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19 Abstract

20 Early characterization of drug targets associated with disease can greatly reduce clinical
21 failures attributed to lack of safety or efficacy. As single-cell RNA sequencing (scRNA-seq)
22 of human tissues becomes increasingly common for disease profiling, the insights obtained
23 from this data could influence target selection strategies. Whilst the use of scRNA-seq to
24 understand target biology is well established, the impact of single-cell data in increasing the
25 probability of candidate therapeutic targets to successfully advance from research to clinic
26 has not been fully characterized. Inspired by previous work on an association between genetic
27 evidence and clinical success, we used retrospective analysis of known drug target genes to
28 identify potential predictors of target clinical success from scRNA-seq data. Particularly, we
29 investigated whether successful drug targets are associated with cell type specific expression
30 in a disease-relevant tissue (cell type specificity) or cell type specific over-expression in
31 disease patients compared to healthy controls (disease cell specificity). Analysing scRNA-seq
32 data across 30 diseases and 13 tissues, we found that both classes of scRNA-seq support
33 significantly increase the odds of clinical success for gene-disease pairs. We estimate that
34 combined they could approximately triple the chances of a target reaching phase III.
35 Importantly, scRNA-seq analysis identifies a larger and complementary target space to that of
36 direct genetic evidence. In particular, scRNA-seq support is more likely to prioritize
37 therapeutically tractable classes of genes such as membrane-bound proteins. Our study
38 suggests that scRNA-seq-derived information on cell type- and disease-specific expression
39 can be leveraged to identify tractable and disease-relevant targets, with increased probability
40 of success in the clinic.

41
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42 Introduction

43

44 Drug discovery begins with the identification of candidate targets, drug-binding molecules
45 whose modulation is hypothesized to be useful for the treatment of disease [1]. The discovery
46 and development of a novel drug for a candidate target progresses in the following steps:
47 target validation, compound screening and lead identification, characterization of mechanism
48 of action, indication(s) selection, safety and efficacy clinical trials, and finally, in successful
49 cases, regulatory approval. Development of a single new drug takes an average of 12-15
50 years and costs (including concurrent program failures) are estimated to range from 900
51 million — 2.6 billion USD per success [2,3]. A drug discovery program can fail at each step
52 between early research to regulatory approval, and it is estimated that in >90% of cases
53 failures can be attributed to suboptimal target selection for a given disease, resulting in safety
54 or efficacy issues [4]. Together, these observations point to the need to improve the strategies
55 and the data used in early stages of drug discovery to support the selection of candidate
56 therapeutic targets, to increase the likelihood of clinical success.

57

58 Single-cell RNA sequencing (scRNA-seq) data is a particularly promising source of evidence
59 for target selection, providing cell-level resolution of molecular profiles in disease-relevant
60 tissues. Single cell technologies have already been applied extensively to characterize disease
61 biology, in emerging diseases like COVID-19 [5,6], cancer [7-10], and common complex
62 diseases across tissues [11-14]. The rapidly growing body of disease-relevant scRNA-seq
63 data has already begun to inform the development of novel diagnostics and cell-targeting
64 precision therapies [15]. This led us to ask to what extent information on cell type specific
65 expression can boost the selection of promising drug targets.

66

67 Retrospective analysis of known drug targets has been used to identify features predictive of
68 target success. Notably, such analyses have shown that targets linked to genetic variants
69 associated with the relevant disease are twice as likely to reach clinical approval as targets
70 with no genetic support [16—18]. These studies greatly impacted decision-making in biotech
71 and pharmaceutical industries. Out of 428 newly FDA-approved drugs from 2013 to 2022,
72 271 (63%) are backed by direct or indirect human genetic evidence [19,20]. Even though
73 establishing whether this influenced their discovery or development phases is difficult, 250
74 out of 271 genetics-backed drugs had publicly accessible genetic support before approval.

