +

(
t
γ

) – α) – β

α > 1, β, γ > 0

Type X 2αt
γ2 e – ( t

γ )
2 (

1 – e – ( t
γ )

2)α – 1 (
1 – e – ( t

γ )
2)α

α, γ > 0

Type XII α(β – 1)
γ

(
1 +

(
t
γ

)α) – β (
t
γ

)α – 1

1 –
(
1 +

(
t
γ

)α)1 – β

α, β, γ > 0

Derived
( t
β+α)(T

t )
α
e(T – t)/β

t(1+(T
t )

α
e(T–t)/β)

2
1

1+(T
t )

α
e – (t – T )/β

α, β, T > 0

Model comparison 229

We fit each type of Burr distribution to the data, and assess all the models in terms of 230

their goodness of fit in comparison to the more widely used gamma distribution. There 231

are various criteria that penalise models to varying degrees and judge models from 232

different perspectives, such as from an information theory view-point or an expected 233

loss view in decision theory. The most commonly used methods for model selection are 234

the Akaike information criterion (AIC) and Bayesian information criterion (BIC). The 235

AIC and BIC share a similarity in that the aim of a good model is to minimize their 236

score. Generally, AIC puts more emphasis on good model prediction, whereas BIC 237

favours model parsimony [25]. Because our goal is good model prediction, the AIC will 238

be used in deciding desirable model fits. 239
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By defining p as the number of parameters in the model and ℓ(X) as the log 240

likelihood of that model given the data X, the method to calculate the AIC is given as 241

follows: 242

AIC = – 2ℓ+ 2p. (5)

Additionally, we consider the difference between AIC values and the minimum AIC, [26] 243

defined this difference as ∆i(AIC) = AICi –min(AIC), which is then used to calculate 244

the Akaike weights [26]: 245

wi =
e –∆i(AIC)/2∑
j e

–∆j(AIC)/2
. (6)

When fitting models to data to compare the validity of a Burr distributed model over 246

the gamma distributed model, the weights wi can be interpreted as the probability that 247

model i is the best model, given the data and set of models being considered [26]. 248

Furthermore, the ratio wi/wG, where wi is the weight for the ith model and wG is the 249

weight of the gamma distributed model, can be interpreted as how much more likely 250

model i is the best fitting model compared to the gamma model. Alternatively, we also 251

derive the normalized probability that the ith model is preferable to the gamma model, 252

given by wi/(wi + wG). 253

The final method of comparison considered is the Bayes factor. The maximum 254

likelihood estimates that we obtain in analysis can be considered maximum a posteriori 255

estimates with a uniform prior and are used in this context for conducting the Bayes 256

factor calculations. The ratio of likelihoods of two models determines whether there is 257

enough evidence to prefer one model to another. Let ℓA and ℓB be the likelihood of two 258

models, A and B respectively. We calculate the value 259

log10

(
ℓA
ℓB

)
,

which is used for comparison between models. Based on [27], if this value is in the range 260

(0, 0.5), there is little evidence that model A outperforms model B, (0.5, 1) gives 261

substantial evidence that model A outperforms model B, (1, 1.5) gives strong evidence 262

that model A outperforms model B and the larger the value, the stronger the evidence 263
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that model A outperforms model B. This method shall be used to compare each of the 264

Burr distributions separately with the gamma model. 265

Incubation-period data 266

To test these models, we employ incubation-period data from an outbreak of 267

Legionnaires’ disease in Melbourne in April 2000 [18]. The data for the Melbourne 268

outbreak contains the number of days taken for each Legionnaires’ disease case to 269

develop symptoms from their exposure date, and several potential distributions for 270

fitting the data have been compared [4]. The results indicated that the gamma 271

distribution provided the best fit [4] out of their proposed models. 272

Further, we gather incubation-period data for anthrax, campylobacteriosis and 273

salmonellosis for analysis. The anthrax outbreak in 1979 contains data for the known 274

incubation-periods of patients [28]. A literature review has been conducted analysing 275

different salmonellosis studies that contain full data of the incubation periods [29]. 276

Awofisayo-Okuyelu et al. [29] noticed that the incubation periods varied between 277

studies. They grouped studies into subsets using a clustering process, in which the 278

grouped studies did not have any statistically significant difference in their 279

incubation-period data. Similarly, Awofisayo-Okuyelu et al. [30] conducted a review for 280

campylobacteriosis in which the incubation periods varied between studies, and they 281

combined datasets which were not statistically significantly different using a clustering 282

process similar to [29]. We provide an Excel sheet of the incubation-period data for 283

these other diseases in S4 Data in the Supplementary Material. 284

The data gathered for these diseases share a similarity with the Legionnaires’ disease 285

data, in that the data contains the integer number of days taken for each case to develop 286

symptoms. The fact the data for all of these diseases contains integer days implies that 287

each case takes an exact multiple of 24 hours from infection to the appearance of 288

symptoms, which is not realistic. If we assume that the dates of infection and symptom 289

onset are accurate, then we know the date of these events, but the specific times on the 290

given days are unknown. We are dealing with doubly censored data. 291
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Results 292

