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Abstract 

A closed form solution of the full Kermack and McKendrick integro-differential 

equations (Kermack and McKendrick 1927), called the KMES, is presented and verified. The 

solution is derived by combining network concepts with the integro-differential equations. 

This solution has two parameters: one describing disease transmissibility and a second 

characterizing population interactions. The verified solution leads directly to useful, previously 

unknown, analytical expressions which characterize an epidemic. These include novel 

expressions for the effective reproduction number, time to peak in new infections, and the final 

size.  

Using COVID -19 data from six countries, the transmissibility parameter is estimated and 

subsequently used to estimate the normalized contagiousness of an individual, a close 

approximation to viral shedding measured in infected persons.  The population interaction 

parameter is estimated using the Google Residential Mobility Measure. With these parameter 

estimations, the KMES accurately projects case data from the COVID-19 pandemic in six 

countries over a 60-day period with R2 values above 0.85.  

As to performance over longer periods, the KMES projects the Covid-19 total case data 

from the United States 21 days in advance over an 18-month period with a Mean Absolute 

Percentage Error of 4.1%. The KMES also accurately identifies the beginnings and peaks of 

outbreaks within multi month periods in case data from 4 countries.  
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Introduction 

Modern epidemiological modeling has its roots in the Kermack and McKendrick 

epidemic model, first published in 1927 (Kermack and McKendrick 1927). Since its publication, 

well over 10,000 authors have referenced and used this paper as a foundational starting point. 

However, as Diekmann points out in his insightful essay (2022 pg. 8), “…an incessant 

community-enforced misconception is that the paper is just about the very special case, the S-I-R 

(Susceptible, Infected, Recovered) model.” In the essay, he also elaborates on his suspicion that, 

despite the many references, the 1927 paper is rarely read by the citing authors. His concluding 

remarks decry the situation and request that the 1927 paper, a “…true gem…in which 

tremendous wisdom lies hidden.” (Diekmann 2022 pg. 9) be thoroughly read and its depths 

plumbed for further insights.  

A closed form solution to Kermack and McKendrick’s integro-differential equations 

would very likely unlock additional wisdom, but the widespread use of SIR approximations 

(Breda et al 2021, Diekmann 2022 and Brauer 2008) and the recent publication of a discrete time 

model of the integro-differential equations (Diekmann 2021), are mute evidence that such a 

solution remains elusive. Lacking a solution, researchers have made prodigious efforts to extract 

wisdom from SIR approximations and produced what have become well-known formulas for the 

final size of epidemics, the notion of “flatten the curve” (DiLauro et al 2021), and various other 

refinements (e.g., Brauer 2008, Breda et al 2021, Hethcote 2000). 
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Unfortunately, approximations often incorporate unrealistic and unavoidable 

assumptions. For example, SIR approximations inherently assume that the affected population is 

well-mixed; an assumption that has been labelled as “unrealistically simple” (Brauer 2008, pg. 

27). Therefore, lacking analytical alternatives, advances in the use of the approximations have 

tended to focus on approaches to minimize the effect of the assumptions.   

One advanced approach, network-based stochastic models (e.g., Newman 2002, 

Diekmann et al 1998, and Youssef 2011) assume that epidemic dynamics can be projected by 

summing the collective probabilities that individuals will be infected with only a limited number 

of contacts; thereby avoiding the well-mixed assumption. These have been widely investigated 

and have produced estimations of outbreak threshold conditions and the final size of epidemics. 

However, while these are laudatory steps towards realistic characterizations of interactions, they 

do not yield the analytical expressions which make closed-form solutions so appealing and 

useful.  

Inspired by Diekmann’s comments, we closely studied Kermack and McKendrick’s 1927 

paper; and, by applying network model concepts, found a pathway to a closed-form solution. 

This approach frees the analysis from the assumptions inherent in the SIR approximations and 

produces analytical expressions with demonstrably practical application to the management of 

epidemics. 

In this manuscript, we take up Diekmann’s call to action in three sections: 
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1) In Section 1 we present an analytical solution to the Kermack and McKendrick integro-

differential equations and prove that it solves the equations. We then derive and explicate 

several analytical expressions characterizing epidemic dynamics. We call the solution the 

KMES (Kermack and McKendrick Equation Solution). 

2) In Section 2, using data compiled from several countries during the COVID-19 

pandemic, we demonstrate that a transmissibility and population interaction parameter 

can be deduced from early pandemic data, combined with the independently sourced 

Google Residential Measure (Google 2023). With these parameters, the KMES not only 

accurately projects the course of the COVID-19 pandemic in the six sampled countries, 

but also provides an estimate of the normalized contagiousness of an individual. 

3) In Section 3 we derive additional expressions which can be used to determine the actions 

necessary to diagnose, control, and end an epidemic. We demonstrate the use of these 

expressions with the United States COVID-19 case data from April 2020 to November 

2021; and accurately project the total case data 21 days in advance over 18 months. 

Lastly, we demonstrate the ability to detect in advance the major outbreaks that occurred 

during the pandemic in 4 sampled countries. 
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Section 1: A Solution to the Kermack and McKendrick Equations 

(Note: We use the following equation notation, (X, SY-Z), where X is the equation number in 

the body; and if the equation is used in a supplement, SY is the supplement number and Z is the 

number of the equation in the supplement). A list of all equations is provided in Supplement 4. 

Definition of Terms 

We model the population affected by the epidemic as a network with 𝑁𝑃 vertices. The 

contacts of each person/vertex in 𝑁𝑃 which can transmit an infection are the edges. Within this 

network, we define 𝑁𝑃 as the total number of people who can possibly become infected during 

the epidemic; 𝑆(𝑡), as the subpopulation that has not yet become infected; 𝑁(𝑡) as the 

subpopulation that is currently or has previously been infected; 𝐼(𝑡) as the infectious individuals 

within 𝑁(𝑡); and R(𝑡) as the total recovery of individuals within 𝑁(𝑡). 𝑆(0) is the number of 

uninfected people in 𝑁𝑃 at the epidemic start, 𝑆(∞) is the number of uninfected people at the end 

of the epidemic, and 𝐼(0) is the number of infectious individuals at the epidemic start. Therefore, 

𝑁𝑃 = 𝑆(𝑡) + 𝑁(𝑡), 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡), and 𝑁(0) = 𝐼(0).  We further assume that for our 

modelling purposes, 𝑁𝑃 is a constant; and that once infected and recovered, people cannot 

become reinfected.   

Since not everyone who is infected can transmit the disease, we distinguish three 

subgroups of infected people as follows:  

1) People who have just been infected but are not yet shedding virus are latent infectious. 
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2) People who are shedding the virus and are in contact with susceptible people are 

infectious. 

3) People who may be shedding the virus but have no contact with susceptible people are 

part of the recovered group 𝑅(𝑡).  

In our solution, persons in groups 1 and 2 are part of 𝐼(𝑡), collectively known as 

infectious, and persons in groups 2 and 3 are considered contagious. Members of all three 

groups are part of the ever-infected population, 𝑁(𝑡). To avoid any ambiguities in these 

definitions, we clarify them further using two thought experiments. 

In the first thought experiment, imagine that a person has just infected a particular 

person. In this case, the infecting person cannot reinfect that newly infected person nor can the 

newly infected person infect their infector. In our model, such people are vertices in a network 

where the edges are contacts which could transmit an infection and we assume that if the 

frequency of contact or the number of contacts (edges) between people does change, these do 

so slowly when compared to the rate at which people become infected.  

Additionally, we assume that infectors remain in durable potentially infectious contact 

with the people they have infected. Consequently, the infectiousness, but not the degree, of 

infectors diminishes with each infection they cause; and, in symmetry, the extent to which they 

are unable to infect others, their recovery increases. This change in infectiousness does not 

affect their level of contagiousness which is considered purely a function of the disease.  
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In the second thought experiment, as described in Diekmann (2022), during an infection, 

the quantity and quality of the infectious agent within any infected person, the so-called “viral 

load”, will rise and fall with time. Since the contagiousness of an infected person will also vary 

in synchrony, we postulate that the level of infectiousness will approximately track this variation 

in the contagiousness. Those persons whose infection has passed the maximum point of 

contagiousness will become increasingly less infectious; and, correspondingly more recovered. 

We say “approximately” when discussing this relationship, because infectiousness and 

contagiousness are not equivalent, as the notions developed in the definitions and first thought 

experiment make clear. 

Kermack and McKendrick’s Model Structure 

Kermack and McKendrick (1927) derived their integro-differential equations by 

imagining 𝑁(𝑡) as the sum at time t of incremental subpopulations which had been infected at 

prior times 𝑡 − 𝜃; where 𝜃 specifies the time since infection of each subpopulation. An array 

illustrating the relationship between time and 𝜃 underpinning their equations is presented in 

Figure 1. As Figure 1 shows, since 𝜃 has the units of time, each increment of 𝜃 is designated as 

∆𝑡. Both t and 𝜃 must be ≥ 0; and because 𝜃 ≤ 𝑡 and ∆𝜃 = ∆𝑡, the array is square.  

Designating each incremental subpopulation infected at a time 𝑡 − 𝜃 as a “𝜃-group”, 

Kermack and McKendrick’s analysis tracked the progress of each 𝜃-group through both time and 

𝜃. Since ∆𝜃 = ∆𝑡, this means each group started in the left most column of the 𝑡 − 𝜃 row in 

Figure 1 and moved diagonally upwards to the right thereafter. Their integro-differential 
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equations were created by first summing each row over 𝜃 and then taking the limit of those 

summations as ∆𝜃 → 0.  

   

Figure 1. Array showing time and theta. A new row on top and a new column to the right is added with 

each ∆𝑡 increment of time. 

 

We adapt the format of Kermack and McKendrick’s equations to our previously defined 

population variables using a specific notation. Unless otherwise specified, all dependent 

variables and parameters are assumed to depend on both time, t, and 𝜃 (e.g., 𝐼(𝑡, 𝜃)). 

Additionally, if a population variable representing a portion of the population is designated as a 

function of time alone, then it is to be understood that that variable has been integrated over 𝜃 

from 0 → 𝑡. For instance, 𝐼(𝑡) = ∫ 𝐼(𝑡, 𝜃)
𝑡

0
𝑑𝜃. However, if we designate a parameter as solely a 

function of time or 𝜃, then that parameter is to be considered constant over the alternate temporal 

time

me 

theta (Ɵ) 
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dimension, (i.e, 𝜃 or time) respectively. The population variables used in this manuscript are S, I, 

N, and R; and the parameters are identified as they are introduced to the analysis.  

With the conceptualizations developed above, the Kermack and McKendrick integro-

differential equations in terms of time, 𝜃, and population variables are: 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −

S(t)

𝐴𝑝
(∫ 𝐴(𝑡, 𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐴(𝑡, 𝑡)𝐼(0))

𝑡

0
, (1, S1-1) 

 𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐵(𝑡, 𝑡)𝐼(0)

𝑡

0
,  (2, S1-2) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= ∫ 𝐶(𝑡, 𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐶(𝑡, 𝑡)𝐼(0)

𝑡

0
, (3, S1-3) 

 𝑁𝑝 = 𝑆(𝑡) + 𝑁(𝑡) (4, S1-4) 

 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡) (5, S1-5) 

where 𝐵(𝑡, 𝜃) = 𝑒− ∫ 𝜓(𝑡,𝑎)𝑑𝑎
𝜃

0 , 𝐶(𝑡, 𝜃) = 𝜓(𝑡, 𝜃)𝐵(𝑡, 𝜃), and 𝐴(𝑡, 𝜃) = 𝜑(𝑡, 𝜃)𝐵(𝑡, 𝜃).  

Kermack and McKendrick (1927, p. 703) defined 𝜑(𝑡, 𝜃) as “the rate of infectivity at age 𝜃”, 

and 𝜓(𝑡, 𝜃) as “the rate of removal” of the infected population to the recovered population and 

we continue these associations. 𝑁𝑝 is the total population, 𝐴𝑝 is the area that contains 𝑁𝑝 and, as 

previously defined, 𝜃 is the time since infection of any member of the population 𝑁(𝑡). We also 

note that in Equations 1, 2, and 3, 
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
 is the new infections at time 𝑡 − 𝜃. 
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The Solution 

In Supplement 1, we derive a solution to Equations 1-5 and call it the KMES (Kermack 

and McKendrick Equation Solution). The KMES is stated as, 

 𝑁(𝑡) = 𝑁(0)𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒
− ∫

𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0    (6, S1-41)  

 𝐼(𝑡) = 𝐼(0)𝑒
𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 −∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0   (7, S1-42) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒
− ∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 )𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0   (8, S1-43)

 𝐵(𝑡, 𝜃) = 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

𝑡−𝜃 = 𝑒
− ∫ (𝐾𝑇(𝑎)−𝐹𝑖(0)𝐾𝑇(𝑎)𝑒

− ∫
𝐾𝑇(𝑏)

𝑃𝑐(𝑏)
𝑑

𝑎
0 𝑏

+
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
)𝑑𝑎

𝑡
𝑡−𝜃  (9, S1-45)  

 𝐵(𝑡, 𝑡) = 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 = 𝑒
− ∫ (𝐾𝑇(𝑎)−𝐹𝑖(0)𝐾𝑇(𝑎)𝑒

− ∫
𝐾𝑇(𝑏)

𝑃𝑐(𝑏)
𝑑

𝑎
0 𝑏

+
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
)𝑑𝑎

𝑡
0 , (10, S1-46) 

where the integration limits of the exponential within 𝐵(𝑡, 𝜃) in Equation 9 have been restated as 

the interval from 𝑡 − 𝜃 to 𝑡, instead of the interval, 0 to 𝜃, specified by Kermack and 

McKendrick. This interval, 𝑡 − θ to t, with a length of 𝜃, extends from the time of infection to 

the current time, and is the same time interval referenced in Kermack and McKendrick’s formula 

for 𝐵(𝑡, 𝜃). A detailed explanation of the basis for this crucial restatement is given in 

Supplement 1 (Equations S1-15 through S1-24). The parameters, �̂�(𝑡),  𝐾𝑇(𝑡), 𝑃𝑐(𝑡), and 𝐹𝑖(𝑡), 

are described in the following paragraphs. 

The derivation of the solution uses the weighted averages of 𝜑(𝑡, 𝜃) and 𝜓(𝑡, 𝜃), 
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 �̂�(t) =
∫ 𝐴(𝑡,𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐴(𝑡,𝑡)𝐼(0))

𝑡
0

∫ 𝐵(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐵(𝑡,𝑡)𝐼(0))

𝑡
0

   (11, S1-6)  

 �̂�(𝑡) =
𝑑𝑅(𝑡)

𝑑𝑡

𝐼(𝑡)
=

∫ 𝐶(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐶(𝑡,𝑡)𝐼(0)

𝑡
0

∫ 𝐵(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐵(𝑡,𝑡)𝐼(0)

𝑡
0

,   (12, S1-7) 

the formulation of which utilize the forms of 𝐴(𝑡, 𝜃) = 𝜑(𝑡, 𝜃)𝐵(𝑡, 𝜃), and 𝐶(𝑡, 𝜃) =

𝜓(𝑡, 𝜃)𝐵(𝑡, 𝜃). It was also convenient to define the parameter, 𝐾𝑇(𝑡), in terms of �̂�(t) and 
S(t)

𝐴𝑃
 

as, 

 𝐾𝑇(𝑡) = �̂�(𝑡)
S(t)

𝐴𝑃
= −

𝑑𝑆(𝑡)

𝑑𝑡

𝐼(𝑡)
=

𝑑𝑁(𝑡)

𝑑𝑡

𝐼(𝑡)
.   (13, S1-8) 

From its form, 𝐾𝑇(𝑡) must be a transmission rate with the units: 
𝑁𝑒𝑤 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑝𝑒𝑟𝑠𝑜𝑛 𝑥 𝑇𝑖𝑚𝑒
, and 

is affirmed as a property of the disease in Section 2. Equation 13 embodies both the notion that 

all new infections are caused by contact with the currently infectious, and that  
𝑑𝑁(𝑡)

𝑑𝑡
= −

𝑑𝑆(𝑡)

𝑑𝑡
  

because all new infections must come from the susceptible population. Also, to address the 

matter of a latency period, this effect, if present in the disease, is manifested as a lowering of the 

value of both �̂�(t) and 𝐾𝑇(𝑡) early in the epidemic, until there are enough contagious infections 

to offset the delay associated with the latency. 

As previously stated, we assume the population can be represented as a network where 

the individuals are the vertices, and the edges are the contacts capable of transmitting the disease. 

In deriving the solution, we further assumed that, within this population, there is a subnetwork 

wherein only those contacts that already have, or eventually will, pass on an infection are the 
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edges of this subnetwork. We also assume that the mean number of these edges per person, 

which we call 𝑃𝑐(𝑡), is the self-weighted mean degree of this subnetwork minus 1. We subtract 1 

because a person cannot infect their infector.  

As defined, 𝑃𝑐(𝑡) is equivalent to the basic reproduction number, 𝑅0, a concept used in 

conventional modelling terminology; but since we utilize it in an unconventional manner, we 

refer to it as 𝑃𝑐(𝑡) throughout the manuscript. To affirm this equivalence, wherever possible, we 

highlight where and in what way 𝑃𝑐(𝑡) exhibits characteristics conventionally thought of as 

manifest in 𝑅0. 