75

76 Given this precedent, in this work we used retrospective analysis to identify potential
77 predictors of target clinical success from scRNA-seq data. We investigated two cell type
78 specific expression modes that are commonly used in scRNA-seq disease analysis and can
79 support target discovery. The modes include cell type specific expression in a
8o disease-relevant tissue (hereafter cell type specificity) and cell type specific over-expression
81 in disease patients compared to healthy controls (hereafter disease cell specificity). We used a
82 uniform workflow to identify cell type specific and disease cell specific target-disease pairs
83 across 30 complex diseases in 13 disease-relevant tissues using the CZ CellxGene Discover
g4 database [21]. We then evaluated how scRNA-seq supported target-disease associations
85 correlate with target success in clinical trials, benchmarking against direct genetic
86 associations as reported from the Open Targets platform [22]. We found that scRNA-seq
87 support significantly increased the odds of clinical success for target-disease pairs and
g8 identified a complementary target space to that of direct genetic evidence. These results
89 highlight the value of scRNA-seq data as a key resource, complementary to genetics, to
90 increase probability of clinical success in drug development.
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91 Results

92 Definition of scRNA-seq support for targets

93 As a cause or consequence of disease, pathology arises when cells of a particular type
94 develop abnormal traits within a disease-relevant tissue. Safe and effective therapies should
95 precisely target these aberrant cells, without eliciting on-target toxicities in other cells and
96 tissues. Given this need, scRNA-seq data can support target prioritization by identifying
97 genes expressed in a cell type specific manner in tissue from healthy and diseased
98 individuals. We aimed to assess whether cell type specific genes, as identified by scRNA-seq
99 analysis, are more likely to be targets of clinically successful drugs. We considered diseases
100 for which scRNA-seq data was available via the CZ CellxGene Discover database [21]. We
101 defined a disease-relevant (DR) tissue for each disease term. Of the 58 disease terms in the
102 CellxGene database, 30 terms were retained for association analysis, based on availability of
103 data from disease-relevant tissue and overlap with OpenTargets disease annotation terms (see
104 Supplementary Table 1 for a complete list of diseases and reasons to exclude from analysis).
105 The most prevalent diseases were lung and immune disorders (Figure 1A). For each disease
106 term, we collected gene expression count matrices and coarse cell type labels, harmonized
107 using the Cell Ontology [23] (Figure 1B, Supplementary Figure 1, see Methods), for
108 disease-relevant tissue samples from healthy and diseased individuals (Supplementary Table
109 2).

110

111 We next defined two classes of scRNA-seq supported genes for target discovery: (1) cell type
112 specific genes in healthy disease-relevant tissue (cell type specific) and (2) genes specifically
113 over expressed in a cell type in tissue from disease patients, compared to healthy tissue
114 (disease cell specific) (Figure 1C). We reasoned that drugs targeting cell type specific genes
115 inhibit expansion and function of normal cells acquiring aberrant phenotypes in disease. For
116 example, the GLP-1 receptor, targeted by commonly used anti-diabetic drugs, is normally
117 expressed in pancreatic beta cells, which become dysfunctional in disease [13]. Conversely,
118 drugs targeting disease cell specific genes suppress aberrant gene programmes directly. For
119 example, inflammatory bowel disease patients are treated with antibodies targeting the tumor
120 necrosis factor (TNF) which is over-expressed in regulatory T cells and other immune
121 subtypes in disease [24].

122 Enrichment of clinically successful targets in genes with scRNA-seq support

123 For each disease, we identified cell type specific and disease cell specific genes with highly
124 variable gene (HVG) selection and differential expression (DE) analysis, aggregating mRNA
125 counts across cell types and donors (Figure 1D, see Methods). With this analysis across 30
126 diseases, we annotated 33654 gene-disease (G-D) pairs as cell type specific and 60851 G-D
127 pairs as disease cell specific (Supplementary Figure 2). To associate sSCRNA-seq support with
128 clinical success, we extracted information about targets of drugs approved or in trial from the
129 Open Targets platform [1,22,25] (n = 2358 drugs for which the studied diseases are an
130 approved or investigational indication). Across diseases, we annotated 2925 G-D pairs as safe
131 (passed phase I), of which 1646 pairs where also effective (passed phase II), and 601 pairs
132 were also approved (passed phase III) (Supplementary Figure 2, Supplementary Table 3).

