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Abstract

Gene expression profiling (GEP) provides valuable information for the care of
breast cancer patients. However, the test itself is expensive and can take a long
time to process. In contrast, microscopic examination of hematoxylin and eosin
(H&E) stained tissue is inexpensive, fast, and integrated into the standard of care.
This work explores the possibility of predicting ESRI gene expression from H&E
images, and its use in predicting clinical variables and patient outcomes. We
utilized a weakly supervised method to train a deep learning model to predict
ESRI expression from whole slide images, and achieved 0.57 [95% CI: 0.46, 0.67]
Pearson’s correlation with the ground truth value. Our ESRI expression prediction
achieved an AUROC of 0.81 [0.74, 0.87] in predicting clinical ER status obtained
using an immunohistochemistry staining technique, and a c-index of 0.59 [0.52,
0.65] in predicting progression-free interval for the patients in our cohort. This
work further demonstrates the potential to infer gene expression from H&E stained
images in a manner that shows meaningful associations with clinical variables.
Because obtaining H&E stained images is substantially easier and faster than
genetic testing, the capability to derive molecular genetic information from these
images may increase access to this type of information for patient risk stratification
and provide research insights into molecular-morphological associations.

1 Introduction

Breast cancer is the second leading cause of cancer deaths among American women, with roughly
40,000 deaths each year [7]. The treatment of breast cancer is complex, with protocols that differ
based on the many subtypes. These subtypes are traditionally determined by examining the tumor
under a microscope. However, molecular testing, such as gene expression profiling (GEP) has
also become an important source of information to inform treatment in some cases. For example,
OncotypeDx, a GEP test, can identify patients with low risk cancer to help them make the decision to
forgo chemotherapy and thus avoid the associated toxicities and costs of such treatment [10].

Despite its benefit, patients face challenges to access this type of molecular testing— the test costs
several thousands of dollars, requires coordination of tissue shipping, and can take several weeks to
return results. Furthermore, genetic testing can require a substantial amount of tissue, which may be
an issue of particular importance for small tumors or low tumor content specimens. In this work, we
explore predicting gene expression directly from images of hematoxylin and eosin (H&E) stained
tissue. Since H&E staining is a fast and inexpensive component of the standard tissue preparation in
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pathology, this approach requires no additional tissue usage. Our focus is on expression of ESRI,
the gene encoding estrogen receptor (ER) which is a key marker of breast cancer subtype and an
informative component of the OncotypeDX test. We predict the expression of this gene using a
weakly supervised method [3]]. Going beyond previous work that demonstrated the feasibility of
image based prediction of gene expression [9)], we evaluate the use of the resulting ESRI gene
expression prediction model to further predict clinical ER status and patient outcome.

2 Method

2.1 Dataset

We utilized two de-identified datasets in this work: 929 cases from the publicly available The Cancer
Genome Atlas (TCGA) generated by the TCGA Research Network (https://www.cancer.gov/tcga), and
432 cases from a tertiary teaching hospital (TTH). Both datasets contained whole slide images (WSI)
of H&E-stained pathology slides, ER status based on original clinical review of immunohistochemistry
(IHC), and survival data [2} 15]]; TCGA also contained gene expression data (RNASeqV?2 with data
provided as normalized counts using the RSEM method; log2 transformed for analysis; more detail is
given in [4]). TCGA cases were split based on tissue source sites into 551, 199, and 179 cases for
train, validation, and test respectively. TTH cases were used exclusively as a test set for evaluation of
ER status and clinical outcome prediction (gene expression data not available for this dataset). The
study was reviewed by the Advarra institutional review board (Columbia, Maryland) and deemed
exempt from informed consent as all data were retrospective and de-identified.

2.2 Approach

The WSIs of breast cancer tissue can be 108 or more pixels each, making it challenging to pass
an entire image through a regression model on a single machine. We follow the Multiple Instance
Learning (MIL) approach [3]], which uses gated attention to aggregate patch-level image embeddings
into a single prediction. Here, each image is assumed to be a bag of patches, with a single image-level
floating-valued label representing the gene expression.

To obtain patch-level embeddings, we first sample 16,843 patches of size 224 x 224 at 10x magnifi-
cation (1 pum per pixel) from each image randomly without replacement. The patches are then passed
through a pre-trained CNN that generates embedding of size 2,048. The CNN was pre-trained using
contrastive learning on pathology images [[1].

The patch embeddings are then fed through the MIL model to generate the final prediction. The
MIL model consists of a fully connected layer and an attention layer of size 8 for the gated attention
mechanism. This layer computes the weighted combination of all the patch embeddings of an image.
The output of the model is a single unbounded floating number representing the predicted gene
expression. The model was trained to minimize mean squared error using the Adam optimizer [6].
We tuned all hyperparameters based on the performance on the validation set.

3 Results

Table 1: RMSE and MAE values for the MIL model on the TCGA test set, compared to a baseline of
predicting the dataset mean.