The use of 𝑃𝑐(𝑡) allows the analysis to proceed by only tracking the number of infection-

transmitting interactions that infected people have with susceptible people, and for this number 

to vary independently from the total number of susceptible people remaining within 𝑁𝑝. This 

frees the model from the constraint of the “well-mixed” assumption wherein all the infected 

people are assumed to be in contact with all the susceptible people at any given time.  

This also frees the analysis from having to track all interactions and the probabilities that 

they will transmit an infection between infected people and their contacts. Instead, the 

specification of 𝑃𝑐(𝑡) acknowledges that an epidemic progresses with the passing of infections 

between infectious and susceptible people, which occurs 𝑃𝑐(𝑡) times per infectious person, at a 

rate 𝐾𝑇(𝑡). We also hypothesize that 𝑃𝑐(𝑡) is related to the population behavior and demonstrate 

this in Section 2. The conceptualization of 𝑃𝑐(𝑡) is further expanded in Supplement 1. 
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The last important parameter in the solution, 𝐹𝑖(𝑡), the fraction of 𝑁(𝑡) that is infected, is 

defined as, 

 𝐹𝑖(𝑡) =
𝐼(𝑡)

𝑁(𝑡)
.      (14) 

This parameter enables us to transform Equation 12 into a useful, alternative expression for �̂�(𝑡) 

in terms of 𝐾𝑇(𝑡), 𝑃𝑐(𝑡), and 𝐹𝑖(𝑡), 

 �̂�(𝑡) = 𝐾𝑇(𝑡)−𝐹𝑖(0)𝐾𝑇(𝑡)𝑒
− ∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
,  (15, S1-44) 

Proof of the Solution 

We now substitute the solution into Equations 1 through 5 to prove it is indeed a solution. 

We start by substituting Equation 15 into Equation 7 to obtain, 

 𝐼(𝑡) = 𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡

0 . (16, S1-14) 

Also, by differentiating Equation 6, 

  
𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡)𝐼(𝑡). (17, S1-9) 

Since we know that 
𝑑𝑁(𝑡,𝜃)

𝑑𝑡
= 0 for all 𝜃 > 0, and therefore 

𝑑𝑁(𝑡)

𝑑𝑡
=

𝑑𝑁(𝑡,0)

𝑑𝑡
, we can use this 

relationship in Equation 17, and substitute the result along with Equations 16, 9 and 10 into 

Equation 2. Keeping in mind that 𝑑𝜃 = 𝑑𝑡, we subsequently rewrite Equation 2 as, 

𝐼(𝑡) = ∫ 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝜃

𝑡−𝜃 𝐾𝑇(𝑡 − 𝜃)𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡−𝜃

0 𝑑𝜃 + 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 𝐼(0)
𝑡

0
.    (18, S1-25) 
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which can be simplified to, 

 𝐼(𝑡) = 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 ∫ 𝐾𝑇(𝑡 − 𝜃)𝐼(0)𝑒∫ 𝐾𝑇(𝑏)𝑑𝑏
𝑡−𝜃

0 𝑑𝜃 + 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 𝐼(0)
𝑡

0
. (19, S1-26) 

Since ∫ 𝐾𝑇(𝑡 − 𝜃)𝑒− ∫ 𝐾𝑇(𝑏)𝑑𝑏
𝑡−𝜃

𝑡 𝑑𝜃
𝑡

0
= 𝑒∫ 𝐾𝑇(𝑏)𝑑𝑏

𝑡
𝑡−𝜃 − 1, the middle integral in the first term in 

Equation 19 can be evaluated, and Equation 19 collapses to: 

 𝐼(𝑡) = 𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡

0 .    (20, S1-27) 

Equation 20 is identical to Equation 16, thereby proving that Equation 16 (and hence Equation 7 

in the KMES) is a solution to Equation 2. 

The proof of solution for Equation 1 is similar and begins by substituting Equations 6, 17, 

12, 9 and 10 into Equation 1 to obtain, 

𝐾𝑇(𝑡)𝐼(𝑡) =
S(t)

𝐴𝑝
�̂�(𝑡)(∫ 𝑒− ∫ �̂�(𝑎)𝑑𝑎

𝑡
𝑡−𝜃 𝐾𝑇(𝑡 − 𝜃)𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏

𝑡−𝜃
0 𝑑𝜃 +

𝑡

0
𝑒− ∫ �̂�(𝑎)𝑑𝑎

𝑡
0 𝐼(0)) 

      (21, S1-28) 

Using Equations 18 and 20, and noting that 𝐾𝑇(𝑡) =
S(t)�̂�(𝑡)

𝐴𝑝
, Equation 21 can be simplified to, 

 𝐾𝑇(𝑡)𝐼(𝑡) = 𝐾𝑇(𝑡)𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡

0 ,   (22, S1-29) 

If we then substitute Equations 15 and 17 into 22, we find the following expression, 

 
𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡)𝐼(0)𝑒

𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒
− ∫

𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 −∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0    (23) 

After dividing both sides of Equation 23 by Equation 6, and then integrating, we obtain, 
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 𝑁(𝑡) = 𝑁(0)𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒
− ∫

𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 ,    (24) 

which is identical to Equation 6 proving that we have a solution to Equation 1. 

Lastly, from Equation 12 we know that 
𝑑𝑅(𝑡)

𝑑𝑡
= �̂�(𝑡)𝐼(t), and since, when we 

differentiate Equation 8, we find the same expression, Equation 8 is a solution to Equation 3.  

Simplified Expressions 

The expressions for 𝑁(𝑡), 𝐼(𝑡), and 𝑅(𝑡) can be rewritten in simplified, more intuitive 

forms. The first of these is what we call the Step Response form, found by using Equation 10 to 

rewrite 𝑁(𝑡), 𝐼(𝑡), and 𝑅(𝑡) as,  

 𝐼(𝑡) = 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡

0 𝐵(𝑡, 𝑡)𝐼(0)  (25) 

 𝑁(𝑡) = 𝑒
∫ (𝐾𝑇(𝑡)+

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑑𝑡

𝑡
0 𝐵(𝑡, 𝑡)

𝐼(0)

𝐹𝑖(0)
  (26) 

 𝑅(𝑡) = (
𝑒

∫ (𝐾𝑇(𝑡)+
𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

)𝑑𝑡
𝑡
0

𝐹𝑖(0)
− 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡

𝑡
0 )𝐵(𝑡, 𝑡)𝐼(0).  (27) 

Since 𝐵(𝑡, 𝑡) is the time varying infectiousness input to the original infected group, 𝐼(0), the 

exponential expressions, 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡

0 , 
𝑒

∫ (𝐾𝑇(𝑡)+
𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

)𝑑𝑡
𝑡
0

𝐹𝑖(0)
, and 

𝑒
∫ (𝐾𝑇(𝑡)+

𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

)𝑑𝑡
𝑡
0

𝐹𝑖(0)
− 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡

𝑡
0 , are the 

step response functions to this input.  
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As a sensibility check, Equation 25 shows that if there were no recovery, that is, if 

𝐵(𝑡, 𝑡) = 1, the infections would grow exponentially, at a rate determined by the transmissibility 

of the agent, until the entire population was infected, an intuitive and reasonable result. This also 

makes clear that, even with a finite recovery period, with large enough population interactions, 

𝑃𝑐(𝑡), everyone in the initially affected population, 𝑆(0), could eventually become infected. 

As a final simplification, if we can assume that both 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡) in Equations 6 to 8 

can be constant for a period, we arrive at the following expressions, 

 𝑁(𝑡) = 𝑁(0)𝑒−𝐹𝑖(0)𝑃𝑐(𝑒
− 

𝐾T
𝑃𝑐

𝑡
−1)    (28) 

 𝐼(𝑡) = 𝐼(0)𝑒
−𝐹𝑖(0)𝑃𝑐(𝑒

− 
𝐾T
𝑃𝑐

𝑡
−1)− 

𝐾T
𝑃𝑐

𝑡

    (29) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒
− 

𝐾T
𝑃𝑐

𝑡
)𝑒−𝐹𝑖(0)𝑃𝑐(𝑒

− 
𝐾T
𝑃𝑐

𝑡
−1)   (30)  

Expressions Describing an Epidemic 

Beyond sensibility checks, the availability of a closed form solution opens a pathway to 

the derivation of expressions useful in epidemic description and management. We illustrate 

several of these here using the simplifying assumption that 𝐾𝑇 and 𝑃𝑐 are constants, which allows 

the nature of the expressions to be more easily seen and understood.  
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Effective and Basic Reproduction Number, Reff and R0 

Using Equation S1-40 from Supplement 1, we can write an expression for the average 

number of susceptible people remaining within 𝑃𝑐 as, 

 𝑅𝑒𝑓𝑓(𝑡) = 𝑃𝑐𝐹𝑖(0)𝑒
− 

𝐾𝑇
𝑃𝑐 

𝑡
     (31) 

We call 𝑅𝑒𝑓𝑓(𝑡) the effective replication number because it is the average number of contacts per 

infectious person that they will still infect as long as 𝑃𝑐 remains constant. 

In Supplement 1, while deriving the solution, we also develop Equation S1-10, an 

expression useful in diagnosing whether an epidemic is growing, 

  
𝑑𝐼(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡) 𝐼(𝑡) − �̂�(𝑡)𝐼(𝑡),   (32, S1-10) 

which, by using Equation 15 and 31, can be rewritten as, 

 
𝑑𝐼(𝑡)

𝑑𝑡
= (

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
− 𝑅𝑒𝑓𝑓(𝑡)

𝐾𝑇

𝑃𝑐
)I(t),    (33) 

Therefore, if 𝑅𝑒𝑓𝑓(𝑡) > 1, the epidemic is growing, and reciprocally, if 𝑅𝑒𝑓𝑓(𝑡) < 1, the 

epidemic is declining. This means that 𝑅𝑒𝑓𝑓(𝑡) is an indicator of the epidemic’s direction, and, as 

we show in Section 3, is a diagnostic metric for potential use in public health decision making. 

Lastly, we note that if 𝐹𝑖(0) = 1, then 𝑅𝐸𝑓𝑓(0) = 𝑃𝑐, corroborating that 𝑃𝑐 is equivalent to the 

Basic Reproduction Number, 𝑅0. 
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Time to Peak New Infections and Peak Size 

Setting 𝑅𝐸𝑓𝑓(𝑡) = 1 in Equation 31 yields the time when 𝐼(𝑡) begins to decline: 

 𝑡𝑑𝑒𝑐𝑙𝑖𝑛𝑒 =
𝑃𝑐ln (𝐹𝑖(0)𝑃𝑐)

𝐾𝑇
.   (34) 

Likewise, by differentiating both sides of Equation 28, the expression for 𝑁(𝑡), twice and 

equating the result to zero, we find the time when 
𝑑𝑁(𝑡)

𝑑𝑡
 will be maximal,  

 𝑡𝑃𝑒𝑎𝑘 =
𝑃𝑐ln (𝐹𝑖(0)𝑃𝑐)

𝐾𝑇
,   (35) 

where 𝑡𝑃𝑒𝑎𝑘 = the time to the peak of new infections. As it should, the peak in new cases 

coincides with the start of the decline of infections.  

Equation 35 projects that when social interventions are stronger (smaller 𝑃c), the time to 

the peak will always be shorter, the opposite of the SIR models’ projection of this relationship. 

We highlight this qualitative difference between the projections of the KMES and SIR models 

because, as we show in Section 3, the data from the Covid-19 pandemic supports the KMES 

projection. 

Equation 34 can be substituted into Equation 29 to find the peak value of the infections, 

 𝐼(𝑡)𝑃𝑒𝑎𝑘 =
𝐼(0)𝑒(𝐹𝑖(0)𝑃𝑐−1)

𝐹𝑖(0)𝑃𝑐
.     (36) 

During an epidemic, Equation 36 can be used to estimate the maximum level of infections and 

derivative need for office visits or hospitalizations that may occur in the future. 
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Final Size 

In the limit, as 𝑡 → ∞, Equation 28 generates an expression for the final size, 

 𝑁(∞) = 𝑁(0)𝑒𝐹𝑖(0)𝑃𝑐,      (37) 

and the time it would take for 𝑁(∞) = 𝑁𝑃 is, 

 𝑡 = −
𝑃𝑐

𝐾𝑇
𝑙𝑛(1 −

ln (
𝑁𝑃

𝑁(0)
)

𝐹𝑖(0)𝑃𝑐
).      (38) 

Therefore, as suggested by the Step Response form of the solution, if 𝑃𝑐 is large enough for a 

long enough period, the KMES projects that it is possible, at some point in time, for 𝑁(𝑡) to 

equal 𝑁𝑃. The criteria for this to occur is, 

 𝐹𝑖(0)𝑃𝑐 > ln (𝑁𝑃).      (39) 

This result differs from Kermack and McKendrick’s conclusion that the entire susceptible 

population cannot be infected, a result that has achieved a position of some prominence within 

the epidemiological modelling community. Therefore, we feel compelled to defend our 

conclusion by pointing out that our path to this result was completely straightforward. To wit, by 

applying the definitions of 𝐾𝑇(𝑡) and �̂�(𝑡), Equations 28 through 30 can be demonstrated to be 

solutions to the integro-differential equations 1 through 5. Equations 37 and 38 are then directly 

derived from Equation 28, leading to the inescapable conclusion that the integro-differential 

equations allow for the entire population to become infected.  
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Kermack and McKendrick did not derive a solution and therefore could not derive 

expressions equivalent to Equations 37 and 38. Rather, their conclusion rested upon the 

assumption that their function 𝐴, defined as 𝐴 = ∫ 𝜑(𝜃)𝐵(𝜃)𝑑𝜃
∞

0
, is always finite. This 

assumption, however, was unjustified because 𝜑(𝜃) is the rate of new infections per susceptible; 

and as the number of susceptibles approaches zero, 𝜑(𝜃), and consequently 𝐴, will tend towards 

infinity. Had this observation been made by Kermack and McKendrick, it would surely have led 

them to the same conclusion. 

As an additional bridge to conventional notions of the final size, Equation 37 can be 

deduced from a special case of the SIR model final size equation. From Brauer (2008) this 

equation is, 

 ln (
𝑆(0)

𝑆(∞)
) = 𝑅0(1 −

𝑆(∞) 

𝐾 
),  (40) 

where 𝐾 ≈ 𝑆(0). 

Utilizing our prior definition of the relationships between 𝑁𝑝, 𝑆(𝑡), and 𝑁(𝑡), 

 𝑆(∞) = 𝑁𝑝 − 𝑁(∞),  (41) 

if we then substitute this into Equation 40 and use 𝐾 ≈ 𝑆(0), we obtain: 

 ln (
𝑁𝑝−𝑁(∞)

𝑆(0)
) = −𝑅0(1 −

𝑁𝑝−𝑁(∞) 

𝑆(0)
).  (42) 
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In a special case, if the final size 𝑁(∞) equals 𝑁𝑝 − 1, which is equivalent to when 𝑆(∞) = 1, 

we can substitute this into Equation 42, exponentiate, and since 1 −
1 

𝑁𝑃 
≈ 1, 𝑁(∞) = 𝑆(0), and 

𝑁(0)=1, arrive at,  

 𝑆(0) = 𝑁(∞) ≈ 𝑒𝑅0  (43) 

Using the equivalency 𝑅0 = 𝑃𝑐, if 𝐹𝑖(0) = 1, then Equation 43 is identical to Equation 37. 

 The equivalency range between Equation 40 and Equation 37 can be expanded beyond 

the special case by applying the following logic. First, Equation 40 is only valid for 𝑆(∞) > 0 

because the SIR model equation it is derived from,  
𝑑𝑆(𝑡)

𝑑𝑡
= −

𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
, can only be solved for 

𝑆(𝑡) when 𝑆(𝑡) > 0. Second, the magnitude of 𝑆(∞) depends on the value chosen for 𝑆(0). 

Therefore, when modeling an epidemic in a population, 𝑁𝐴, a subpopulation, 𝑁𝑝 = 𝑆(0) + 𝑁(0), 

relevant to the epidemic can be chosen such that 𝑁(∞) + 1 = 𝑁𝑝. With this choice, Equation 43, 

and by extension, Equation 37 will be the same final size equation. For those situations where 

𝐹𝑖(0)𝑃𝑐 > ln (𝑁𝐴), then equation 40 is not valid and Equation 37 projects that the whole 

population will be infected. While this analysis is purely hypothetical, it demonstrates a 

conceptual bridge between the SIR approximations and the KMES solution. 

Section 2: Projections of Pandemic Data Using the KMES 

In this section, we first demonstrate methods for estimating 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡) using 

COVID-19 epidemic data, and then, armed with these estimates, we use the KMES to project the 
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normalized contagiousness in individuals with COVID-19 and the progression of cases in six 

different countries. 

Estimation of 𝑲𝑻(𝒕)  

Other than where 𝐾𝑇(𝑡) arises in the model, we have no other a priori information about 

it. Therefore, we assume that 𝐾𝑇(𝑡) is a parameter associated with the disease and possibly 

constant for intervals in which the infectious agent does not change. We then begin the search for 

the value of  𝐾𝑇(𝑡) by stating some basic assumptions regarding the relationship between 𝑃𝑐(𝑡) 

and the population density.  