133

134 We then computed the odds of clinical success, with or without support from scRNA-seq data
135 (Figure 1C, see Methods). Of note, our analyses are disease-specific: we count successful
136 G—D pairs with corresponding scRNA-seq support from analysis of healthy and diseased
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137 individuals in the disease-relevant tissue. For example, a gene that is found to be cell type
138 specific in esophagus is not considered as having scRNA-seq support for pulmonary fibrosis.

139

140 To enumerate the space of possible G-D pairs, we multiplied the number of diseases
141 considered (N=30) with a “universe” of genes. We define four different universes: all
142 protein-coding genes (N=19620), representing the space of genes that are typically analysed
143 in scRNA-seq data; genes that are antibody-tractable (N=12527) or small molecule-tractable
144 (N=6550) based on Open Targets tractability assessment, representing genes that are tractable
145 by any therapeutic agent; finally, genes already targeted by therapies in clinical trial for any
146 indication (known drug targets, N=936), representing demonstrably druggable proteins
147 (Supplementary Figure 3).

148

149 Out of 2925 target-indication pairs which passed at least phase I, 858 were prioritized as
150 either cell type specific or disease cell specific by scRNA-seq analysis (Figure 2A).
151 Considering protein-coding genes, antibody- and small molecule-tractable genes, cell type
152 specific and disease cell specific G-D pairs with scRNA-seq support were always
153 significantly enriched in targets of safe, effective, or approved drugs (Figure 2B,
154 Supplementary Table 4). Out of 2840 protein-coding G-D pairs passing phase I, 356 (12%)
155 were cell type specific in the DR tissue (OR=2.47, p-value = 3.57e-46) and 594 (20%) were
156 disease cell specific (OR=2.34, p-value=4.43e-64). The enrichment of disease cell specific
157 genes in clinically successful targets was the highest amongst antibody-tractable genes. When
158 restricting the analysis to known drug targets, only disease cell specific genes were
159 significantly enriched in effective and approved targets (Figure 2B). This might indicate that
160 specific expression in the disease-relevant tissue is already implicitly used by drug discovery
161 programmes for selecting targets that progress to clinical development. Combining both
162 classes of scRNA-seq support (cell type and disease specific genes) led to significantly higher
163 association with success in phase I and effectiveness (phase II) than each class individually,
164 especially for protein coding and small molecule tractable targets (Figure 2B).

165 Comparison between scRNA-seq supported and genetic supported targets

166 We compared genes supported by scRNA-seq with genes associated to the disease by human
167 genetics data, using the Open Targets direct genetic association score [22,26]. Throughout the
168 manuscript, we refer to genes that are prioritized by either genetic association, cell type
169 specificity or disease cell specificity as genes with “omic support”. Consistent with previous
170 findings [16,18], genetic-supported genes were strongly associated with clinical success
171 (Figure 2B, OR for approved targets = 5.94, p-value = 1.8e-11). Cell type and disease
172 specific protein-coding genes were as likely to be targets of drugs passing phase I and II as
173 those that have genetic support. In contrast, for targets that are clinically approved (i.e. passed
174 phase III), genetic evidence gave stronger prediction. The identification of genetic evidence
175 as a predictor of clinical success may have biased recent programs toward development of
176 genetically supported drugs, noting that only a subset of the drugs under consideration here
177 were approved in the last 10 years (Supplementary Figure 4).