RMSE [95% confidence Pearson Correlation
intervals, CI] MAE [95% CI] [95% CTI]
Our model 2.90 [2.57, 3.23] 2.20[1.91, 2.49] 0.57 [0.46, 0.67]
Dataset Variance 3.24 [2.91, 3.56] 2.67 [2.38, 2.95] N/A

Table 1 shows our model performance in predicting gene expression based on root mean square
error (RMSE), mean absolute error (MAE), and Pearson correlation with the ground truth values. As
a baseline, we compute the dataset variance (i.e., “predicting” using the mean value). Our model
achieved a RMSE, MAE, and correlation of 2.90 [95% CI: 2.57, 3.23], 2.20 [1.91, 2.49], 0.57 [0.46,
0.67], respectively.
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Table 2: Balanced accuracy and AUROC for this work on the TCGA test set. We compare the results
to a fully supervised method [2]. To get an upper bound for the performance we can expect from a
ESRI regression model for the task of ER status prediction, we compute the metrics using the ground
truth ESR1 expression value.

Using ground truth

This work (using ESR] Fully-supervised ESRI expression to

expression prediction to  method for direct ER

Metric - . . classify ER status
classify ER status) [95% status classification
CI] 2] [95% CI] (upper boclﬁld) [95%
Balanced Accuracy 0.78 [0.70, 0.85] 0.76 [0.65, 0.86] 0.94 [0.89, 0.97]
AUROC 0.81 [0.74, 0.87] 0.85[0.77, 0.92] 0.95[0.91, 0.98]

Table 3: Survival analysis on the TTH dataset. We compared the performance to those provided by
pathologist-provided ER status, and pathologist-provided tumor grade.

Pathologist-provided
tumor grade [95%
CI]

C-index 0.59[0.52, 0.65] 0.61 [0.54, 0.66] 0.64 [0.58, 0.69]

IHC-based ER status

This work [95% CI] [95% CI]

Next, we evaluated whether the model can meaningfully predict important clinical variables. ER
status evaluation by immunohistochemistry (IHC) is part of the routine clinical workup for breast
cancer. A pathologist examining the tumor using immunohistochemistry (IHC) stains determines the
tumor to have positive or negative ER expression based on visual interpretation of staining intensity
and distribution. Since ESRI gene expression is associated with ER (protein) expression, we expect
ESR]I value to be predictive of the ER status. We first evaluate how well our model can predict the
ER status. This is done by thresholding the continuous predictions from our model to obtain either a
‘positive’ or a ‘negative’ ER status prediction. We use a threshold value of 10 based on the validation
data, and find that our weakly supervised method based on regressing against ESR/ is comparable to
a fully-supervised method directly predicting ER status [2]]. This is particularly interesting because
the method proposed in [2]] requires strong supervision based on extensive annotations, and a 2-stage
modeling approach, whereas our approach is weakly supervised and therefore does not require expert
labeling of ESRI/ER.

As patients with ER-positive tumors generally
have a better prognosis as compared to those Model-predicted
with ER-negative tumors, we also evaluated if ESR1 gene expression (p=0.018)
ESRI expression is predictive of patient out- 1.0 .
comes. We consider breast cancer progression
(as indicated by recurrence and deaths) as the
endpoint, and we measure the concordance in-
dex (C-index) using the ESRI prediction out-
put directly as the risk scores (Table 3). Our
model achieved a c-index of 0.59 [95% CI: 0.52,
0.65]. For comparison, the c-index using the
clinical ER status was 0.61 [0.54, 0.66] for this
dataset. The pathologist-provided tumor grade,
another established pathologic factor associated 02
with prognosis [8]], had a c-index of 0.64 [0.58, —— ESRI High
0.69]. Additionally, as Figure 1 shows, risk ESR1 Low
s.tratiﬁcat.iop using thej bingrizefl ESRI expres- 0.0 51000 2000 3000 4000 5000 6000
sion predictions could identify high and low risk Time (Days)
patients with different outcomes (logrank test,
p=0.018). Figure 1: Kaplan-Meier curves for patients from
the TTH dataset predicted to have tumors with high
(blue) vs low (orange) ESRI expression. High and
Jow classification are based on the threshold of 10
found on the TCGA validation set. Shaded areas
represent 95% Cls; p-value is computed using the
logrank test.
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4 Discussion

Compared to genetic testing and gene expression

profiling in particular, obtaining H&E stained

images is substantially easier and faster. The ca-

pability to derive genetic information from these

images may therefore increase access to ge-

nomic information, enabling clinicians to make

more informed decisions about each patient’s treatment or providing insights about mechanisms of
disease. This work is only a first step however, and further research on this topic will be needed
to help this capability materialize. Limitations of this study include the fact that treatment data is
not available for these datasets and treatment both influences outcomes and is in part determined by
the ER status itself. A larger dataset, potentially with controlled treatment arms, is thus needed to
validate the survival prediction power of the model. Additionally, the H&E images from TCGA are
not necessarily immediately adjacent structurally to the tissue used for the molecular testing. Thus,
heterogeneity in the tumor or the tumor content across slides from the same tumor may create noise
between label and image regarding the values used for gene expression. Lastly, ESR/ is only one
gene out of thousands expressed in breast cancer. Since several studies [[10, [11] demonstrate the
power of multiple genes to predict patient response, additional genes should be included and studied
to create a more robust prognostic panel.
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