Because the population of a country typically is only physically present within ~1% of 

the land in a region (Ritchie and Roser 2019), we can define an “effective area” parameter, 

𝐴1(𝑡), where  
𝐴1(𝑡)

100
= 𝐴𝑐𝑡𝑢𝑎𝑙 𝑎𝑟𝑒𝑎 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑 𝑏𝑦 𝑎 𝑝𝑒𝑟𝑠𝑜𝑛. If we assume in the initial stages of 

the epidemic that 𝑃𝑐(𝑡) is a function of population density, and that an individual’s infectious 

mobility extends over an average effective area per unit of time, we can then write an expression 

in terms of this area: 

 𝑃𝑐𝑟(t) =
𝐴1𝑟(𝑡)𝑁𝑝

𝐴𝑝
= 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑟𝑎𝑡𝑒,   (44) 

where 𝑃𝑐𝑟(𝑡) is the contact rate associated with 𝑃𝑐 (see Equation S1-32 in Supplement 1), 𝑁𝑝 is 

the entire population of the region containing the infection,  𝐴𝑝 is the area of the region,  
𝑁𝑝

𝐴𝑝
  is 

the population density, and 𝐴1𝑟(𝑡) is the effective area per unit time that an individual 

infectiously inhabits. 
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We can then define 𝐴1(𝑡) as, 

  𝐴1(𝑡) = lim
∆𝑡→0

∫ 𝐴1𝑟(𝑡)𝑑𝑡
𝑡+∆𝑡

𝑡
,   (45) 

In specifying this area, we also assume, like the assumption that we made for 𝑃𝑐(𝑡) in Section 1, 

that changes in the value of 𝐴1(𝑡) occur slowly in time. We can now write a new expression for 

𝐾T(𝑡)

𝑃𝑐(𝑡)
, 

 
𝐾T(𝑡)

𝑃𝑐(𝑡)
=

𝐾𝑇(𝑡)𝐴𝑝

𝐴1(𝑡)𝑁𝑝
.  (46)  

 

Table 1. Initial COVID-19 pandemic data and population densities for various countries ((Roser et 

al 2021), case and date data; (Worldometers 2021, population density data) 

  

Date first 

case 

reported 

Calculation 

date 

Days between the 

first case reported 

and the calculation 

date 

Cases on 

calculation 

date, N(t) 

Population density 

(people/km2) 

South Korea 22 Jan 21 Feb 30 204 527 

USA 22 Jan 19 Mar 57 13,663 36 

Sweden 1 Feb 7 Mar 35 179 25 

Italy 31 Jan 24 Feb 24 229 206 

Spain 1 Feb 13 Mar 41 5,232 94 

New Zealand                              28 Feb 19 Mar 20 28 18 

All dates are in 2020.  
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Assuming 𝑁(0) and 𝐹𝑖(0) both are equal to 1, and that 𝐾𝑇(𝑡), 𝑃𝑐(𝑡), and 𝐴1(𝑡) are 

constants in the initial stages of the epidemic, substituting Equation 46 into the equation for 𝑁(𝑡) 

(Equation 28) produces an expression, 

  𝐹(𝑁(𝑡)) =
𝐴1𝑁𝑝

𝐴
ln (1 +

ln(𝑁(𝑡))

−
𝐴1𝑁𝑝

𝐴

) = −𝐾𝑇t,  (47)  

which predicts that if 𝐾𝑇 and 𝐴1 are well approximated as constants, then 𝐹(𝑁(𝑡)) is a linear 

function of time. Excepting 𝐾𝑇 and 𝐴1, all the quantities in Equation 47 can be found and are 

listed in Table 1 for six countries in the time before containment measures were enacted.  

 

Figure 2. Verification that 𝑲𝑻 may be the same for all countries. The data from Table 1 is plotted using 

Equation 47 and 𝐴1 = 0.48 𝑘𝑚2. Each data point corresponds to a different country. The value of 𝐾𝑇 is the negative 

of the slope of the line, and 𝐾𝑇 is closely approximated everywhere by 𝐾𝑇 ≈ 0.26 
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We then applied Equation 47 to six different countries using the data in Table 1 and 

through a process of iteration, determined that the best value for 𝐴1 to create the straight line 

plotted in Figure 2 was 0.48 km2. Since 𝐴1 was the effective area, the estimated actual area was 

4800 m2, or a 70 m x 70 m square, a plausible area for a person to traverse in a day. 

As noted in Figure 2, the line fit to the data points has an R2 = 0.956 and slope of 0.26 

(with a 95% confidence interval, CI, from 0.4 to 0.13), the putative value of 𝐾𝑇. This is strong 

support for the assumption that 𝐾𝑇 and 𝐴1could be constant in the initial stages of the pandemic 

across all the sampled countries and thus 𝐾𝑇 can be taken as a parameter of the disease.   

Contagiousness 

At the beginning of Section 1, in the thought experiments, we explained that 

contagiousness is a notion separate from infectiousness. Since contagiousness is also assumed to 

be a function of the disease, extracting an expression for contagiousness from the KMES should 

offer insight into the average dynamics of the disease progression in individuals. Furthermore, if 

the contagiousness of individuals can be measured, then this expression could serve as an 

independent benchmark against which these measurements could be compared. 

The step response structure of the KMES suggests that such an expression should exist, 

hence 𝐵(𝑡, 𝑡) is a reasonable starting point because it describes the evolution of infectiousness in 

the initially infected population.  Beginning with Equation 10, in an imaginary scenario, if we 

assume that 𝐾𝑇(𝑡) is a constant; and that 𝑃𝑐 = 𝐼(0) = 1 (i.e., there was only one initial infection, 
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and this initially infected person contacted, on average, only one other person), the infectiousness 

of the initially infected person would be, 

 𝐵(𝑡, 𝑡) = 𝑒−(𝑒−𝐾𝑇𝑡−1)−2𝐾𝑇𝑡      (48) 

Equation 48 describes the capacity of the initially infected person to infect, a quantity 

which is dependent on the portion of contacts that remain infectable as well as the person’s 

contagiousness. Therefore, since the available number of infectable people in 𝑃𝑐 is equal to 𝑅𝐸𝑓𝑓, 

dividing 𝐵(𝑡, 𝑡) by 𝑅𝐸𝑓𝑓 (divide Equation 48 by Equation 31) extracts the contagiousness. This 

yields, for 𝑃𝑐 = 1, 

  𝐶𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 = 𝑒−(𝑒−𝐾𝑇𝑡−1)−𝐾𝑇𝑡.    (49) 

which is only dependent on 𝐾𝑇, confirming the assumption that 𝐾𝑇 is a parameter of the disease.  

Figure 3, a plot of Equation 49, was created using the nominal and 95% CI values for 𝐾𝑇 

generated from Figure 2, and the shapes of the curves in the figure depict the time course of an 

individual’s estimated contagiousness. As can be seen in the figure, these shapes are highly 

similar to the expected time history of an individual’s viral load. Indeed, the nominal curve in the 

figure appears to project that an individual infected with COVID-19 would become contagious   

about 5 days before the peak; and have minimal contagiousness approximately 10 days after the 

peak. This timetable coincides closely with reported measured values describing viral shedding 

(Puhach et al 2023, Figures 2 and 3).  
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Figure 3. Representation of the normalized contagiousnesss of an initial infected person with one 

contact with Covid 19. The solid line was generated using the nominal value of 𝐾𝑇 = 0.26 in Equation 

49; the black dashed line 𝐾𝑇 = 0.40; and the red dashed line, 𝐾𝑇 = 0.13; the upper and lower 95% 

confidence intervals, respectively, for 𝐾𝑇. The contagiousess begins before time zero because the initial 

individual was infected before the start of the epidemic. 

 

Using the Google Residential Mobility Measure data to Project Country Data  

With an estimate of 𝐾𝑇 in hand, to project the course of an epidemic using the KMES, we 

need to also estimate 𝑃𝑐. If we first assume that both 𝐾𝑇 and 𝑃𝑐 are at least piece-wise constant 

for periods of time, we can differentiate both sides of Equation 28, divide the result by 𝑁(𝑡), 

rearrange the terms, and then take the natural log of both sides to obtain the following useful 

expression, 

0

0.2

0.4

0.6

0.8

1

1.2

-20 -15 -10 -5 0 5 10 15 20

N
o

rm
al

iz
e

d
 C

o
n

ta
gi

o
u

sn
es

s

Day



30 

 

  

 𝑅𝐶𝑂 = 𝑙𝑛 (
𝑑𝑁(𝑡)

𝑑𝑡

𝑁(𝑡)
) = ln(𝐹𝑖(0)𝐾𝑇) −

𝐾T

𝑃𝑐
𝑡     (50) 

This quantity is labelled the “Rate of Change Operator” (RCO) because it is a measure of the rate 

of change of 𝑁(𝑡), per person within 𝑁(𝑡). Given estimates for 𝐾𝑇 and 𝐹𝑖(0), the RCO enables 

the projection of new cases because the estimation of the current value of 𝑃𝑐 can be made from it 

using only the contemporaneous values of 𝑁(𝑡) and  
𝑑𝑁(𝑡)

𝑑𝑡
 . 

The process of estimating 𝑃𝑐(𝑡) begins by first applying Equation 50 to data recorded in 

six different countries during the initial stages of the COVID-19 pandemic (Roser, et al. 2021), 

the results of which are plotted in Figure 4. As this figure shows, the RCO curves become 

straight lines during a period both before and shortly after the date of the imposition of 

containment actions (arrows in the plots); indicating that 𝐾𝑇, 𝑃𝑐, and the RCO slope were 

approximately constant in this period. 

With reasonable confidence that the RCO slope (
𝐾T

𝑃𝑐
)  was constant, an initial value of the 

slope was then estimated by fitting Equation 50 to short, nine data point portions early in the 

straight segments of each country’s RCO time series. Assuming that this slope was valid for the 

first date in the series, the value of 𝑃𝑐 for each country was next calibrated to Google’s 

Residential Mobility Measure (Google 2023) on that first date using the expression: 

 𝑃𝑐𝑎𝑙 =
−𝐾𝑇(𝑡)

𝑆𝑙𝑜𝑝𝑒(1−
𝐺𝑅0
100

)
,     (51)  
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where 𝑆𝑙𝑜𝑝𝑒 =
𝐾T

𝑃𝑐
 was determined from the early segment of the RCO time series, and 𝐺𝑅0 is the 

value of the Google Residential Mobility Measure on the first date. The 𝑃𝑐𝑎𝑙 values and dates 

used for each country are listed in Table 2. 

Having calibrated 𝑃𝑐 to the Google Residential Mobility value on a single date, the 

subsequent Google Residential Mobility data were then used to find the estimated daily values of 

𝑃𝑐 by multiplying 𝑃𝑐𝑎𝑙 and (1 −
𝐺𝑅

100
) together (where 𝐺𝑅 is the Google Residential Mobility 

Measure for each date). Using the nominal value of 𝐾𝑇 from Figure 2 and these daily values of 

𝑃𝑐, we then employed Equation 6 to plot the daily total cases projections in Figure 5.  These 

projections matched the actual time series with an R2 > 0.85 in each of the six countries for the 

60 days following the date 𝑃𝑐𝑎𝑙 was determined.  

To estimate the values of the daily new cases, Equation 6 was first differentiated to find  

𝑑𝑁(𝑡)

𝑑𝑡
, and then, using the previously calculated values of 𝑃𝑐(𝑡) and 𝐾𝑇, the 60-day time series 

was plotted in Figure 6. These projections have an R2 range of 0.01 (Sweden) to 0.94 (New 

Zealand); and all projected peaks in new cases were close to the observed peaks in all countries. 

The projections in Figures 5 and 6 are not fits to the full length of the data. Rather, 𝑃𝑐𝑎𝑙, 

the prior estimate of 𝐾𝑇, and the Google Residential Mobility Measure for each subsequent day 

were used in the KMES to project the data after the first date.  

Since the Google Residential Mobility data produced such accurate projections in these 

Figures, we conclude that, as we hypothesized in Section 1, that the values of 𝑃𝑐(𝑡) derived from  
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Figure 4. Rate of change operator (RCO) curves for COVID-19 cases in various countries.  An 

epidemic can be described by a piecewise linear model using the RCO (Equation 50). A short segment of orange 

dots in each graph is a linear fit to the corresponding points (blue/white circles) in the observed data. The slopes of 

these dotted-line segments are the values of 
𝑲𝐓

𝑷𝒄
 which are tabulated in Table2.  In some countries, RCO curves 

changed markedly soon after the date containment measures were implemented (arrows): A) South Korea, February 

21; (the oval highlights a departure of the observed data from the RCO slope, indicating failures in, or relaxations of, 

social distancing); B) USA, March 16; C) Sweden did not implement any specific containment measures, so the 

model calibration was begun on April 1, the date when the slope of the RCO curve first became steady. D) Italy, 

March 8; E) Spain, March 14; F) New Zealand, March 25. All dates are in 2020. 
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Figure 5. KMES model projections for daily total case counts. A) South Korea; B) USA; C) Sweden; D) 

Italy; E) Spain; and F) New Zealand.  Dots are daily data points observed from (white-center and all blue) or 

calculated (orange) for each country. The KMES model was calibrated using data from the date ranges listed in 

Table 2. R2 > 0.85 for the model fit for all countries for the 60 days after the 𝑃𝑐𝑎𝑙  was calculated: South Korea, 

March1-April 29; USA, March 24-May 22; Italy, March 18–May 16; Spain, March 27-Maz 25; New Zealand, 

March 27-May 25. Sweden April 2- May 31. The deviation of the model from the data in the USA, panel (B), after 

April is elucidated in Supplement 2. All dates are in 2020. 
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Figure 6. KMES model projections for number of new daily cases. A) South Korea, R2 = 0.87; B) USA, 

R2 = 0.31; C) Sweden, R2 = 0.01; D) Italy, R2 = 0.88; E) Spain, R2 = 0.82; and F) New Zealand, R2 = 0.94. The 

orange dotted line is the model in all panels. The blue dots are the daily observations from each country. The. R2 

values are between the model and the data, across countries for the 60 days after the 𝑃𝑐𝑎𝑙  was calculated. 
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the model are estimates of the actual average number of infectious contacts that occurred 

between people during the epidemic. We also comment that the ability of the KMES to project 

the data so well is a tribute to the ingenuity of Kermack and McKendrick’s model formation. 

Table 2. Parameters used to model total and new daily cases of infection for different countries. 

 𝑲𝐓

𝑷𝒄
 

𝑷𝒄𝒂𝒍  Date range for RCO fit 

South Korea 0.22 1.35 February 29–March 8 

USA 0.076 4.10 March 23–March 31 

Sweden 0.036 8.04 April 1–April 9 

Italy 0.080 4.55 March 17–March 25 

Spain 0.099 3.76 March 26–April 3 

New Zealand 0.12 2.65 March 27–April 4 

Parameters are from linear fits of the rate of change operator (RCO) data in Figure 4. 
𝑲𝐓

𝑷𝒄
 (slope); 𝑷𝒄𝒂𝒍 was 

calculated using Equation 51: 𝑷𝒄𝒂𝒍 =
−𝑲𝑻(𝒕)

𝑺𝒍𝒐𝒑𝒆(𝟏−
𝑮𝑹𝟎
𝟏𝟎𝟎

)
. The value for 𝑮𝑹𝟎 was the value of the Google Residential 

Mobility Measure for that country on the first date in the listed date ranges. All dates are in 2020. 

 

Section 3: Managing an Epidemic  

 

An important decision to be made during an epidemic is whether to tighten or loosen 

restrictions on social interactions. To illustrate how tightening restrictions can affect the 

epidemic outcome, in Figure 7, plots of the total cases and new cases per day are presented for 

four countries in two pairs. The pairs were chosen by matching countries with similar population 

densities, assuming that their baseline social interaction levels were similar. These specific 

countries were selected, because, in a presumably unintentional natural experiment, the paired 

countries imposed very different social restrictions at the outset of the COVID-19 pandemic, and 

as can be seen in the figure, realized very different outcomes. 
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Figure 7. Total cases and new cases per day for countries with comparable population densities, 

which employed different levels of social containment. The arrows point in the direction the curves trend as 

the social restrictions were increased. Lower social interaction produced lower total cases and earlier peaks in the 

new cases per day. 

 

As indicated by the arrows in the plots, in the countries which imposed strict policies, New 

Zealand and South Korea, the total cases leveled off sooner (Plots A and C) and the new cases 

per day peaked earlier (Plots B and D) than in their matching countries, Sweden and Spain, 

which imposed less stringent restrictions.  

Of course, it is easy to look back in time at data and prescribe a better course of action, 

but, since this luxury is not available at the outset of an epidemic, a model that accurately 

projects trends and provides immediate decision support as the epidemic evolves must be 

selected. Therefore, to compare models, Equation 28 was used to create a KMES simulation, and 

a Euler approximation was used to solve the simple SIR model found in Brauer (2008), 
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𝑑𝑆(𝑡)

𝑑𝑡
= −

𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
,  (52) 

 
𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
− 𝛾𝐼(𝑡),   (53) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡), and  (54) 

 𝑁𝑝 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡),   (55)  

where 𝛽 and 𝛾 are constants. These simulations were then plotted in Figure 8.  