178

179 We observed several differences between scRNA-seq supported targets and targets supported
180 by genetics. Firstly, scRNA-seq supports a larger number of successful target-disease pairs.
181 Amongst the G-D space of safe targets (2925 G-D pairs), 29.3% are scRNA-seq supported,
182 while only 2.3% are directly supported by genetics (Figure 2A). Secondly, we found that
183 different sources of omic evidence support distinct target spaces: only 24% of safe G-D pairs
184 targeted with genetic support overlap with either kind of scRNA-seq evidence (Figure 2C).
185 We tested for association between clinical success and support from both genetic and
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186 scRNA-seq, but due to the limited overlap, this analysis likely lacked sufficient statistical
187 power to detect significant differences compared to using genetics alone (Supplementary
188 Figure 5A). Thirdly, genetic and scRNA-seq support were predictive of clinical success in
189 different classes of tractable targets (Supplementary Figure 5B). Genetic support increased
190 chances of approval up to 20-fold for kinases and catalytic receptors but was notably less
191 predictive of success than scRNA-seq support for other classes, such as transporters and
192 rthodopsin-like GPCRs. These classes of genes show high tolerance to loss-of-function
193 mutations (Supplementary Figure 5C), whereas it has been reported that genes associated
194 with GWAS variants are under strong evolutionary constraints [27]. Furthermore, at the
195 compound-level we found that drugs targeting scRNA-seq supported genes are approved or
196 in trial for a significantly higher number of indications, compared to not supported targets
197 (Adjusted R* = 0.167; p = 2.086e-7, see Methods) (Supplementary Figure 6; Supplementary
198 Table 5). Genetic association was not associated with significantly higher number of
199 indications per drug.

200

201 We also observed significant differences when considering the genes with omic support that
202 are not already in clinical development (unexplored supported genes). A large fraction of
203 scRNA-seq supported genes, and especially cell type specific genes, are considered tractable
204 by therapeutic agents (Figure 2D). Across all diseases considered, on average 77% of cell
205 type and disease cell specific genes are antibody tractable, against 51% of genes supported by
206 genetic association (t-test p-value: 5.9-e08). Genetic-supported genes showed a slightly
207 higher average fraction of small molecule tractable genes (40% against 31%, t-test p-value =
208 0.02), although this was mainly driven by a few diseases (Supplementary Figure 7A). This
209 indicates that scRNA-seq support prioritizes genes with therapeutic potential, especially
210 membrane-bound proteins. This difference between genetic and scRNA-seq support could at
211 least in part be explained by differences in evolutionary constraints: antibody tractable genes
212 have significantly higher tolerance to loss-of-function than non-tractable genes, while small
213 molecule tractable genes are significantly more constrained (Supplementary Figure 7B). This
214 could be due to stronger evolutionary constraints on the sequences of proteins with small
215 molecule binding pockets, as compared to larger, flatter surfaces of protein-protein
216 interaction interfaces [28].

217 Robustness of association of scRNA-seq support and clinical success

218 We next tested the robustness of association with clinical success to several parameters used
219 for the definition of genes with scRNA-seq support. Firstly, in our scRNA-seq analysis
220 workflow we do not test for differential expression across all genes, but we pre-select highly
221 variable genes before each comparison (see Methods), as per standard practice for DE
222 analysis [29]. To independently quantify the impact of feature selection before DE analysis,
223 we computed enrichment of successful targets considering only genes selected as highly
224 variable genes for each disease scRNA-seq dataset. DE testing led to significant enrichment
225 of successful targets also within selected HVGs, although with lower odds-ratios
226 (Supplementary Figure 8A). This suggests that both HVG selection and DE testing on
227 scRNA-seq data enrich for successful targets.

228

229 Next, we explored the relationship between cell type specificity and differential expression
230 fold change between cell types and disease conditions. Estimated fold changes in gene
231 expression between cell types are higher than those observed in the comparison between
232 disease and healthy states within cell types (Supplementary Figure 8B). Notably, genes
233 significantly over-expressed in a cell type at lower log-fold changes are often ubiquitously
234 highly expressed, while those at higher fold changes are genuinely cell type specific
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235 (Supplementary Figure 8C) and more likely to be successful targets (Supplementary Figure
236 8D, left). Conversely, most disease cell specific genes, including successful clinical targets,
237 are over-expressed in disease patients at low fold changes (Supplementary Figure 8D, right)
238