Now that we have developed the Burr distribution as an incubation-period model based 293

upon biological justifications, the next step is to fit these models to the 294

incubation-period data of various diseases. We begin by fitting the incubation-period 295

models to the Legionnaires’ disease data, to draw comparisons between the models’ 296

performance. Next, we conduct the same analysis on other diseases such as anthrax, 297

campylobacteriosis and salmonellosis. Finally, we conduct a simulation in which 298

incubation-period data is fabricated. We compare the results from fitting the 299

incubation-period models to this data, as we compare the parameter estimates obtained 300

from fitting the gamma and derived Burr distributions to this data in an attempt to 301

assess the relationship between these parameters. 302

Analysis of the Melbourne data 303

The gamma distribution is currently most frequently used to model Legionnaires’ 304

disease incubation periods [4], thus we produce models using a gamma distributed 305

incubation period, as well as a Burr distributed incubation period, to allow for 306

comparison between the two. Models are fitted using both the continuous and doubly 307

interval-censored models to offer comparison between the two methods. 308

This section begins by providing the results from fitting the incubation-period 309

models to the data (Table 2). Comparisons are drawn both between the 310

incubation-period models, as well as between model-fitting approaches and the effect 311

that has on our understanding of Legionnaires’ disease incubation periods. We provide 312

analysis of the moments of these Legionnaires’ disease incubation-period models in S1 313

Appendix in the Supplementary Material. Further, in this appendix we provide visual 314

comparison of the accumulated hazard of these models for large time, to examine their 315

ability to accurately display a Markovian property of long incubation periods. The 316

analysis and production of plots was conducted on R, with the code provided in S3 317

Code in the Supplementary Material. 318

Table 2. Results from fitting the gamma and four Burr distribution models to the 319

Melbourne incubation-period data using both the continuous and DI likelihood fitting 320

methods. 321
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When fitting using the continuous maximum likelihood method, types III, X, XII 322

and the derived Burr perform better than the gamma regardless of which scoring 323
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criterion is used. Because type X is a two-parameter distribution, the fact that its 324

maximized log-likelihood is higher than gamma’s automatically means that its 325

minimized AIC will be lower. Types III, XII and the derived Burr perform better than 326

gamma depending on how harshly they are penalized for their extra parameter. Based 327

on AIC, our ideal information criterion for model selection, these perform better than 328

the gamma distribution. On the whole, all Burr distributions perform better than the 329

gamma distribution. From considering the Akaike weights ratio w/wG, the derived 330

Burr, type III, and type X are at least two times as likely to be a better-performing 331

model than the gamma distributed model. Additionally, each Burr model provides at 332

least a 62% chance of being a better fitting model than the gamma distributed model, 333

with the derived Burr model being 70% more likely to be better than the gamma model. 334

Looking at the Bayes factor, there is no substantial evidence to favour type X over the 335

gamma. However, this criterion gives substantial evidence that both types III, XII as 336

well as the derived Burr are all favourable over the gamma distribution. 337

Next, when fitting using doubly interval-censoring methods, type X again 338

outperforms the gamma distribution. Types III, XII and the derived Burr perform 339

better than the gamma model, based on AIC, even with one extra parameter. When 340

considering the Akaike weights, all the Burr distributed models perform much better 341

than the gamma distribution, with the derived Burr being over 13 times more likely to 342

be the better-fitting model. Additionally, when considering w/(w + wG), all Burr 343

models are more likely to be perform better than the gamma distribution, with the 344

derived Burr being 93% likely. Finally, the Bayes factor for types X and XII both show 345

substantial evidence of a better fit than the gamma distribution. Further, the Bayes 346

factor for type III and the derived Burr both show strong evidence of a better fit than 347

the gamma model. 348

The same conclusions are drawn regardless of maximum likelihood fitting method; 349

all the distributions provide a better fit than the gamma distribution. Results from 350

using the DI methods agrees with the continuous likelihood method in that βXII and 351