As indicated by the arrows in Plots 8A and B, higher social restrictions (lower 𝛽) in the 

SIR approximation results in both the plateau of total cases and the peak in new cases occurring 

later. This illustrates the phenomenon known as “Flatten the Curve” found in both Dilaurio, F., et 

 

Figure 8. SIR and KMES simulations with varying levels of social restrictions. The arrows point in the direction 

the curves trend as the social restrictions are increased. The value of 𝛾 = 0.2 in the upper two panels and 𝐾𝑇 = 0.26 

in the lower two panels. 
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al (2011) and the analytical results for the SIR model in Kröger and Schlickeiser (2020). 

However, the trends in plots 8A and B do not match the trends in the country data in Figure 7.   

In contrast, as also seen in Figure 8, the KMES projects that a peak in daily new 

infections will occur earlier (Plot D in Figure 8); and that total infections will plateau sooner and 

at lower values (Plot C in Figure 8) with higher social restrictions (higher values of 𝐾𝑇/𝑃𝑐). 

These projections match well the trends of the actual case data in Figure 7.  

Diagnosing the Status of an Epidemic 

Given the clear qualitative fidelity of the KMES projections to the actual trends in the 

country data, we now consider the ability of the KMES to accurately project future case numbers 

beyond the time frame shown in Figures 5 and 6, and without the daily knowledge of the Google 

Residential Mobility values. We do this using the 7-day average of United States total cases data 

(Roser et al, 2021) from the COVID-19 pandemic over an 18-month period. 

The total cases data were projected by first calculating the value of the RCO on a given 

day and the eight previous days. Equation 50 was then fit to those nine known RCO values to 

find their intercept, ln(𝐹𝑖(0)𝐾𝑇), and slope, 
𝐾T

𝑃𝑐
. These parameters were assumed to be constant 

throughout those prior eight days and the following 21 days, a total of 30 days. They were next 

used in Equation 28 with the time set to 21 days, along with the value of the total cases on the 

chosen day, to project the total cases 21 days into the future for each date. Figure 9 is a plot of  
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Figure 9. Projection of cases in the United States from April 25, 2020 to November 4, 2021. The Orange line is 

the projection of total cases 21 days in the future from the point of each actual data point. The total cases data points 

are the average of the 7 prior days of total cases. The data ranges from April 30, 2020 to November 4, 2021. 

 

that projection overlaid onto a plot of the actual 7-day average total case data for 18 months 

following April 30, 2020. As seen in the figure, the KMES projected the total cases 21 days in 

advance with a Mean Absolute Percentage Error of 4.1% over the entire period.  

Although Figure 9 demonstrates that the KMES can be used to project the potential daily 

new cases, and, presumably, the hospitalizations, three weeks in advance, a projection alone 

cannot achieve another paramount goal of public health management: recognizing and avoiding 

outbreaks. Fortunately, as a complement to projections, the 𝑅𝐸𝑓𝑓 calculation can be used to 

detect emerging outbreaks, because it reflects the underlying dynamics, anticipates the future, 

and, its daily value can always be calculated using this restatement of Equation 31,  
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 𝑅𝑒𝑓𝑓(𝑡) = −
𝑒𝑅𝐶𝑂(𝑡)

𝑑(𝑅𝐶𝑂(𝑡))

𝑑𝑡

,  (56)  

If we discretize Equation 56 and use the relationship: 𝑅𝐶𝑂 = ln (
𝑑𝑁(𝑡)

𝑑𝑡

1

𝑁(𝑡)
), we obtain this 

formula for 𝑅𝐸𝑓𝑓, 

 𝑅𝐸𝑓𝑓(𝑡) =

𝑁(𝑡)−𝑁(𝑡−∆𝑡)

(
𝑁(𝑡)+𝑁(𝑡−∆𝑡)

2
)

 ln(
𝑁(𝑡)−𝑁(𝑡−∆𝑡)

∆𝑡(
𝑁(𝑡)+𝑁(𝑡−∆𝑡)

2
)
)−ln(

𝑁(𝑡−∆𝑡)−𝑁(𝑡−2∆𝑡)

∆𝑡(
𝑁(𝑡−∆𝑡)+𝑁(𝑡−2∆𝑡)

2
)
)

.     (57) 

As Equation 57 illustrates, the determination of whether the epidemic is growing or declining, 

can be made by using just the most recent three known consecutive values of 𝑁(𝑡). 

When using Equation 57, if an outbreak occurs, the average number of susceptible people 

within the 𝑃𝑐 groups has risen at a fast rate. The fraction infected will have also risen because the 

contagious people newly in contact with the susceptible people in the outbreak will have become 

more infectious due to these new contacts. This increase in the fraction infected, if it is large 

enough, can cause the slope of the RCO to become positive because it also effectively causes the 

value of 𝐹𝑖(0) in Equation 50 to become larger. This mathematical effect, if present in the data, 

will cause the value of 𝑅𝐸𝑓𝑓(𝑡) to be less than zero, an obviously unphysical result. This 

mathematical artifact occurs because we derived Equation 50 under the assumption that 𝑃𝑐 is a 

constant.  

Pragmatically, since this artifact is known to only appear when the outbreak is large 

enough, whenever Equation 57 returns a negative value for 𝑅𝐸𝑓𝑓(𝑡), these times can be deemed 



41 

 

to be outbreaks. Therefore, when using Equation 57, the outbreaks should be identified as time 

intervals when Equation 57 returns a value 𝑅𝐸𝑓𝑓(𝑡) < 0 or 𝑅𝐸𝑓𝑓(𝑡) > 1. 

To demonstrate the use of Equation 57, we first restated the data that was used in Figure 

9 by aggregating the total new cases 7 days at a time. We used 7-day aggregates because often 

epidemic data is only available in this form and because a 7-day aggregation smooths the 

variations in daily case counts. We then applied Equation 57 to this data and plotted the result in 

Figure 10A. Accordingly, the pink shaded areas indicating the outbreaks in Figure 10 are those 

times when Equation 57 returned a value 𝑅𝐸𝑓𝑓(𝑡) < 0 or 𝑅𝐸𝑓𝑓(𝑡) > 1. 

As expected, the pink shaded time periods in the figure mark the periods of the outbreaks 

very closely. Panels B, C, and D in Figure 10 are additional plots created using the same 

procedure for case data from Germany, the United Kingdom and Italy respectively. These 

additional plots show the same correspondence between the pink areas and the outbreaks for the 

dates covered. Figure 10 demonstrates that Equation 57 could be a powerful tool for use in 

determining if the population restrictions are strong enough to prevent major outbreaks.  

There are no uncertainty intervals around the locations of the pink shaded areas because 

their position in time was dependent solely on the differences between two consecutive data 

points of total cases without the use of fitted parameters. The only errors present in the 

calculation are associated with measurement errors of 𝑁(𝑡) which were not estimated. The 

calculation is right censored because data from the past and present were used to determine the 

position of the pink shaded areas.  
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Figure 10. Periods when 𝑹𝑬𝒇𝒇 indicates an outbreak or peak. The blue area indicates the 7-day total new cases 

for the dates indicated. The pink shaded areas indicate the periods when the 𝑅𝐸𝑓𝑓 was above 1 or below 0. The 

explanation of why 𝑅𝐸𝑓𝑓 can go below 0 is explained in the text. A; United States April 14, 2020 to November 2, 

2021; B: April 14, 2020 to March 2, 2021; C: United Kingdom April 14, 2020 to February 16, 2021; D Italy April 

14, 2020 to March 2, 2021. 

 

Controlling the Epidemic 

If the estimation of 𝑅𝐸𝑓𝑓 identifies an outbreak, social policies should immediately be 

modified to blunt the impact. In this scenario, expressions based on the KMES can be used to set 

out a program for gaining control of the emerging outbreak in a fashion consistent with social 

and political realities.  
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Differentiating Equation 28 twice produces the epidemic acceleration, 

 
𝑑2𝑁(𝑡)

𝑑2𝑡
= (𝑒𝑅𝐶𝑂(𝑡) −

𝐾𝑇

𝑃𝑐
)

𝑑𝑁(𝑡)

𝑑𝑡
 ,    (58) 

which can be used to quickly determine whether the control measures in place, embodied by 𝑃c, 

are sufficiently effective. When the term, 𝑒𝑅𝐶𝑂(𝑡) −
𝐾𝑇

𝑃𝑐
 , on the right side of Equation 58 is 

positive, then the control measures are not strong enough; and conversely, when this term is 

negative, the epidemic is being brought under control, a condition coincident with 0 < 𝑅𝐸𝑓𝑓 < 1. 

The maximum value of 𝑃𝑐 that will begin to bring down the new cases per day is the 

quantity upon which management strategies pivot. By setting the left-hand side of Equation 58 to 

zero, then solving for 𝑃𝑐, a defining relationship for this critical objective is found: 

 𝑃𝑐 < 𝐾𝑇𝑒−𝑅𝐶𝑂(𝑡).   (59) 

Equation 59 succinctly states that 𝑃𝑐 must be managed to stay below 𝐾𝑇𝑒−𝑅𝐶𝑂(𝑡) to 

ensure that the acceleration is negative and therefore, the epidemic will slow. Since the 𝑅𝐶𝑂(𝑡) 

can be computed every day and 𝐾𝑇 can be estimated using the technique illustrated in Section 2, 

the maximum level of infectable social contact allowable (𝑃𝑐 in Equation 54) to start or continue 

decreasing the number of new cases per day can always be calculated. As a side comment, and as 

already explained, if the slope of the RCO curve is determined from the graphical analysis to be 

greater than zero, then an outbreak has occurred, 𝑃𝑐 can be assumed to be too large, and 

immediate reductions in social interactions, based on the following procedure, are needed.  
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If the situation warrants, the time needed to reach a desired reduction in 
𝑑𝑁(𝑡)

𝑑𝑡
, at a future 

time, 𝑡 + 𝑡𝑡𝑎𝑟𝑔𝑒𝑡, can be calculated for a given level of social interaction by first defining the 

desired fractional reduction in cases as 𝐷𝑡𝑓, 

 𝐷𝑡𝑓 =

𝑑𝑁(𝑡+𝑡𝑡𝑎𝑟𝑔𝑒𝑡)

𝑑𝑡
𝑑𝑁(𝑡)

𝑑𝑡

=
𝑁𝑒𝑤 𝐶𝑎𝑠𝑒 𝑇𝑎𝑟𝑔𝑒𝑡 𝑅𝑎𝑡𝑒

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑁𝑒𝑤 𝐶𝑎𝑠𝑒 𝑅𝑎𝑡𝑒
.  (60) 

Using the derivative of Equation 28, the following expression emerges, 

 𝐷𝑡𝑓 = 𝑒−𝑃𝑐 (𝑒
− 

𝐾𝑇
𝑃𝑐

(𝑡+𝑡𝑡𝑎𝑟𝑔𝑒𝑡)
−𝑒

− 
𝐾𝑇
𝑃𝑐

(𝑡)
)𝑒

− 
𝐾𝑇
𝑃𝑐

𝑡target
.  (61) 

If 𝑡 ≫ 𝑡𝑡𝑎𝑟𝑔𝑒𝑡, then 𝑒
− 

𝐾𝑇
𝑃𝑐

(𝑡+𝑡𝑡𝑎𝑟𝑔𝑒𝑡)
− 𝑒

− 
𝐾𝑇
𝑃𝑐

(𝑡)
≈ 0, and the following can be deduced from 

Equation 61, 

 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 = −
𝑃𝑐ln (𝐷𝑡𝑓)

𝐾𝑇
.   (62) 

Equation 62 quantitates the number of days, 𝑡𝑡𝑎𝑟𝑔𝑒𝑡, that a level of social containment, 𝑃𝑐, must 

be maintained to reach a desired reduction, 𝐷𝑡𝑓, of the current daily cases.  

As an example, in the case of the United States, based on the data shown in Figure 10, a 

very large outbreak started during the last days of September and early October 2020. On 

October 10, 2020, there were 58,082 new cases and the outbreak peaked 90 days later with 

283,204 recorded new cases. Had the US implemented a social program to reduce the number of 

average infectious contacts (𝑃𝑐) to 10 people for those same 90 days, instead of an outbreak and 

a peak, Equation 62 projects that the number of new cases on January 8, 2021 would have been 
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approximately 5800, a 98% reduction from the actual value. In Supplement 2, we present further 

examples and additional insights utilizing the data in several additional countries. 

Discussion 

In response to Diekmann’s call for action, the “wisdom” we have found in the Kermack 

and McKendrick integro-differential equations appears to be substantial. Foremost, we suggest 

that the KMES obviates most of the need to use any approximation to the integro-differential 

equations. Secondly, the KMES appears to accurately project the dynamics of an actual 

pandemic as seen in multiple independent data sources and it offers a pathway to new analytical 

expressions useful in characterizing and managing an epidemic. 

The hybrid path between network concepts and deterministic equations that we used to 

derive the KMES also suggests that there is potential to develop more sophisticated hybrids. 

Further exploration of the means to specify 𝑃𝑐(𝑡) within network types that are representative of 

physical interactions between people may well lead to still more accurate forecasts of epidemic 

progressions. Such extensions could be applied to influenza epidemic data and data from a 

myriad of other diseases, including the next SARS virus redux. Hybrid approaches such as these 

could also reduce the computational burden associated with models that employ extremely high 

numbers of network nodes by allowing the calculation of results for portions of the network 

using analytical expressions rather than simulations.  

The analysis can also be further improved by incorporating the enormous amount of case 

data now available from the COVID-19 pandemic. This additional analysis can improve the 
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estimate of the key parameter, 𝐾𝑇(𝑡), including variations in time (with mutations of the 

infectious agent) and possibly with local genetic variations in the population affected. This could 

improve the basis for establishing the actions people and governments need to take to achieve 

target values of 𝑃𝑐(𝑡). 

Although we highlighted that a disease with a latent period would manifest itself by 

affecting the value of 𝐾𝑇(𝑡), we did not explore the analytical consequences. The model can be 

further developed by definitively separating the population of inactive or latent infections from 

the contagious infections within 𝐼(𝑡) and then exploring the effect of the latent period on the 

solution parameters. The resulting analyses may establish whether the latent period can be 

determined during the early epidemic or possibly be ignored once the epidemic has fully 

developed. Both would be useful outcomes. 

With regards to the KMES structure, it is reassuring that it has the intuitive form, 

encapsulated in Equation 25: 

 𝐼(𝑡) = 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡

0 𝐵(𝑡, 𝑡)𝐼(0)  (25) 

This equation states that the input of infections, 𝐵(𝑡, 𝑡)𝐼(0), is transformed into the time varying 

output of infectiousness, 𝐼(𝑡), through an exponential step response function, 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡

0 . Our 

analysis has led us to affirm this obvious-in-retrospect, practical mathematical characterization of 

epidemic dynamics. It is additionally reassuring that bridges, such as in the final size expressions 

and the basic reproduction number, can be built between the KMES and the SIR approximations.  
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The KMES also meets other expectations. For example, we recognize Equations 6 and 28 

as Gompertz equations. This form is highlighted in the analysis of Onishi et al (2021) who 

demonstrated that the COVID-19 epidemic time course in many countries was well fit by a 

Gompertz model. These authors did not offer a basic principles argument as to why this is so, but 

they found and report a strong correlation to this aspect of our model structure. Additionally, 

using the independently measured population mobility in the Google data, we found that the 

KMES accurately projects phenomena which arose in the COVID epidemic. This also confirms 

the intuition that this independently sourced data on the movement of populations should be 

useful in projecting epidemic dynamics.  

Our expressions for the time to the peak fit well the data from different countries which 

imposed very different containment strategies. These equations show that as people interact less 

frequently (social containment is increased), the peak number of infections is much lower, and 

occurs earlier. The KMES shows that strong containment actions shorten an epidemic, as data 

from several countries clearly demonstrate; and as one would intuit.  

Lastly, the discovery of a very simple method to assess whether an outbreak is occurring, 

embodied in 𝑅𝑒𝑓𝑓 offers the promise of a new quantitative tool to guide public health officials in 

their decision making. We also hope that our work here serves as an impulse for the 

reinvigoration of epidemic modelling using the core of Kermack and McKendrick’s original 

work.  
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Supplement 1: Solution to the Kermack and McKendrick Equations 

The path to the KMES is complex, therefore, we provide the following short guide: 

1. First rewrite Equations 1 through 5 in terms of time alone utilizing the weighted 

averages of functions of 𝜑(𝑡, 𝜃) and 𝜓(𝑡, 𝜃).  

2. The general solution to these rewritten equations is developed, and the relationships 

between key parameters are clarified.  

3. Network model concepts are used to derive an expression for the effect of the 

population interactions on the evolution of the term 
𝐼(𝑡)

𝑁(𝑡)
 , the fraction of those ever 

infected, that are currently infectious.  

4. This expression opens the pathway to the final form of the KMES which is expressed 

in terms of the parameters 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡), the disease transmissibility and the 

population interactions, respectively. 