239 According to our definition, disease cell specific genes include both those over-expressed in
240 disease within one or a small subset of cell types and genes over-expressed across multiple
241 cell types. Since the latter category may also be identifiable through bulk expression analysis
242 on whole tissue, we explored whether both tissue-level and cell type-level DE genes
243 contribute to the enrichment of clinically successful targets. To explore this, we aggregated
244 scRNA-seq counts to estimate bulk tissue expression per donor and compared this to genes
245 specifically pinpointed through cell type-aware DE analysis (Supplementary Figure 9A). 74%
246 of disease cell specific successful targets (passing at least phase I) could be identified only
247 with cell type-level DE analysis (Supplementary Figure 9B). In other words, single cell rather
248 than bulk expression data is required to identify most disease cell specific genes. Both
249 tissue-level and cell type-level disease cell specific genes were significantly more likely to be
250 targets of successful drugs (Supplementary Figure 9C). The OR was slightly higher for
251 tissue-level disease markers compared to those only detectable with cell type-aware analysis.
252 This is expected, since bulk expression profiling methods have been incorporated in target
253 discovery pipelines for many years, whilst single cell data has only become available more
254 recently. In addition, we confirmed that drug targets are more strongly enriched in
255 up-regulated genes than down-regulated genes (Supplementary Figure 9A). This aligns with
256 the fact that 890 (73.0%) of 1219 drugs past phase I and 474 (69.5%) of the 695 drugs in
257 phase III or phase IV trials for the diseases in this analysis are categorized as inhibitors,
258 antagonists, degraders, blockers and/or negative regulators of their targets.

259

260 We note that our analysis may be constrained by a lack of consistently curated cell type
261 annotations across various sSCRNA-seq disease datasets. We use cell type labels based on the
262 Cell Ontology [23], leading to broad and possibly inconsistent cell type annotations. The
263 preferred annotation strategy in several data integration studies which re-use public
264 scRNA-seq data is to cluster gene expression profiles in different datasets de novo and
265 manually re-annotate clusters [30,31]. We hypothesised that accurate cell type annotations
266 could further improve the ability to prioritize cell type specific genes for target discovery. We
267 explored this hypothesis through analysis of three lung diseases (pneumonia, cystic fibrosis
268 and pulmonary fibrosis) for which curated fine-grained annotations from data integration
269 projects are available in the extended Human Lung Cell Atlas (eHLCA) dataset [30]
270 (Supplementary Figure 10A). We computed cell type specific and disease cell specific genes
271 using Cell Ontology-based annotations and eHLCA fine annotations and compared the
272 enrichment of successful targets between these two gene sets. The gene sets with scRNA-seq
273 support testing on fine or coarse annotations was largely overlapping (Supplementary Figure
274 10B). The fraction of recovered successful targets and the odds of clinical success were
275 comparable, with slightly increased odds of success by using fine annotations to detect cell
276 type specific genes (Supplementary Figure 10C). For disease specific expression the odds of
277 success were slightly decreased with fine grained annotation, possibly because in this case
278 differences between health and disease may manifest as changes in cell type proportions
279 rather than within-cluster differential gene expression.

280 Target analysis in diseases with scRNA-seq support

281 Considering the 24 diseases with at least one target with an approved drug, genetic support
282 was significantly associated with clinical success (targets of effective drugs) for 6 indications,
283 cell type specificity for 10 indications and disease cell specificity for 9 indications (Figure
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284 3A, Supplementary Figure 11, Supplementary Table 6). We considered technical factors
285 influencing the variability across diseases in targets supported by scRNA-seq. Firstly, the
286 total number of supported targets correlates with the number of cell types considered in
287 differential expression analysis (Supplementary Figure 12A). For disease cell specific genes,
288 the number of cell types that can be tested is significantly dependent on the number of disease
289 patients in the scRNA-seq cohort (R* = 0.39, p-value = 1.87¢-11). Indeed, we found that with
290 a larger patient cohort we detected more disease cell specific genes (Supplementary Figure
291 12B). Moreover, when the datasets included at least 10 disease patients, a greater proportion
292 of the supported genes were successful targets (Supplementary Figure 12C). These results
293 support the notion that larger patient cohorts can improve accuracy of detection of disease
294 cell specific targets. Conversely, cell type specific genes appear less dependent on the
295 numbers of donors for the disease-relevant tissue dataset (Supplementary Figure 12B).