γXII in the Burr type XII model have large standard errors, indicating that they are 352

not important in the model fitting procedure. 353

When fitted using continuous maximum likelihood methods, all Burr distributions 354

considered offer a similar curve when plotted, as expected, but do vary slightly as to the 355
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model value or the value of the p.d.f. at the mode (Fig. 2). The Weibull distribution 356

provides a similar modal value for the incubation period, but is more variable than the 357

Burr models. The gamma distribution provides a slightly lower modal value than the 358

Burr models. The log-normal model provides a noticeably different curve to the Burr 359

models and provides a much lower modal incubation period, with a lighter left tail and 360

heavier right tail than all the other distributions. 361

Fig 2. A plot of the Melbourne case data with the four fitted Burr distributions 362

included, which offer a visual representation of the incubation-period distributions 363

trialled. 364

The mean of each fitted distribution along with a bootstrapped 95% confidence 365

interval is calculated under both the continuous method and the doubly 366

interval-censored method to identify any differences across distributions and across 367

methods, and is provided in Table 1 of S2 Figure in the Supplementary Material. A 368

common theme exists, which is that, for each distribution, the mean for the doubly 369

interval-censored model is approximately a day less than the continuous model (5.3 days 370

compared to 6.3 days), with the confidence intervals for each model having no overlap 371
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across all the distributions. These results are statistically significant and provide 372

support for using a doubly interval-censored model to more accurately represent the 373

incubation period of Legionnaires’ disease. 374

For all of the distributions, the density under the doubly interval-censored approach 375

is shifted more towards the left, indicating that the incubation period is shorter than 376

when just taking the incubation period as exact integer days (Fig. 3). Indeed, the 377

doubly interval-censored methods account for a potential delay between exposure time 378

and infection as well as a delay between symptoms starting to develop and the person 379

reporting the symptoms, whereas the continuous model does not account for either 380

delay, resulting in longer times for the incubation periods. 381
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Fig 3. Plots of the Melbourne data with the continuous model fits in red and the 382

doubly interval-censored model fit as a step function in yellow. Each step of the 383

function is a horizontal line from t ∈ (a, b] where a = ⌊t⌋ and b = ⌈t⌉. 384

Application to other diseases 385

To further check the validity of the Burr distribution, we fit the doubly 386

interval-censored models to data of the incubation periods for different diseases: 387

anthrax [28], campylobacteriosis [30] and salmonellosis [29]. Figures of resulting model 388

fits provided in S2 Figure in the Supplementary Material, along with the obtained 389

parameter estimates and standard errors of these estimates contained in Table 1 of S2 390

Figure in the Supplementary Material. We use both the continuous and the doubly 391

interval-censored methods to fit the gamma and the Burr distributions, to compare 392

which model provides a better fit (Table 3). 393
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Table 3. Comparing Burr and gamma models on anthrax, salmonellosis and 394

campylobacteriosis datasets. For this table: Y represents that the given model 395

outperforms the gamma distribution, N represents that the given model does not 396

outperform the gamma distribution and H represents that the given model outperforms 397

the gamma distribution based on maximum likelihood, but not on AIC. 398

Distribution
Disease Method Burr III Burr X Burr XII Derived
Anthrax DI Y N H H

Continuous Y N Y H
Salmonellosis DI HYYY YYNN YYYY HYYY

Continuous NYYN YYNN YYYY HYYY
Campylobacteriosis DI YNNYY NNYNY HNNYY YHNYY

Continuous YYNYY NNNNY YYNYY YYNYH

Burr types III and X offer mixed results across datasets and do not consistently 399

outperform the gamma distribution. Apart from the third campylobacteriosis dataset, 400

both the derived Burr and type XII Burr models consistently outperform the gamma 401

distribution. When comparing optimal fits across datasets, the derived Burr appears to 402

be the most optimal out of these choices of models. 403

We note that there is no clear pattern between any of the fitted αD and βD 404

parameter estimates and the performance of the derived Burr distribution. Additionally, 405

there is no clear pattern from the anthrax, campylobacteriosis and salmonellosis 406

datasets as to whether the estimate of the median, TD, relates to the performance of the 407

derived Burr model. However, the lack of sensitivity for TD is logical as TD solely scales 408

the distribution about the median, and the ability of the derived Burr distribution to fit 409

well to incubation period data will depend more on the tails in the curve and around 410

the median, as opposed to the median itself. 411

We can draw conclusions on which scenarios the derived Burr distribution will 412

outperform the gamma distribution based on plots provided in Figure 1 of S2 Figure of 413

the Supplementary Material. The third campylobacteriosis dataset was the only dataset 414

in which the derived Burr did not outperform the gamma distribution based on either 415

maximized likelihood or on AIC. This dataset is unique in that the incubation period 416

ranges from one to five days. As a result, the effect of the censoring bias will be much 417

larger, due to the fact that this incubation period is much shorter. Therefore, this is not 418
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an ideal dataset to use to assess model performance. 419