Step 1: Rewrite the Integro-Differential Equations 

As a reminder, the Kermack and McKendrick equations are: 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −

S(t)

𝐴𝑝
(∫ 𝐴(𝑡, 𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐴(𝑡, 𝑡)𝐼(0))

𝑡

0
, (S1-1, 1) 

 𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐵(𝑡, 𝑡)𝐼(0)

𝑡

0
,  (S1-2, 2) 
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𝑑𝑅(𝑡)

𝑑𝑡
= ∫ 𝐶(𝑡, 𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐶(𝑡, 𝑡)𝐼(0)

𝑡

0
, (S1-3, 3) 

 𝑁𝑝 = 𝑆(𝑡) + 𝑁(𝑡) (S1-4, 4) 

 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡) (S1-5, 5) 

where 𝐵(𝑡, 𝜃) = 𝑒− ∫ 𝜓(𝑡,𝑎)𝑑𝑎
𝜃

0 , 𝐶(𝑡, 𝜃) = 𝜓(𝑡, 𝜃)𝐵(𝑡, 𝜃), and 𝐴(𝑡, 𝜃) = 𝜑(𝑡, 𝜃)𝐵(𝑡, 𝜃). 𝑁𝑝 is the 

total population, 𝐴𝑝 is the area that contains 𝑁𝑝, 𝜃 is the time since infection of any member 

𝑁(𝑡), and  
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
 equals the new infections at time 𝑡 − 𝜃. 

Since 𝐴(𝑡, 𝜃) = 𝜑(𝑡, 𝜃)𝐵(𝑡, 𝜃), the weighted average of 𝜑(𝑡, 𝜃) at a time t is, 

 �̂�(t) =
∫ 𝐴(𝑡,𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐴(𝑡,𝑡)𝐼(0))

𝑡
0

∫ 𝐵(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐵(𝑡,𝑡)𝐼(0))

𝑡
0

.   (S1-6, 11) 

Likewise, since 𝐶(𝑡, 𝜃) = 𝜓(𝑡, 𝜃)𝐵(𝑡, 𝜃), the weighted average of 𝜓(𝑡, 𝜃) at time t is, 

 �̂�(𝑡) =
𝑑𝑅(𝑡)

𝑑𝑡

𝐼(𝑡)
=

∫ 𝐶(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐶(𝑡,𝑡)𝐼(0)

𝑡
0

∫ 𝐵(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐵(𝑡,𝑡)𝐼(0)

𝑡
0

.   (S1-7, 12) 

It is also useful to define a parameter 𝐾𝑇(𝑡) as, 

 𝐾𝑇(𝑡) = −
𝑑𝑆(𝑡)

𝑑𝑡

𝐼(𝑡)
=

𝑑𝑁(𝑡)

𝑑𝑡

𝐼(𝑡)
= �̂�(𝑡)

S(t)

𝐴𝑃
.   (S1-8, 13) 

Using these definitions, Equations S1-1 through S1-5 can be rewritten in terms of time as, 

 −
𝑑𝑆(𝑡)

𝑑𝑡
=

𝑑𝑁(𝑡)

𝑑𝑡
= K𝑇(𝑡) 𝐼(𝑡), (S1-9, 17)  
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𝑑𝐼(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡) 𝐼(𝑡) − �̂�(𝑡)𝐼(𝑡), (S1-10, 32) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= �̂�(𝑡)𝐼(𝑡) and (S1-11) 

 𝑆(𝑡) = 𝑁𝑃 − 𝑁(𝑡),  (S1-12) 

where 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡).  

Step 2. Solve the Rewritten Equations 

The solutions to Equations S1-9 and S1-10 are, 

  𝑁(𝑡) = ∫ 𝐾𝑇(c)I(0)
𝑡

0
𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏

𝑐
0 𝑑𝑐 + 𝑁(0)  (S1-13) 

  𝐼(𝑡) = 𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡

0  ;    (S1-14, 16)   

and, since 𝑅(𝑡) = 𝑁(𝑡) − 𝐼(𝑡), Equation S1-13 and S1-14, when combined, solve Equation S1-

11.  

Equations S1-13 and S1-14 solve Equations S1-9 to S1-11, but since they are written in 

terms of �̂�(𝑡) and 𝐾𝑇(𝑡), neither of which appear in Equations S-1 through S1-5, it is unclear 

whether they also solve Equations S-1 through S1-5. Therefore, we will now explain in detail 

how �̂�(𝑡) and 𝐾𝑇(𝑡) can be expressed in terms of  𝜓(𝑡, 𝜃) and 𝜑(𝑡, 𝜃) to ensure that Equations 

S1-13 and S1-14 also solve Equations S1-1 through S1-5.  

We begin by rewriting Equation S1-7 as, 
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∫ �̂�(𝑡)𝐵(𝑡, 𝜃)
𝑑𝑁(𝑡 − 𝜃, 0)

𝑑𝑡
𝑑𝜃 + �̂�(𝑡)𝐵(𝑡, 𝑡)𝐼(0))

𝑡

0

= 

 ∫ 𝜓(𝑡, 𝜃)𝐵(𝑡, 𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + ψ(t, t)B(t, t)I(0)

𝑡

0
,  (S1-15) 

which can be simplified further using the definition of 𝐼(𝑡, 𝜃) and Equation S1-8, 

 
𝑑𝑅(𝑡)

𝑑𝑡
= ∫ �̂�(𝑡)𝐼(𝑡, 𝜃)𝑑𝜃 = ∫ 𝜓(𝑡, 𝜃)𝐼(𝑡, 𝜃)𝑑𝜃

𝑡

0

𝑡

0
. (S1-16) 

Since 𝐵(𝑡, 𝑡)(𝐼(0) +
𝑑𝑁(0,0)

𝑑𝑡
) = 𝐼(𝑡, 𝑡), both �̂�(𝑡)𝐵(𝑡, 𝑡)𝐼(0) and 𝜓(𝑡, 𝑡)𝐵(𝑡, 𝑡)𝐼(0) in Equation 

S1-15 are included in the integrals in Equation S1-16.  

Equation S1-16 states that we can assume 𝜓(𝑡, 𝜃) = �̂�(𝑡) for all 𝜃 and 𝑡 without 

affecting either the value of the integrals in Equation 16 or the value of  
𝑑𝑅(𝑡)

𝑑𝑡
. Because we are 

only interested in the sum of the change in the number of infectious people at any chosen time, 

the actual values of the individual 𝜓(𝜃) terms are irrelevant when evaluating the integral in S1-

16; and, therefore, we adopt the assumption that 𝜓(𝑡, 𝜃) = �̂�(𝑡) for the remainder of the 

analysis. 

Using Equation S1-16 and the equivalency 𝜓(𝑡, 𝜃) = �̂�(𝑡), we can now derive 𝐵(𝑡, 𝜃) in 

terms of �̂�(𝑡) to assist us in proving the solution. We begin by noting that Kermack and 

McKendrick created the function, 𝐵(𝑡, 𝜃) = 𝑒− ∫ 𝜓(𝑡,𝑎)𝑑𝑎
𝜃

0 , using the right-hand side integrand in 

Equation S1-16 to explain that, in each time step, every θ-group (𝐼(𝑡, 𝜃)) recovered by a 
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proportion 𝜓(𝑡, 𝜃). We can rederive their formula by starting with the derivative of the infectious 

expressed as, 

 
dI(t)

𝑑𝑡
=

dN(t)

𝑑𝑡
−

dR(t)

𝑑𝑡
, (S1-17) 

which can be discretized to, 

 ∆𝐼(𝑡) = ∆𝑁(𝑡) − ∆𝑅(𝑡). (S1-18) 

Equation S1-18 can be rewritten using the discrete forms of both Equation S1-16, the definition 

𝐼(𝑡) = ∫ 𝐼(𝑡, 𝜃)
𝑡

0
𝑑𝜃, and keeping in mind that ∆𝑡 = ∆𝜃, as, 

 𝐼(𝑡) − ∑ 𝐼(𝑡 − ∆𝑡, 𝜃)𝑡−∆𝑡
𝜃=0 = ∆𝑁(𝑡) − ∑ 𝐼(𝑡 − ∆𝑡, 𝜃)𝑡−∆𝑡

𝜃=0 𝜓(𝑡 − ∆𝑡, 𝜃)∆𝑡, (S1-19) 

and then as, 

 𝐼(𝑡) = ∆𝑁(𝑡) + ∑ 𝐼(𝑡 − ∆𝑡, 𝜃)(1 −𝑡−∆𝑡
𝜃=0 𝜓(𝑡 − ∆𝑡, 𝜃)∆𝑡). (S1-20) 

The right-hand side of Equation S1-20 can be expanded by an additional term and written as, 

 𝐼(𝑡) = ∆𝑁(𝑡) + 𝐼(𝑡 − ∆𝑡, 0)(1 − 𝜓(𝑡 − ∆𝑡, 0)∆𝑡) 

 + ∑ 𝐼(𝑡 − 2∆𝑡, 𝜃)(1 −𝑡−2∆𝑡
𝜃=0 𝜓(𝑡 − 2∆𝑡, 𝜃)∆𝑡)(1 − 𝜓(𝑡 − ∆𝑡, 𝜃 + ∆𝑡)∆𝑡)  

  (S1-21) 

This process can be repeated by continually writing out another term on the righthand side until 

the following sequence of terms appears, 

 𝐼(𝑡) = ∆𝑁(𝑡) + 𝐼(𝑡 − ∆𝑡, 0)𝐵(𝑡, ∆𝑡) + 𝐼(𝑡 − 2∆𝑡, 0)𝐵(𝑡, 2∆𝑡) … 𝐼(0,0)𝐵(𝑡, 𝑡),  
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  (S1-22)  

where, 

 𝐵(𝑡, 𝜃) = ∏ (1 − 𝜓(𝑎 + 𝑡 − 𝜃, 𝑎))∆𝑡)𝜃−∆𝑡
𝑎=0 .  (S1-23) 

We comment here that Kermack and McKendrick assumed that 𝜓 was only dependent on 

𝜃 and not on time. Although this is unnecessarily restrictive from both a mathematical and real-

life standpoint, applying their assumption to the expression for 𝐵(𝑡, 𝜃) (Equation S1-23) and 

then taking the limit as ∆𝑡 goes to zero, we have, 𝐵(𝑡, 𝜃) = 𝑒− ∫ 𝜓(𝑡,𝑎)𝑑𝑎
𝜃

0 ; Kermack and 

McKendrick’s expression for 𝐵(𝑡, 𝜃). 

Since we have already demonstrated that we can assume 𝜓(𝑡, 𝜃) = �̂�(𝑡) for all 𝜃 without 

affecting the value of the integral in Equation S1-16, and the right most summation that we used 

in Equation S1-19 is the discrete form of this integral, we can replace 𝜓(𝑡, 𝜃) with �̂�(𝑡) in 

Equation S1-19 and repeat the sequence of operations from Equation S1-19 through S1-22. 

Written in detail, the resulting product sequence for 𝐵(𝑡, 𝜃) is, 

 𝐵(𝑡, 𝜃) = ∏ (1 − 𝜓(𝑎))∆𝑡)𝑡−∆𝑡
𝑎=𝑡−𝜃 ,  (S1-24) 

which, in the limit as ∆𝑡 → 0, becomes 𝐵(𝑡, 𝜃) = 𝑒− ∫ �̂�(𝑡)𝑑𝑎
𝑡

𝑡−𝜃 , the relationship we seek. This 

important result also shows that when �̂�(𝑡) is used, the integral limits in 𝐵(𝑡, 𝜃) must be the 

interval from 𝑡 − θ to t, the same time interval covered within Equation S1-23 as ∆𝑡 → 0. The 

use of this interval also ensures we use the proper values of �̂�(𝑡) in the restated function, 𝐵(𝑡, 𝜃) 
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Proceeding with the proof of the solution, we note that because  
𝑑𝑁(𝑡,𝜃)

𝑑𝑡
= 0 for all 𝜃 > 0, 

then 
𝑑𝑁(𝑡)

𝑑𝑡
=

𝑑𝑁(𝑡,0)

𝑑𝑡
. We can use this relationship, substitute Equations S1-14 and S1-9, along 

with the expression 𝐵(𝑡, 𝜃) = 𝑒− ∫ �̂�(𝑡)𝑑𝑎
𝑡

𝑡−𝜃  into Equation S1-2; and, keeping in mind that 𝑑𝜃 =

𝑑𝑡, rewrite Equation S1-2 as, 

 𝐼(𝑡) = ∫ 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

𝑡−𝜃 𝐾𝑇(𝑡 − 𝜃)𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡−𝜃

0 𝑑𝜃 + 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 𝐼(0)
𝑡

0
. 

      (S1-25, 18) 

Equation S1-25 can be simplified to, 

 𝐼(𝑡) = 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 ∫ 𝐾𝑇(𝑡 − 𝜃)𝐼(0)𝑒∫ 𝐾𝑇(𝑏)𝑑𝑏
𝑡−𝜃

0 𝑑𝜃 + 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 𝐼(0)
𝑡

0
, (S1-26, 19) 

and since ∫ 𝐾𝑇(𝑡 − 𝜃)𝑒− ∫ 𝐾𝑇(𝑏)𝑑𝑏
𝑡−𝜃

𝑡 𝑑𝜃
𝑡

0
= 𝑒∫ 𝐾𝑇(𝑏)𝑑𝑏

𝑡
𝑡−𝜃 − 1, Equation S1-26 reduces to: 

 𝐼(𝑡) = 𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡

0 ,    (S1-27, 20) 

which is identical to Equation S1-17, thereby proving that Equation S1-14 is a solution to 

Equation S1-2. 

We can now prove that Equation S1-13 is a solution to Equation S1-1 in a similar 

manner. The first step is to recall that −
𝑑𝑆(𝑡)

𝑑𝑡
=

𝑑𝑁(𝑡)

𝑑𝑡
 and then differentiate both sides of 

Equation S1-13 to find, 
𝑑𝑁(𝑡)

𝑑𝑡
= K𝑇(𝑡) 𝐼(𝑡) which is Equation S1-9. We then substitute the 
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expression 𝐵(𝑡, 𝜃) = 𝑒− ∫ �̂�(𝑡)𝑑𝑎
𝑡

𝑡−𝜃  along with Equations S1-9, S1-14, and S1-6 into Equation 

S1-1 to obtain, 

𝐾𝑇(𝑡)𝐼(𝑡) =
S(t)

𝐴𝑝
�̂�(𝑡)(∫ 𝑒− ∫ �̂�(𝑎)𝑑𝑎

𝑡
𝑡−𝜃 𝐾𝑇(𝑡 − 𝜃)𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏

𝑡−𝜃
0 𝑑𝜃 +

𝑡

0
𝑒− ∫ �̂�(𝑎)𝑑𝑎

𝑡
0 𝐼(0)) 

      (S1-28, 21) 

Equation S1-28 can be simplified using Equations S1-8, S1-26, and S1-27, to obtain, 

 𝐾𝑇(𝑡)𝐼(𝑡) = 𝐾𝑇(𝑡)𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡

0 ,   (S1-29, 22) 

If we then substitute Equation S1-9 into S1-29 and integrate, we find the following expression, 

 𝑁(𝑡) = ∫ 𝐾𝑇(c)I(0)
𝑡

0
𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏

𝑐
0 𝑑𝑐 + 𝑁(0)  (S1-30) 

which is identical to Equation S1-13 proving Equation S1-13 is a solution to Equation S1-1. 

We also note that by dividing 𝑁(𝑡) into Equation S1-9, integrating, and exponentiating, 

𝑁(𝑡) can be restated in terms of 
𝐼(𝑡)

𝑁(𝑡)
 as,  

 𝑁(𝑡) = 𝑁(0)𝑒
∫ 𝐾𝑇(𝑡)

𝐼(𝑡)

𝑁(𝑡)
𝑑𝑡

𝑡
0 .    (S1-31) 

This expression is useful in the next two steps of the derivation. 

Step 3: Include the Effect of the Population Interactions 

In their development of a pragmatic model to characterize epidemics, Kermack and 

McKendrick assumed that the disease transmissibility, together with the population behavior in 

the guise of density, were the controlling factors for epidemic outbreaks. We note here that we 
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have already proposed 𝐾𝑇(𝑡) as the disease transmissibility, and the use of 𝐾𝑇(𝑡) in Equation S1-

9 removes the effect of the population behavior from the solution to our rewritten equations. 

Therefore, in this step of our derivation, by combining Kermack and McKendrick’s concepts 

with those of network theory, we reintroduce a parameter of population behavior to the solution 

in Equations S1-13 and S1-14. 

We first assume that the population is a network with individuals as vertices and edges 

capable of transmitting an infection. As a mental image of a spreading epidemic, we further 

assume that within this network, there is a subnetwork wherein only those contacts that already 

have, or eventually will, pass on an infection are its edges. We also assume that, in this 

subnetwork, the mean number of these edges per person, which we call 𝑃𝑐(𝑡), is the self-

weighted mean degree of the subnetwork minus 1. We subtract 1 because a person cannot infect 

their infector. As defined, 𝑃𝑐(𝑡) is equivalent to the basic replication number, 𝑅0, as it is known 

in conventional epidemiological modelling terminology.  

In this concept, as the contacts between members of the population change, 𝑃𝑐(𝑡) can 

hypothetically vary in time to take any value between 0 and 𝑁𝑃. However, since people can only 

interact infectiously with local persons, it is implausible that 𝑃𝑐(𝑡) would ever attain a value 

approaching 𝑁𝑃. Therefore, in practice,  𝑃𝑐(𝑡) is virtually certain to be a number much less than 

𝑁𝑃. Whereas Kermack and McKendrick assumed that all susceptible people are continually in 

contact with all infected people (the well-mixed assumption), our concept of 𝑃𝑐(𝑡) is a more 

sensible and possibly more general casting of their contact concept.  
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Kermack and McKendrick also continually reduced the contacts within their model as the 

susceptible population decreased because they multiplied the number of susceptible people by 

the number of infected people, a consequence that the use of the parameter 𝐾𝑇(𝑡) obviates. In 

contrast, as a more realistic alternative, we assume that the value of 𝑃𝑐(𝑡) does not change when 

an infected person infects another person. The disease state of the population within 𝑃𝑐(𝑡) may 

change, but 𝑃𝑐(𝑡)’s value can only change if the behavior of the population changes. 

By expressing Kermack and McKendrick’s population interaction notions using a 

network model, we also interpret their concept of population density as meaning the number of 

infection-passing contacts between people, which in our parlance is 𝑃𝑐(𝑡). Within this network, 

in which density is a proxy for social interaction, individuals can increase or decrease their 

interaction by creating or breaking contacts (or edges in network terminology), and therefore 

change the degree between themselves and local people. Emphasizing “local”, the use of 𝑃𝑐(𝑡) 

recognizes that the contacts and therefore infections can only occur between people who come to 

be adjacent to each other. Also, in this network, other than changes due to the addition of outside 

people or changes in social interaction, in accordance with our first thought experiment, we 

assume that everyone remains durably in contact with their initial contacts. 

With these concepts in mind, we mathematically define 𝑃𝑐(𝑡) as, 

 𝑃𝑐(𝑡) = lim
∆𝑡→0

∫ 𝑃𝑐𝑟(𝑡)𝑑𝑡
𝑡+∆𝑡

𝑡
, (S1-32) 

where 𝑃𝑐𝑟(𝑡) is the average rate of prior or eventually successful infection transmitting contacts 

for the entire population. Consequently, 𝑃𝑐(𝑡) is understood to be the instantaneous average 
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number of eventually successful infectious contacts within the population. These contacts are 

allowed to be fractions of a whole between any two contacts; therefore, there is an amplitude 

associated with every contact, and it is the average amplitude of these contacts per individual that 

equates to 𝑃𝑐(𝑡) for the population.  

If, in addition, we define 𝑃𝑆(𝑡) as the average number of remaining susceptible people in 

each 𝑃𝑐(𝑡) group that people in 𝑁(𝑡) will infect, we can deduce a useful relationship between 

𝑁(𝑡), 𝐼(𝑡), 𝑃𝑐(𝑡), and 𝑃𝑆(𝑡) . Because the people in 𝐼(𝑡) are only infectious to the extent that 

they contact people who are susceptible to the disease agent, by definition, 𝐼(𝑡)𝑃𝑐(𝑡) is the total 

number of current contacts within 𝑁(𝑡) that will eventually be successful. Thus, 

  
𝐼(𝑡)𝑃𝑐(𝑡)

𝑁(𝑡)
= 𝑃𝑆(𝑡) .    (S1-33) 

and, 

 
𝐼(𝑡)

𝑁(𝑡)
=

𝑃𝑆(𝑡) 

𝑃𝑐(𝑡)
.     (S1-34) 

From this insight we see that, while the sizes of each 𝑃𝑐(𝑡) are uniform, the quantities of 

susceptible people within individual 𝑃𝑐(𝑡) groups are not the same.  

Symmetrically, since, by definition, 𝑅(𝑡)𝑃𝑐(𝑡) is the number of noninfectious contacts 

within 𝑁(𝑡), if 𝑃𝐼(𝑡) is defined as the average of previously infected people in the 𝑃𝑐(𝑡) groups 

that people in 𝑁(𝑡) cannot infect, then,  

 
𝑅(𝑡)𝑃𝑐(𝑡)

𝑁(𝑡)
= 𝑃𝐼(𝑡).     (S1-35) 
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To verify that the definitions are complete and not overlapping, we multiply both Equation S1-33 

and Equation S1-35 by 𝑁(𝑡), and then add the result, to obtain the identity, 

 𝐼(𝑡)𝑃𝑐(𝑡) + 𝑅(𝑡)𝑃𝑐(𝑡) = 𝑁(𝑡)𝑃𝑆(𝑡) + 𝑁(𝑡)𝑃𝐼(𝑡),  (S1-36) 

thereby showing that both sides are equal to 𝑁(𝑡)𝑃𝑐(𝑡), and there is no overlap. 

The next step is to use Equations S1-34 to develop an expression for 
𝐼(𝑡)

𝑁(𝑡)
 in terms of the 

parameters 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡); and then, with the help of Equation S1-31, express the solution 

solely in terms of these parameters. We first note that every person within both 𝑁(𝑡) and 𝐼(𝑡) 

contacts 𝑃𝑐(𝑡) people in each period ∆𝑡. Therefore, in accordance with Equation S1-9, beginning 

at 𝑡 = 0, 𝐾𝑇(∆𝑡)𝐼(0)∆𝑡 people within the 𝐼(0)𝑃𝑐(0) group become infected at 𝑡 = ∆𝑡; and, 

concurrently, the number of non-infected people within the 𝐼(0)𝑃𝑐(0) group becomes 

𝐼(0)𝑃𝑐(0) − 𝐾𝑇(∆𝑡)𝐼(0)∆𝑡 + 𝐼(0)∆𝑃𝑆(0). We add the term 𝐼(0)∆𝑃𝑆(0) to account for any 

susceptible people that join or leave the 𝑃𝑐(𝑡) group; and we assume people who have joined will 

only be infectable in the next time step.  

Apart from the allowance that the number of susceptible people within 𝑃𝑐(0) can change, 

this approach is the same as Kermack and McKendrick’s concept that the susceptible density 

surrounding an infected person diminishes with each infection transmission. The subtle 

difference between our conceptualization and Kermack and McKendrick’s is that by using 𝑃𝑐(𝑡) 

we mathematically force the growth of the epidemic to be a local phenomenon which can only 

reduce the susceptible density in direct contact with the infected individual(s). This is consistent 

with Kermack and McKendrick’s paradigm and has the advantage of eliminating the complexity 
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that they introduced with the implicit assumption that the contacts between all the people 

declined in proportion to the shrinking number of globally available susceptible people. 

In harmony with another of Kermack and McKendrick’s assumptions and the concept of 

latency in all infectious persons, by specifying the term 𝐾𝑇(∆𝑡) as the transmission rate causing 

the new infections in this first step, we ensure that a newly infected person cannot infect others 

immediately after they become infected. Therefore, in concert with Kermack and McKendrick’s 

interpretation that 𝜑(0,0) = 0, we assume that 𝐾𝑇(𝑡) = 0 for 𝑡 ≤ 0.  

Since  
𝐾𝑇(∆𝑡)∆𝑡

𝑃𝑐(0)
 is the fraction of 𝑃𝑐(0) the contacting infected people can no longer infect, 

and  
∆𝑃𝑆(0)

𝑃𝑐(0)
 is the fraction of new contacts within 𝑁(𝑡) that can be infected, the factor,  

1 −
𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑆(0)

𝑃𝑐(0)
, is the fraction of 𝑃𝑐(𝑡) that remains susceptible. After a time ∆𝑡, therefore,  

 
𝑃𝑆(∆𝑡)

𝑃𝑐(∆𝑡)
= 1 −

𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑆(0)

𝑃𝑐(0)
.    (S1-37) 

During the next time step, another 𝐾𝑇(∆𝑡)𝐼(∆𝑡)∆𝑡 people within the group 𝐼(∆𝑡)𝑃𝑐(∆𝑡) 

become infected and the fraction of susceptible people within 
𝑃𝑆(𝑡)

𝑃𝑐(𝑡)
 changes by an additional 

factor,  

1 − 
𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑆(∆𝑡)

𝑃𝑐(∆𝑡)
. This is expressed mathematically as, 

 
𝑃𝑆(2∆𝑡)

𝑃𝑐(2∆𝑡)
= (1 −

𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑆(0)

𝑃𝑐(0)
)(1 −

𝐾𝑇(2∆𝑡)∆𝑡−∆𝑃𝑆(∆𝑡)

𝑃𝑐(∆𝑡)
).  (S1-38) 

The process repeats itself in each period ∆𝑡; and we can write, 
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𝑃𝑆(𝑛∆𝑡)

𝑃𝑐(𝑛∆𝑡)
= (1 −

𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑆(0)

𝑃𝑐(0)
) (1 −

𝐾𝑇(2∆𝑡)∆𝑡−∆𝑃𝑆(∆𝑡)

𝑃𝑐(∆𝑡)
) … (1 −

𝐾𝑇((𝑛+1)∆𝑡)∆𝑡−∆𝑃𝑆(𝑛∆𝑡)

𝑃𝑐(𝑛∆𝑡)
).  

      (S1-39) 

Applying the second thought experiment, we now make the simplifying assumption that a 

change, ∆𝑃𝑆(𝑡), to 𝑃𝑆(𝑡)  will occur much more slowly than the creation of new infections, 

meaning that in Equation S1-39, ∆𝑃𝑆(𝑛∆𝑡) ≪ 𝐾𝑇((𝑛 + 1)∆𝑡)∆𝑡. Therefore, in the remaining 

analysis we will neglect the ∆𝑃𝑆(𝑛∆𝑡) terms. (A situation where ∆PS(n∆t) is plausibly growing 

as fast as KT(n∆t)∆t indicates an outbreak from the initial epidemic and is explored further in 

Supplement 3.1.) 

Neglecting the ∆𝑃𝑆(𝑛∆𝑡) terms in Equation S1-39, using Equation S1-33; and, since by 

definition, 𝑛∆𝑡 = 𝑡, as 𝑛 → ∞, ∆𝑡 → 0, Equation S1-39 becomes, 

 
𝑃𝑆(𝑡)

𝑃𝑐(𝑡)
=

𝐼(𝑡)

𝑁(𝑡)
= 𝐹𝑖(0)𝑒

− ∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡) 
𝑑𝑡

𝑡
0 ,   (S1-40) 

where 𝐹𝑖(0) =
𝐼(0)

𝑁(0)
; the fraction of 𝑁(𝑡) infected at 𝑡 = 0. We can also relabel 𝑃𝑆(𝑡) as 𝑅𝑒𝑓𝑓(𝑡) 

because 𝑃𝑆(𝑡) is the number of additional people each person in 𝐼(𝑡) will eventually infect. 

Equation S1-40 is the expression that enables us to bring the population interactions into the 

solution. 

Step 4: The KMES 

When Equation S1-40 is substituted into Equation S1-31, N(t) can be expressed in terms 

of 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡), 
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 𝑁(𝑡) = 𝑁(0)𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒
− ∫

𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 .   (S1-41) 

𝐼(𝑡) is then found by multiplying Equations S1-40 and S1-41 together,  

 𝐼(𝑡) = 𝐼(0)𝑒
𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0

−∫
𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 ,  (S1-42) 

and from the definition of 𝑁(𝑡), 𝑅(𝑡) is, 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒
− ∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 )𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 .  (S1-43) 

Substituting Equations S1-41 to S1-43 into Equations S-9 through S-11 yields the expression, 

 �̂�(𝑡) = 𝐾𝑇(𝑡)−𝐹𝑖(0)𝐾𝑇(𝑡)𝑒
− ∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
,   (S1-44, 15) 

which defines the relationship between �̂�(𝑡), 𝐾𝑇(𝑡), and 𝑃𝑐(𝑡).  

As a check, this expression for �̂�(𝑡) can be substituted into Equations S1-13 and S1-14 to 

demonstrate their equivalency to Equations S1-41 and S1-42. We therefore conclude that 

Equations S1-41, -42, and -43 are solutions to Kermack and McKendrick’s integro-differential 

equations in terms of the transmission and population interaction parameters, 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡).  

Written out, the complete solution to Kermack and McKendrick’s integro-differential 

equations (the KMES), in terms of 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡) is, 

 𝑁(𝑡) = 𝑁(0)𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒
− ∫

𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0    (S1-41, 6)  
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 𝐼(𝑡) = 𝐼(0)𝑒
𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 −∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0   (S1-42, 7) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒
− ∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 )𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0   (S1-43, 8) 

 𝐵(𝑡, 𝜃) = 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

𝑡−𝜃 = 𝑒
− ∫ (𝐾𝑇(𝑎)−𝐹𝑖(0)𝐾𝑇(𝑎)𝑒

− ∫
𝐾𝑇(𝑏)

𝑃𝑐(𝑏)
𝑑

𝑎
0 𝑏

+
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
)𝑑𝑎

𝑡
𝑡−𝜃  (S1-45, 9)  

 𝐵(𝑡, 𝑡) = 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 = 𝑒
− ∫ (𝐾𝑇(𝑎)−𝐹𝑖(0)𝐾𝑇(𝑎)𝑒

− ∫
𝐾𝑇(𝑏)

𝑃𝑐(𝑏)
𝑑

𝑎
0 𝑏

+
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
)𝑑𝑎

𝑡
0  (S1-46, 10) 

 �̂�(𝑡) =
𝑑𝑅(𝑡)

𝑑𝑡

𝐼(𝑡)
= 𝐾𝑇(𝑡)−𝐹𝑖(0)𝐾𝑇(𝑡)𝑒

− ∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0

𝑑𝑡
+

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
  (S1-44, 15) 

 �̂�(𝑡) =
𝐾𝑇(𝑡)𝐴𝑝

𝑆(𝑡)
,    (S1-8, 13) 

and since 𝑆(𝑡) = 𝑁𝑃 − 𝑁(𝑡), rather than portray the progress of the epidemic in terms of 

susceptibles, 𝑆(𝑡), we henceforth express the KMES in terms of the total cases, 𝑁(𝑡), as in 

Equation S1-41. 

Supplement 2. Controlling epidemics early 

The quantitative mathematical relationships derived from the KMES presented in Section 

1 characterize the dynamics of an epidemic and illustrate that strong and early intervention is 

critical. Equation 37 quantifies that the ultimate number of individuals infected in an epidemic, 
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𝑁(∞), will be exponentially dependent on the number of people with whom each person 

interacts.  

The real-world country data provide vivid examples of the consequences projected by the 

KMES. Both South Korea and New Zealand enacted strong and early interventions compared to 

other countries (Campbell, C 2020; Field, A 2020), as reflected by their 
𝐾𝑇

𝑃𝑐
 values (Table 2). 

These strong interventions led to earlier peaks in new cases and to far fewer total cases than in 

other countries (Figures 5 and 6) in the first few months of the pandemic: the peak number of 

new cases in both South Korea and New Zealand was 90–99% lower than in other countries, a 

compelling validation of the explicit statement in the KMES that strong intervention leads to 

exponentially more favorable outcomes. 

In the USA, interventions initiated on March 16 began to have an effect around March 

23, 2020 (Figure 5B), and the number of new cases on March 23, 2020 (Roser et al 2021) was 

46,136. Using the values of ln (𝐹𝑖(0)𝐾𝑇(t)) and 
𝐾𝑇

𝑃𝑐
 calculated from the data, Equation 37 

predicts that had the value of these parameters remained constant, the ultimate number of cases 

would have been approximately 1.22 million. If the same intervention had been implemented and 

sustained starting on March 10, when there were 59 times fewer (782) cases (Roser et al 2021), 

the model predicts that the ultimate number of cases would also have been 59 times lower, or 

20,725. Thus, earlier action could have reduced the ultimate number of projected cases by more 

than 98%. Of course, the projected estimate of approximately 1.22 million total USA cases 

would only have occurred if the effectiveness of the interventions that were launched on March 
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16 had been sustained. Unfortunately, a marked reduction in effective interventions occurred in 

many parts of the USA in mid-April, well before the official reopening of the economy (Elassar 

2020). This caused a second surge in new cases in late April and is why the observed data and 

the model prediction diverge in Figures 5B and 6B.  

As shown in Section 1, the KMES via Equation 35 provides an estimate of the time to the 

peak of new cases, tpeak. Using Equation 35, the values of  ln(𝐹𝑖(0)𝐾𝑇(t)), and 
𝐾𝑇

𝑃𝑐
 calculated 

from the data, the predicted peak in new cases in the USA would have occurred near March 24 if 

the intervention had begun on March 10. Instead, a 6-day delay in effective intervention shifted 

the initial peak to April 11, 16 days later, as projected, and that peak was much higher (Figure 

6B). 

As shown, too, in Section 3, epidemic acceleration, the instantaneous potential to change 

the pace of the epidemic, can be determined at any point in the epidemic and depends on the 

social containment actions in effect at that time. What is perhaps less apparent, but predicted by 

the KMES, is that two countries with identical numbers of cases on a given day can, in fact, have 

different accelerations on the same day, and will, therefore, exhibit different dynamics 

immediately after that day.  

South Korea and New Zealand (Figure 5A and F) had nearly identical case counts when 

each imposed strong containment measures (204 cases in South Korea on February 21, and 205 

in New Zealand on March 25). Their data suggest that their interventions were similarly effective 
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(
𝐾𝑇

𝑃𝑐
 = 0.22 in South Korea and 0.12 in New Zealand; see Table 2). However, since South Korea 

has a much higher population density than New Zealand ((Worldometers 2021), data in Table 1), 

it had a much higher number of interactions when the interventions were imposed and, therefore, 

a higher rate of acceleration, as evidenced by its higher RCO at the time of intervention. Indeed, 

the rate of change of new cases was higher in South Korea than in New Zealand, and the later 

number of cases in South Korea was higher than in New Zealand (Figure 5A and F).  