Next, we consider the datasets in which the derived Burr outperformed the gamma 420

distribution based on maximized likelihood but not on AIC, regardless of model fitting 421

procedure. The anthrax dataset has a high density after the mode and does not tail off, 422

and the probability distribution of the first salmonellosis dataset does not have a clearly 423

defined mode and is negatively skewed. The derived Burr distribution offers close 424

results to the gamma distribution when it comes to modelling incubation periods 425

without a clear mode or tail off in probability of illness, but is a better-performing 426

distribution when this structure is clearer defined. 427

Finally, fitting to the second and fifth campylobacteriosis datasets resulted in the 428

derived Burr outperforming the gamma on maximized likelihood but not on AIC. The 429

incubation period for these datasets is relatively small, meaning that the bias from the 430

censoring issue is large when fitting models to these datasets. The campylobacteriosis 431

datasets that resulted in the derived Burr distribution outperforming the gamma 432

distribution were the ones in which the modal time was clearly defined and not a wide 433

range of times at the peak of the distribution. This further supports the hypothesis that 434

the derived Burr becomes more preferable when either the mode is more apparent, or 435

the range of incubation periods in the datasets is not too short that the censoring 436

becomes a larger issue. 437

Results of model-fitting to simulated data 438

We now further assess the validity of the Burr distributions by comparing their fits, 439

along with those of the gamma distribution, to fabricated data. Specifically, we aim to 440

analyse how the parameter estimates of the gamma distribution relate to the parameter 441

estimates of the derived Burr distribution for different datasets, to gain a further 442

understanding of how the derived Burr parameters can be interpreted. 443

Initially, we generate a sample of size 1000 from a gamma distribution with given 444

shape αΓ and mean µΓ (scale βΓ = µΓ/αΓ). Then the derived Burr parameter estimates 445

are obtained from fitting to this dataset by continuous maximum likelihood, so that 446

analysis can be conducted on the effect that varying αΓ ∈ (0, 5) or µΓ ∈ (1, 20) has on 447

these estimates. A heatmap is produced to visualise this effect (Fig. 4). 448
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Fig 4. Heatmap of the results from the third simulation. The derived Burr 449

distribution is fitted to data generated from the gamma distribution with parameters αΓ 450

and µΓ, with the obtained derived Burr parameter estimates plotted. 451

(a) Corresponding αD estimate from data
sampled from the gamma distribution.

(b) Corresponding βD estimate from data
sampled from the gamma distribution.

(c) Corresponding TD estimate from data
sampled from the gamma distribution.

Parallels exist between the interpretations of αΓ and αD. Increasing αΓ results in a 452

larger discrepancy between the gamma distribution and the exponential distribution. 453

Thus, αΓ limits quickly the distribution becomes Markovian over time. Therefore, a 454

positive correlation between αΓ and αD is expected (Fig. 4a). The results indicate that 455

µΓ does not have an effect on the rate at which the gamma distribution becomes 456
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Markovian. 457

Similarly, parallels exist between the interpretations of βΓ and βD. The hazard rate 458

for the gamma distribution tends to 1/βΓ as t → ∞. Hence, 1/βΓ as the eventual 459

Markovian rate of symptom onset for this distribution. Thus, a positive correlation 460

between βΓ and βD is logical (Fig. 4b). Therefore, the effect that varying either µΓ or 461

αΓ in µΓ = αΓβΓ has on βΓ is likely to inform the effect that varying either µΓ or αΓ 462

has on βD. 463

Finally, a positive correlation between µΓ and TD is expected, as they both represent 464

a form of average. For large αΓ, the gamma distribution becomes symmetric, hence 465

TD → µΓ. However, the correlation becomes less linear as αΓ decreases. In this case, 466

µΓ − TD and equivalently the skewness (defined by 1/
√
αΓ for the gamma distribution) 467

increases (Fig. 4c). 468

Discussion 469

This paper brings attention to and provides solutions to two distinct issues involved in 470

modelling incubation periods of diseases. First, we derive a new model for delays 471

between key events in an individual’s infection history, specifically the incubation 472

period, that has justifiable mechanistic reasons for its validity. Second, we adapt 473

methods for using incubation-period data, that is given as an integer number of days 474

and has issues with bias, to fit models. 475

We considered the probability of an individual changing from the 476

not-yet-symptomatic population to symptomatic for deriving our mathematical model. 477