Equation 33 clearly illustrates these lessons. As social distancing is strengthened (lower 

𝑃𝑐), 𝑅𝑒𝑓𝑓(𝑡) decreases, and the epidemic slows. Early and strong interventions, especially in 

countries with indigenously high levels of social interaction, are necessary to stop an epidemic in 

the initial stages. Reopening, enacted too early, can reignite the epidemic, dramatically 

increasing the number of cases. The astonishing magnitude of the effects, driven by only a few 

days of delay, derives from the doubly exponential nature of the underlying relationships. 

Supplement 3. Ending an Ongoing Epidemic 

We can use the KMES to design measures to end an epidemic in an advanced stage. The 

management plan is built by first using Equation 62 to predict the number of days a given level 

of intervention, 
𝐾𝑇

𝑃𝑐
, is needed to reduce the new daily cases by a target fraction, 𝐷𝑡𝑓. 

For example, using Equation 62, we see that a country targeting a 90% reduction of new 

cases per day (e.g., from 50,000 to 5,000 cases per day, 𝐷𝑡𝑓 = 0.1), can attain its target in about 
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12 days by imposing a containment level of  
𝐾𝑇

𝑃𝑐
= 0.2. The South Korea and New Zealand data 

demonstrate that Equation 62 is valid and that 
𝐾𝑇

𝑃𝑐
= 0.2 is achievable for this duration. Both 

countries achieved a value of  
𝐾𝑇

𝑃𝑐
 close to 0.2 for the time necessary to produce a 90% reduction. 

It took 13 days for South Korea (March 3–16) and 15 days for New Zealand (April 2–15) to 

reduce their new cases by 90% between the dates shown. 

Returning to the planning example, after achieving the initial 90% reduction, a reasonable 

next step might be to relax social containment to a level that allows the economy to remain 

viable, while preventing the epidemic from erupting again. We can again find the level of  
𝐾𝑇

𝑃𝑐
 

necessary to achieve a chosen target using Equation 62. If an additional 90% reduction in new 

cases per day is desired, and a period of 90 days is tolerable for that reduction, then a new level 

of approximately  
𝐾𝑇

𝑃𝑐
= 0.026 is needed. This equates to a 90-day period during which each 

person can be in contact with ten specific people, in an infectable way. Note that this is three 

times less stringent than the original USA shutdown level in April 2020 as shown by the level of  

𝐾𝑇

𝑃𝑐
 calculated for the United States in that period (Table 2). Thus, with a well-planned approach, 

a country can reduce its new daily cases by 99% in approximately 100 days, enabling the country 

to control, and essentially end the epidemic, while simultaneously maintaining economic 

viability.  
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If even 0.026 is too restrictive, we can choose a still lower 
𝐾𝑇

𝑃𝑐
, but it must be large 

enough to avoid a new outbreak. A lower bound for the new value of  
𝐾𝑇

𝑃𝑐
, high enough to prevent 

an outbreak, can be found using Equation 59.  

We can easily monitor the progress of interventions using the RCO, as the curve for 

South Korea illustrates (Figure 5A). Had this country maintained the initial level of distancing 

measures, the data would have followed the initial slope. However, the actual data departed from 

the slope, heralding failures in (or relaxation of) social distancing, which were later documented 

to have occurred during the indicated time frame (Campbell 2020) (circled data, Figure 5A). 

Because it summarizes epidemic dynamics, we can use the RCO to continuously determine the 

effectiveness of implemented measures and whether they need adjustment.  

Supplement 3.1 Outbreaks 

We can see from Equation 50 that if the social interventions are strengthened (lower 𝑃𝑐) 

the slope of the RCO curve will steepen and if the interventions are relaxed, the slope will 

become shallower. Therefore, if the value of 𝐾𝑇(𝑡) does not change due to a change in the 

disease transmissibility, the RCO is a metric for monitoring the population interactions. It is also 

clear that, under the assumptions used to develop the KMES,  
𝐾𝑇

𝑃𝑐
  must always be greater than 

zero, and the RCO slope can never become positive. However, this only remains true if three 

conditions remain true: 1) immunity persists, 2) no new infections are introduced from outside 
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the area, 3) ∆𝑃𝑆(𝑛∆𝑡) is an order of magnitude smaller than the new infections, 𝐾𝑇(𝑛∆𝑡)∆𝑡. We 

call the latter two conditions the assumption that the epidemic is contiguous. 

If new infections are introduced into a portion of the population that has thus far been 

disconnected from the previously infected area, and therefore, has only susceptible people, then 

the assumption of contiguousness does not hold. This is a common situation when infected 

people travel from an infected area to a previously uninfected area and cause an outbreak. 

In this case, we will begin with Equation S1-35 and assume that the entirety of the 

change in 𝑃𝑐(𝑡) during the time ∆𝑡 is with uninfected new contacts. That is, ∆𝑃𝑐(𝑡) = ∆𝑃𝑆(𝑡); 

and Equation S1-35 becomes, 

𝐼(𝑛∆𝑡)

𝑁(𝑛∆𝑡)
= (1 −

𝐾𝑇(0)∆𝑡−∆𝑃𝑐(0)

𝑃𝑐(0)
) (1 −

𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑐(∆𝑡)

𝑃𝑐(∆𝑡)
) … (1 −

𝐾𝑇(𝑛∆𝑡)∆𝑡−∆𝑃𝑐(𝑛∆𝑡)

𝑃𝑐(𝑛∆𝑡)
)  

        (S3-1) 

and then, since by definition, 𝑛∆𝑡 = 𝑡, as 𝑛 → ∞, ∆𝑡 → 0, Equation S3-4 becomes, 

 
𝐼(𝑡)

𝑁(𝑡)
= 𝐹𝑖(0)𝑒

− ∫
𝐾𝑇(𝑡)−

𝑑𝑃𝑐(𝑡)
𝑑𝑡

𝑃𝑐(𝑡) 
𝑑𝑡

𝑡
0 = 𝐹𝑖(0)

𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡) 
𝑑𝑡

𝑡
0    (S3-2) 

The equations for 𝑁(𝑡), 𝐼(𝑡), and 𝑅(𝑡) are then the following: 

 𝑁(𝑡) = 𝑁(0)𝑒
𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0     (S3-3) 
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 𝐼(𝑡) = 𝐼(0)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 −∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0    (S3-4) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 )𝑒

𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0   (S3-5) 

As an alternative, to predict the number of cases in an epidemic affected by an outbreak, 

we can modify Equation 28. Assuming that 𝑡0 = 0, 𝑁(0) = 1, and introducing the notation 

𝑃𝑐𝑥 where 𝑥 denotes the number (order in time) of the outbreak, Equation 28 can be written as: 

 𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−

𝐾𝑇
𝑃𝑐1

 t
−1).      (S3-6) 

If a new outbreak occurs in a previously unaffected area of a country, then Equation S3-6 

can be modified as follows: 

 𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−

𝐾𝑇
𝑃𝑐1

 t
−1) +  𝐼2𝑒−𝑃𝑐2(𝑒

−
𝐾𝑇
𝑃𝑐2

 (t−𝑡2)
−1),   (S3-7) 

where 𝐼2 is the number of infectious people who initiated the new outbreak, 𝑃𝑐2 is the social 

interaction parameter in the new outbreak area, and 𝑡2 is the time the new outbreak occurs. We 

have assumed that the disease transmissibility remains the same throughout this illustration. If 

the transmissibility changes in a subset of the population, then a similar formulation, using the 

notation, 𝐾𝑇𝑥, can be utilized to track the populations with the new transmissibility. 

Equation S3-7 can be written in a general form as 
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 𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−

𝐾𝑇
𝑃𝑐1

 t
−1) +  𝐼2𝑒−𝑃𝑐2(𝑒

−
𝐾𝑇
𝑃𝑐2

 (t−𝑡2)
−1) … + 𝐼x𝑒−𝑃𝑐𝑥(𝑒

−
𝐾𝑇
𝑃𝑐𝑥

 (t−𝑡𝑥)
−1),  (S3-8) 

where 𝑥 denotes the outbreak number and t > 𝑡2 > 𝑡3 > ⋯ > 𝑡𝑥. For each outbreak 𝑡𝑥, 𝑃𝑐𝑥, and 

𝐼𝑥 need to be determined independently. 

While an epidemic is underway, we can detect an outbreak by monitoring the slope of the 

RCO curve. A positive slope detected in an RCO curve indicates that an outbreak has occurred. 

This is an indication that immediate action, within days, is required from policy makers to 

strengthen intervention measures and prevent the outbreak from overwhelming prior progress in 

controlling the epidemic. By monitoring the RCO curve, we can also detect if the disease 

changes its transmissibility through mutation. In this situation, a proper fit of the parameters in 

Equation 28 is not possible and a modification of 𝐾𝑇 is required to accommodate the change. 

Supplement 4: List of Equations 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −

S(t)

𝐴𝑝
(∫ 𝐴(𝑡, 𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐴(𝑡, 𝑡)𝐼(0))

𝑡

0
, (1, S1-1) 

 𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐵(𝑡, 𝑡)𝐼(0)

𝑡

0
,  (2, S1-2) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= ∫ 𝐶(𝑡, 𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐶(𝑡, 𝑡)𝐼(0)

𝑡

0
, (3, S1-3) 

 𝑁𝑝 = 𝑆(𝑡) + 𝑁(𝑡) (4, S1-4) 

 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡) (5, S1-5) 
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 𝑁(𝑡) = 𝑁(0)𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒
− ∫

𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0    (6, S1-41)  

 𝐼(𝑡) = 𝐼(0)𝑒
𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 −∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0   (7, S1-42) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒
− ∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 )𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0   (8, S1-43)

 𝐵(𝑡, 𝜃) = 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

𝑡−𝜃 = 𝑒
− ∫ (𝐾𝑇(𝑎)−𝐹𝑖(0)𝐾𝑇(𝑎)𝑒

− ∫
𝐾𝑇(𝑏)

𝑃𝑐(𝑏)
𝑑

𝑎
0 𝑏

+
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
)𝑑𝑎

𝑡
𝑡−𝜃  (9, S1-45)  

 𝐵(𝑡, 𝑡) = 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 = 𝑒
− ∫ (𝐾𝑇(𝑎)−𝐹𝑖(0)𝐾𝑇(𝑎)𝑒

− ∫
𝐾𝑇(𝑏)

𝑃𝑐(𝑏)
𝑑

𝑎
0 𝑏

+
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
)𝑑𝑎

𝑡
0  (10, S1-46) 

 �̂�(t) =
∫ 𝐴(𝑡,𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐴(𝑡,𝑡)𝐼(0))

𝑡
0

∫ 𝐵(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐵(𝑡,𝑡)𝐼(0))

𝑡
0

   (11, S1-6)  

 �̂�(𝑡) =
𝑑𝑅(𝑡)

𝑑𝑡

𝐼(𝑡)
=

∫ 𝐶(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐶(𝑡,𝑡)𝐼(0)

𝑡
0

∫ 𝐵(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐵(𝑡,𝑡)𝐼(0)

𝑡
0

,   (12, S1-7) 

 𝐾𝑇(𝑡) = �̂�(𝑡)
S(t)

𝐴𝑃
= −

𝑑𝑆(𝑡)

𝑑𝑡

𝐼(𝑡)
=

𝑑𝑁(𝑡)

𝑑𝑡

𝐼(𝑡)
.   (13, S1-8) 

 𝐹𝑖(𝑡) =
𝐼(𝑡)

𝑁(𝑡)
.      (14) 

 �̂�(𝑡) = 𝐾𝑇(𝑡)−𝐹𝑖(0)𝐾𝑇(𝑡)𝑒
− ∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0

𝑑𝑡
+

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
,  (15, S1-44) 

 𝐼(𝑡) = 𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡

0 . (16, S1-14) 

 
𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡)𝐼(𝑡). (17, S1-9) 
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𝐼(𝑡) = ∫ 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝜃

𝑡−𝜃 𝐾𝑇(𝑡 − 𝜃)𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡−𝜃

0 𝑑𝜃 + 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 𝐼(0)
𝑡

0
.    (18, S1-25) 

 𝐼(𝑡) = 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 ∫ 𝐾𝑇(𝑡 − 𝜃)𝐼(0)𝑒∫ 𝐾𝑇(𝑏)𝑑𝑏
𝑡−𝜃

0 𝑑𝜃 + 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 𝐼(0)
𝑡

0
. (19, S1-26) 

 𝐼(𝑡) = 𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡

0 .    (20, S1-27) 

𝐾𝑇(𝑡)𝐼(𝑡) =
S(t)

𝐴𝑝
�̂�(𝑡)(∫ 𝑒− ∫ �̂�(𝑎)𝑑𝑎

𝑡
𝑡−𝜃 𝐾𝑇(𝑡 − 𝜃)𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏

𝑡−𝜃
0 𝑑𝜃 +

𝑡

0
𝑒− ∫ �̂�(𝑎)𝑑𝑎

𝑡
0 𝐼(0)) 

      (21, S1-28) 

 𝐾𝑇(𝑡)𝐼(𝑡) = 𝐾𝑇(𝑡)𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡

0 ,   (22, S1-29) 

 
𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡)𝐼(0)𝑒

𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒
− ∫

𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 −∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0    (23) 

 𝑁(𝑡) = 𝑁(0)𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒
− ∫

𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 ,    (24) 

 𝐼(𝑡) = 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡

0 𝐵(𝑡, 𝑡)𝐼(0)  (25) 

 𝑁(𝑡) = 𝑒
∫ (𝐾𝑇(𝑡)+

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑑𝑡

𝑡
0 𝐵(𝑡, 𝑡)

𝐼(0)

𝐹𝑖(0)
  (26) 

 𝑅(𝑡) = (
𝑒

∫ (𝐾𝑇(𝑡)+
𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

)𝑑𝑡
𝑡
0

𝐹𝑖(0)
− 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡

𝑡
0 )𝐵(𝑡, 𝑡)𝐼(0).  (27) 

 𝑁(𝑡) = 𝑁(0)𝑒−𝐹𝑖(0)𝑃𝑐(𝑒
− 

𝐾T
𝑃𝑐

𝑡
−1)    (28) 

 𝐼(𝑡) = 𝐼(0)𝑒
−𝐹𝑖(0)𝑃𝑐(𝑒

− 
𝐾T
𝑃𝑐

𝑡
−1)− 

𝐾T
𝑃𝑐

𝑡

    (29) 
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 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒
− 

𝐾T
𝑃𝑐

𝑡
)𝑒−𝐹𝑖(0)𝑃𝑐(𝑒

− 
𝐾T
𝑃𝑐

𝑡
−1)   (30)  

 𝑅𝑒𝑓𝑓(𝑡) = 𝑃𝑐𝐹𝑖(0)𝑒
− 

𝐾𝑇
𝑃𝑐 

𝑡
     (31) 

  
𝑑𝐼(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡) 𝐼(𝑡) − �̂�(𝑡)𝐼(𝑡),   (32, S1-10) 

 
𝑑𝐼(𝑡)

𝑑𝑡
= (

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
− 𝑅𝑒𝑓𝑓(𝑡)

𝐾𝑇

𝑃𝑐
)I(t),    (33) 

 𝑡𝑑𝑒𝑐𝑙𝑖𝑛𝑒 =
𝑃𝑐ln (𝐹𝑖(0)𝑃𝑐)

𝐾𝑇
.   (34) 

 𝑡𝑃𝑒𝑎𝑘 =
𝑃𝑐ln (𝐹𝑖(0)𝑃𝑐)

𝐾𝑇
,   (35) 

 𝐼(𝑡)𝑃𝑒𝑎𝑘 =
𝐼(0)𝑒(𝐹𝑖(0)𝑃𝑐−1)

𝐹𝑖(0)𝑃𝑐
.     (36) 

 𝑁(∞) = 𝑁(0)𝑒𝐹𝑖(0)𝑃𝑐,      (37) 

 𝑡 = −
𝑃𝑐

𝐾𝑇
𝑙𝑛(1 −

ln (
𝑆(0)

𝑁(0)
)

𝐹𝑖(0)𝑃𝑐
).      (38) 

 𝐹𝑖(0)𝑃𝑐 > ln (𝑆(0)).      (39) 

 ln (
𝑆(0)

𝑆(∞)
) = 𝑅0(1 −

𝑆(∞) 

𝐾 
),  (40) 

 𝑆(𝑡) = 𝑁𝑝 − 𝑁(𝑡),  (41) 

 ln (
𝑁𝑝−𝑁(𝑡)

𝑆(0)
) = −𝑅0(1 −

𝑁𝑝−𝑁(𝑡) 

𝐾 
).  (42) 
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 𝑁(∞) ≈ 𝑒𝑅0  (43) 

 𝑃𝑐𝑟(t) =
𝐴1𝑟(𝑡)𝑁𝑝

𝐴𝑝
= 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑟𝑎𝑡𝑒,   (44) 

  𝐴1(𝑡) = lim
∆𝑡→0

∫ 𝐴1𝑟(𝑡)𝑑𝑡
𝑡+∆𝑡

𝑡
,   (45) 

 
𝐾T(𝑡)

𝑃𝑐(𝑡)
=

𝐾𝑇(𝑡)𝐴𝑝

𝐴1(𝑡)𝑁𝑝
.  (46) 

  𝐹(𝑁(𝑡)) =
𝐴1𝑁𝑝

𝐴
ln (1 +

ln(𝑁(𝑡))

−
𝐴1𝑁𝑝

𝐴

) = −𝐾𝑇t,  (47) 

 𝐵(𝑡, 𝑡) = 𝑒−(𝑒−𝐾𝑇𝑡−1)−2𝐾𝑇𝑡      (48) 

 𝐶𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 = 𝑒−(𝑒−𝐾𝑇𝑡−1)−𝐾𝑇𝑡.     (49) 

 𝑅𝐶𝑂 = 𝑙𝑛 (
𝑑𝑁(𝑡)

𝑑𝑡

𝑁(𝑡)
) = ln(𝐹𝑖(0)𝐾𝑇) −

𝐾T

𝑃𝑐
𝑡     (50) 

 𝑃𝑐𝑎𝑙 =
−𝐾𝑇(𝑡)

𝑆𝑙𝑜𝑝𝑒(1−
𝐺𝑅0
100

)
,     (51)  

 
𝑑𝑆(𝑡)

𝑑𝑡
= −

𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
,  (52) 

 
𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
− 𝛾𝐼(𝑡),   (53) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡), and  (54) 

 𝑁𝑝 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡),   (55)   
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 𝑅𝑒𝑓𝑓(𝑡) = −
𝑒𝑅𝐶𝑂(𝑡)

𝑑(𝑅𝐶𝑂(𝑡))

𝑑𝑡

,     (56)  

 𝑅𝐸𝑓𝑓(𝑡) =

𝑁(𝑡)−𝑁(𝑡−∆𝑡)

(
𝑁(𝑡)+𝑁(𝑡−∆𝑡)

2 )

 ln(
𝑁(𝑡)−𝑁(𝑡−∆𝑡)

∆𝑡(
𝑁(𝑡)+𝑁(𝑡−∆𝑡)

2
)
)−ln(

𝑁(𝑡−∆𝑡)−𝑁(𝑡−2∆𝑡)

∆𝑡(
𝑁(𝑡−∆𝑡)+𝑁(𝑡−2∆𝑡)

2
)
)

.      (57) 

 
𝑑2𝑁(𝑡)

𝑑2𝑡
= (𝑒𝑅𝐶𝑂(𝑡) −

𝐾𝑇

𝑃𝑐
)

𝑑𝑁(𝑡)

𝑑𝑡
 ,    (58) 

 𝑃𝑐 < 𝐾𝑇𝑒−𝑅𝐶𝑂(𝑡).   (59) 

 𝐷𝑡𝑓 =

𝑑𝑁(𝑡+𝑡𝑡𝑎𝑟𝑔𝑒𝑡)

𝑑𝑡
𝑑𝑁(𝑡)

𝑑𝑡

=
𝑁𝑒𝑤 𝐶𝑎𝑠𝑒 𝑇𝑎𝑟𝑔𝑒𝑡 𝑅𝑎𝑡𝑒

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑁𝑒𝑤 𝐶𝑎𝑠𝑒 𝑅𝑎𝑡𝑒
.  (60) 

 𝐷𝑡𝑓 = 𝑒−𝑃𝑐 (𝑒
− 

𝐾𝑇
𝑃𝑐

(𝑡+𝑡𝑡𝑎𝑟𝑔𝑒𝑡)
−𝑒

− 
𝐾𝑇
𝑃𝑐

(𝑡)
)𝑒

− 
𝐾𝑇
𝑃𝑐

𝑡target
.  (61) 

 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 = −
𝑃𝑐ln (𝐷𝑡𝑓)

𝐾𝑇
.   (62) 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −

S(t)

𝐴𝑝
(∫ 𝐴(𝑡, 𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐴(𝑡, 𝑡)𝐼(0))

𝑡

0
, (S1-1, 1) 

 𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐵(𝑡, 𝑡)𝐼(0)

𝑡

0
,  (S1-2, 2) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= ∫ 𝐶(𝑡, 𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐶(𝑡, 𝑡)𝐼(0)

𝑡

0
, (S1-3, 3) 

 𝑁𝑝 = 𝑆(𝑡) + 𝑁(𝑡) (S1-4, 4) 

 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡) (S1-5, 5) 
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 �̂�(t) =
∫ 𝐴(𝑡,𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐴(𝑡,𝑡)𝐼(0))

𝑡
0

∫ 𝐵(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐵(𝑡,𝑡)𝐼(0))

𝑡
0

.   (S1-6, 11) 

 �̂�(𝑡) =
𝑑𝑅(𝑡)

𝑑𝑡

𝐼(𝑡)
=

∫ 𝐶(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐶(𝑡,𝑡)𝐼(0)

𝑡
0

∫ 𝐵(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐵(𝑡,𝑡)𝐼(0)

𝑡
0

.   (S1-7, 12) 

 𝐾𝑇(𝑡) = −
𝑑𝑆(𝑡)

𝑑𝑡

𝐼(𝑡)
=

𝑑𝑁(𝑡)

𝑑𝑡

𝐼(𝑡)
= �̂�(𝑡)

S(t)

𝐴𝑃
.   (S1-8, 13) 

 −
𝑑𝑆(𝑡)

𝑑𝑡
=

𝑑𝑁(𝑡)

𝑑𝑡
= K𝑇(𝑡) 𝐼(𝑡), (S1-9, 17)  

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡) 𝐼(𝑡) − �̂�(𝑡)𝐼(𝑡), (S1-10, 32) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= �̂�(𝑡)𝐼(𝑡) and (S1-11)

 𝑆(𝑡) = 𝑁𝑃 − 𝑁(𝑡),  (S1-12)

 𝑁(𝑡) = ∫ 𝐾𝑇(c)I(0)
𝑡

0
𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏

𝑐
0 𝑑𝑐 + 𝑁(0) (S1-13) 

  𝐼(𝑡) = 𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡

0  ;    (S1-14, 16)   

∫ �̂�(𝑡)𝐵(𝑡, 𝜃)
𝑑𝑁(𝑡 − 𝜃, 0)

𝑑𝑡
𝑑𝜃 + �̂�(𝑡)𝐵(𝑡, 𝑡)𝐼(0))

𝑡

0

= 

 ∫ 𝜓(𝑡, 𝜃)𝐵(𝑡, 𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + ψ(t, t)B(t, t)I(0)

𝑡

0
,  (S1-15) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= ∫ �̂�(𝑡)𝐼(𝑡, 𝜃)𝑑𝜃 = ∫ 𝜓(𝑡, 𝜃)𝐼(𝑡, 𝜃)𝑑𝜃

𝑡

0

𝑡

0
. (S1-16) 

 
dI(t)

𝑑𝑡
=

dN(t)

𝑑𝑡
−

dR(t)

𝑑𝑡
, (S1-17) 
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 ∆𝐼(𝑡) = ∆𝑁(𝑡) − ∆𝑅(𝑡). (S1-18) 

 𝐼(𝑡) − ∑ 𝐼(𝑡 − ∆𝑡, 𝜃)𝑡−∆𝑡
𝜃=0 = ∆𝑁(𝑡) − ∑ 𝐼(𝑡 − ∆𝑡, 𝜃)𝑡−∆𝑡

𝜃=0 𝜓(𝑡 − ∆𝑡, 𝜃)∆𝑡, (S1-19) 

 𝐼(𝑡) = ∆𝑁(𝑡) + ∑ 𝐼(𝑡 − ∆𝑡, 𝜃)(1 −𝑡−∆𝑡
𝜃=0 𝜓(𝑡 − ∆𝑡, 𝜃)∆𝑡). (S1-20) 

 𝐼(𝑡) = ∆𝑁(𝑡) + 𝐼(𝑡 − ∆𝑡, 0)(1 − 𝜓(𝑡 − ∆𝑡, 0)∆𝑡) 

 + ∑ 𝐼(𝑡 − 2∆𝑡, 𝜃)(1 −𝑡−2∆𝑡
𝜃=0 𝜓(𝑡 − 2∆𝑡, 𝜃)∆𝑡)(1 − 𝜓(𝑡 − ∆𝑡, 𝜃 + ∆𝑡)∆𝑡)  

  (S1-21) 

 𝐼(𝑡) = ∆𝑁(𝑡) + 𝐼(𝑡 − ∆𝑡, 0)𝐵(𝑡, ∆𝑡) + 𝐼(𝑡 − 2∆𝑡, 0)𝐵(𝑡, 2∆𝑡) … 𝐼(0,0)𝐵(𝑡, 𝑡), (S1-22)  

 𝐵(𝑡, 𝜃) = ∏ (1 − 𝜓(𝑎 + 𝑡 − 𝜃, 𝑎))∆𝑡)𝜃−∆𝑡
𝑎=0 .  (S1-23) 

 𝐵(𝑡, 𝜃) = ∏ (1 − 𝜓(𝑎))∆𝑡)𝑡−∆𝑡
𝑎=𝑡−𝜃 ,  (S1-24) 

 𝐼(𝑡) = ∫ 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

𝑡−𝜃 𝐾𝑇(𝑡 − 𝜃)𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡−𝜃

0 𝑑𝜃 + 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 𝐼(0)
𝑡

0
. 

      (S1-25, 18) 

 𝐼(𝑡) = 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 ∫ 𝐾𝑇(𝑡 − 𝜃)𝐼(0)𝑒∫ 𝐾𝑇(𝑏)𝑑𝑏
𝑡−𝜃

0 𝑑𝜃 + 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 𝐼(0)
𝑡

0
, (S1-26, 19) 

 𝐼(𝑡) = 𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡

0 ,    (S1-27, 20) 

𝐾𝑇(𝑡)𝐼(𝑡) =
S(t)

𝐴𝑝
�̂�(𝑡)(∫ 𝑒− ∫ �̂�(𝑎)𝑑𝑎

𝑡
𝑡−𝜃 𝐾𝑇(𝑡 − 𝜃)𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏

𝑡−𝜃
0 𝑑𝜃 +

𝑡

0
𝑒− ∫ �̂�(𝑎)𝑑𝑎

𝑡
0 𝐼(0)) 

      (S1-28, 21) 
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 𝐾𝑇(𝑡)𝐼(𝑡) = 𝐾𝑇(𝑡)𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏
𝑡

0 ,   (S1-29, 22) 

 𝑁(𝑡) = ∫ 𝐾𝑇(c)I(0)
𝑡

0
𝑒∫ (𝐾𝑇(𝑏)−�̂�(𝑏))𝑑𝑏

𝑐
0 𝑑𝑐 + 𝑁(0)  (S1-30) 

 𝑁(𝑡) = 𝑁(0)𝑒
∫ 𝐾𝑇(𝑡)

𝐼(𝑡)

𝑁(𝑡)
𝑑𝑡

𝑡
0 .    (S1-31) 

 𝑃𝑐(𝑡) = lim
∆𝑡→0

∫ 𝑃𝑐𝑟(𝑡)𝑑𝑡
𝑡+∆𝑡

𝑡
, (S1-32) 

  
𝐼(𝑡)𝑃𝑐(𝑡)

𝑁(𝑡)
= 𝑃𝑆(𝑡) .    (S1-33)

 
𝐼(𝑡)

𝑁(𝑡)
=

𝑃𝑆(𝑡) 

𝑃𝑐(𝑡)
.     (S1-34)  

 
𝑅(𝑡)𝑃𝑐(𝑡)

𝑁(𝑡)
= 𝑃𝐼(𝑡).     (S1-35) 

 𝐼(𝑡)𝑃𝑐(𝑡) + 𝑅(𝑡)𝑃𝑐(𝑡) = 𝑁(𝑡)𝑃𝑆(𝑡) + 𝑁(𝑡)𝑃𝐼(𝑡),  (S1-36)  

 
𝑃𝑆(∆𝑡)

𝑃𝑐(∆𝑡)
= 1 −

𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑆(0)

𝑃𝑐(0)
.    (S1-37) 

 
𝑃𝑆(2∆𝑡)

𝑃𝑐(2∆𝑡)
= (1 −

𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑆(0)

𝑃𝑐(0)
)(1 −

𝐾𝑇(2∆𝑡)∆𝑡−∆𝑃𝑆(∆𝑡)

𝑃𝑐(∆𝑡)
).  (S1-38) 

𝑃𝑆(𝑛∆𝑡)

𝑃𝑐(𝑛∆𝑡)
= (1 −

𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑆(0)

𝑃𝑐(0)
) (1 −

𝐾𝑇(2∆𝑡)∆𝑡−∆𝑃𝑆(∆𝑡)

𝑃𝑐(∆𝑡)
) … (1 −

𝐾𝑇((𝑛+1)∆𝑡)∆𝑡−∆𝑃𝑆(𝑛∆𝑡)

𝑃𝑐(𝑛∆𝑡)
).  

      (S1-39) 

 
𝑃𝑆(𝑡)

𝑃𝑐(𝑡)
=

𝐼(𝑡)

𝑁(𝑡)
= 𝐹𝑖(0)𝑒

− ∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡) 
𝑑𝑡

𝑡
0 ,   (S1-40) 

 𝑁(𝑡) = 𝑁(0)𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒
− ∫

𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 .   (S1-41) 
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 𝐼(𝑡) = 𝐼(0)𝑒
𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 −∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 ,  (S1-42) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒
− ∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 )𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 .  (S1-43) 

 �̂�(𝑡) = 𝐾𝑇(𝑡)−𝐹𝑖(0)𝐾𝑇(𝑡)𝑒
− ∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0

𝑑𝑡
+

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
,   (S1-44, 15) 

 𝑁(𝑡) = 𝑁(0)𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒
− ∫

𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0    (S1-41, 6)  

 𝐼(𝑡) = 𝐼(0)𝑒
𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 −∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0   (S1-42, 7) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒
− ∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 )𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0   (S1-43, 8) 

 𝐵(𝑡, 𝜃) = 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

𝑡−𝜃 = 𝑒
− ∫ (𝐾𝑇(𝑎)−𝐹𝑖(0)𝐾𝑇(𝑎)𝑒

− ∫
𝐾𝑇(𝑏)

𝑃𝑐(𝑏)
𝑑

𝑎
0 𝑏

+
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
)𝑑𝑎

𝑡
𝑡−𝜃  (S1-45, 9)  

 𝐵(𝑡, 𝑡) = 𝑒− ∫ �̂�(𝑎)𝑑𝑎
𝑡

0 = 𝑒
− ∫ (𝐾𝑇(𝑎)−𝐹𝑖(0)𝐾𝑇(𝑎)𝑒

− ∫
𝐾𝑇(𝑏)

𝑃𝑐(𝑏)
𝑑

𝑎
0 𝑏

+
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
)𝑑𝑎

𝑡
0  (S1-46, 10) 

 �̂�(𝑡) =
𝑑𝑅(𝑡)

𝑑𝑡

𝐼(𝑡)
= 𝐾𝑇(𝑡)−𝐹𝑖(0)𝐾𝑇(𝑡)𝑒

− ∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
  (S1-44, 15) 

 �̂�(𝑡) =
𝐾𝑇(𝑡)𝐴𝑝

𝑆(𝑡)
,    (S1-8, 13) 

𝐼(𝑛∆𝑡)

𝑁(𝑛∆𝑡)
= (1 −

𝐾𝑇(0)∆𝑡−∆𝑃𝑐(0)

𝑃𝑐(0)
) (1 −

𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑐(∆𝑡)

𝑃𝑐(∆𝑡)
) … (1 −

𝐾𝑇(𝑛∆𝑡)∆𝑡−∆𝑃𝑐(𝑛∆𝑡)

𝑃𝑐(𝑛∆𝑡)
)  

        (S3-1) 
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𝐼(𝑡)

𝑁(𝑡)
= 𝐹𝑖(0)𝑒

− ∫
𝐾𝑇(𝑡)−

𝑑𝑃𝑐(𝑡)
𝑑𝑡

𝑃𝑐(𝑡) 
𝑑𝑡

𝑡
0 = 𝐹𝑖(0)

𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡) 
𝑑𝑡

𝑡
0    (S3-2) 

 𝑁(𝑡) = 𝑁(0)𝑒
𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0     (S3-3)

 𝐼(𝑡) = 𝐼(0)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0

−∫
𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0    (S3-4)

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 )𝑒

𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0   (S3-5)

 𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−

𝐾𝑇
𝑃𝑐1

 t
−1).      (S3-6) 

 𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−

𝐾𝑇
𝑃𝑐1

 t
−1) +  𝐼2𝑒−𝑃𝑐2(𝑒

−
𝐾𝑇
𝑃𝑐2

 (t−𝑡2)
−1),   (S3-7) 

 𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−

𝐾𝑇
𝑃𝑐1

 t
−1) +  𝐼2𝑒−𝑃𝑐2(𝑒

−
𝐾𝑇
𝑃𝑐2

 (t−𝑡2)
−1) … + 𝐼x𝑒−𝑃𝑐𝑥(𝑒

−
𝐾𝑇
𝑃𝑐𝑥

 (t−𝑡𝑥)
−1),  (S3-8) 

 

 