This approach led to obtaining a differential equation equivalent to the equation 478

defining the exponential c.d.f. with a time-varying rate parameter. We then extended 479

the model with further assumptions to further develop the differential equation 480

describing the incubation period. We considered the likely event that the probability of 481

symptom onset after infection is proportional to the bacterial load before saturating at 482

some large load, as well as considering that bacterial population is expected to grow 483

exponentially. Further, we derived a specific distribution within the Burr family that 484

satisfies a Markovian property of long incubation periods. Other trial functions for G(t) 485

may offer results at least as good as this new model, and some in-host dynamics which 486
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affect the rate of symptom onset in populations could be considered for specific diseases 487

to provide even more optimal forms of the Burr model. 488

Further, by considering models that account for the fact that both the infection and 489

symptom onset times are not exactly known (doubly interval-censored models), we have 490

obtained expected incubation periods that are statistically significantly less than 491

previously thought (by a whole day) using standard statistical distributions with 492

incubation-period data. The mathematical derivation of the new model and 493

implementation of this model with doubly interval-censored methods address both these 494

problems, as we arrive at a mechanistic model for incubation periods. Our model has 495

few restrictions on which diseases it can be applied to, as well as highlights the need to 496

account for the censored nature of the data due to statistically significant difference 497

recorded in calculated incubation periods when incorporating the DI methods into the 498

model. 499

Our argument leading to the Burr family of distributions provides a valid 500

incubation-period model, but does not consider factors such as an individual’s age, 501

levels of immune response, susceptibility, doses received or the disease-specific in-host 502

dynamics at play which determine if and when an individual becomes ill with an 503

infection. For example, frailty may mean faster onset of symptoms, as may higher doses. 504

This flexibility means that the exact disease-specific in-host dynamics are not considered, 505

and to derive a model considering the biological processes at play with a given disease, a 506

different model would have to be derived based on the details of those dynamics. 507

In Figure 1 of S1 Appendix in the Supplementary Material, we noticed that all Burr 508

distributions valid over (0,∞), apart from type X, exhibited a Markovian property for 509

long incubation periods. Consequently, we compared the results of using this model to 510

the other Burr distributions to judge the validity of the Markovian assumption. The 511

type X provides successful results outperforming the gamma in nearly all of the analysis 512

(we obtain mixed results when fitting to other diseases). However, when compared to all 513

of the other Burr distributions, type X performed the worst when fitting to the original 514

Legionnaires’ disease dataset, the original Legionnaires’ disease dataset with doubly 515

interval-censored methods and the other diseases with doubly interval-censored methods. 516

Further, type X visually fits the worst to the Legionnaires’ disease data (Fig. 2). These 517

consistent results support our Markovian assumption for long incubation periods, and 518
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indicate that, although non-Markovian Burr distributions provide better-performing 519

models to the widely used gamma model, the Markovian Burr models provide a further 520

improvement in terms of distributional modelling. 521

Our proposed model can be applied in a number of ways in epidemiology and 522

infectious disease modelling. For example, a common area of research for 523

person-to-person transmissible diseases, such as COVID-19, is to develop 524

compartmental and time-since-infection models where the infectivity of inflicted 525

individuals infecting susceptible individuals in a population is modelled. Typically an 526

exponential distribution from the point in time at which they are infected is used for 527

modelling. However this approach can be improved upon by considering that an 528

individual will have an incubation period before they are infectious to others. This 529

improvement can be achieved by taking the convolution of the Burr incubation-period 530

model and the exponential infectious period to gain a more reliable model for infectivity, 531

improving the overall reliability of these models. In this work, we have limited to time 532

delay distributions with range of times that are strictly positive, as must be the case 533

with the incubation period. Some epidemiological distributions, such as generation time, 534

are not bound by this constraint and so care would be needed in application. 535

Furthermore, we may consider diseases that do not have a person-to-person 536

transmissible property such as Legionnaires’ disease, which has been the focus of this 537

research. Researchers typically track backwards from symptom onset date to predict 538

source location of the infection for elimination and public safety. A more reliable model 539

such as the model developed here can provide more accurate results when predicting 540

locations or causes of Legionnaires’ disease cases, which will result in reduction of 541

bacterial hot-spots and consequently cases of this disease. 542

This paper provides a flexible model that can reliably fit incubation-period data to a 543

level that is not currently seen in the literature and is valid for a wide range of diseases. 544

We have validated this with our results indicating that using the Burr family of 545

distributions as a model for incubation periods are better performing than currently 546

accepted models [4] for the diseases that we have analysed. 547
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S3 Code. R code for conducting analysis and producing plots in this research.
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S4 Data. Incubation period data for the diseases analysed in this research.
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