296

297 As an exemplar disease with high-quality scRNA-seq data, we examined the characteristics
298 of supported targets for systemic lupus erythematosus (SLE). SLE, commonly referred to as
299 lupus, is a chronic autoimmune disease that can affect various organs and tissues. SLE is
300 characterised by auto-antibody production that triggers inflammation and tissue damage.
301 Current therapy options for SLE include broad acting non-steroidal anti-inflammatory drugs,
302 corticosteroids, and immunosuppressants such as methotrexate and azathioprine to control the
303 immune system's activity. In addition, newer cell-targeted biologics like belimumab, which
304 targets B-lymphocyte stimulator protein encoded by TNFSF13B, have been approved for
305 treating certain patients with SLE [32,33].

306

307 In SLE many genes have been associated to the disease through genetic analyses
308 (Supplementary Figure 2). However, these genes are not significantly enriched for effective
309 drug targets (Figure 3A). Disease cell specific genes point to drugs with systemic
310 immuno-suppressant effects such as paracetamol (targeting FAAH, PTGS?2), inhibitors of
311 DNA replication (targeting polymerases and tubulin genes), and B cell stimulators (targeting
312 TNFSF13B, CD40LG) (Figure 3B). Cell type specific known targets include genes acting in
313 disease-relevant cells, such as toll-like receptors which are involved in autoantibody
314 production in B cells [34]. The unexplored supported genes prioritized by different omic
315 support classes are all enriched in immune-function gene sets. However, we noticed that
316 different data prioritizes genes with distinct molecular function (Supplementary Figure
317 13A-C). For example, different support classes prioritize different genes involved in
318 interferon gamma signalling: genetic association prioritizes genes encoding for DNA binding
319 proteins and transcription factors in the pathway, including SMAD and IRF transcription
320 factors; disease cell specific genes are induced by interferon signalling downstream in the
321 pathway, including /FIT and ISG genes. Cell type specific genes include chemokines and
322 membrane bound receptors (e.g. KLRK1, CMKLRI, IL2RB) (Supplementary Figure 13D).

323

324 As a second example, we examined supported targets in pulmonary emphysema. Pulmonary
325 emphysema is a condition characterized by the gradual destruction of the air sacs (alveoli) in
326 the lungs, resulting in enlarged and rigid air spaces that impair gas exchange [35]. When
327 pulmonary emphysema is coupled with inflammation of the airways, the two conditions are
328 known as chronic obstructive pulmonary disease (COPD). The primary therapy options
329 include bronchodilators, such as short- or long- acting agonists of beta-2-adrenergic receptors
330 that cause the relaxation of airway smooth muscles and anticholinergic medications that
331 inhibit bronchoconstriction [36]. Oral phosphodiesterase protein family inhibitors such as
332 Roflumilast are similarly used to manage smooth muscle relaxation, vasodilatory, and
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333 bronchodilatory effects in patients with pulmonary emphysema and COPD. Inhaled
334 corticosteroids may be used as an add-on therapy to reduce local inflammation.

335

336 In our analysis, known drug targets were not supported by direct genetic evidence (Figure
337 3A). Given that pulmonary emphysema is a stage of a progressive lung disease, the absence
338 of robust genetic evidence could be attributed to limited size of patient cohorts at this specific
339 stage of disease. Despite single cell data being available only from 3 patient samples,
340 multiple safe, effective, and approved therapeutic targets were prioritised using our analysis
341 as cell type specific in the disease-relevant tissue (lung) (Figure 3C). For example,
342 angiotensin II receptor (encoded by AGTRI gene) antagonist Sacubitril/Valsartan is an
343 effective drug in patients with pulmonary hypertension/emphysema [37], despite it being
344 predominantly used for the treatment of cardiac diseases. Even though AGTR/ lacked genetic
345 association with lung disease or function, our analysis suggests that AGTRI is specifically
346 expressed in lung smooth muscle cells and fibroblasts in scRNA-seq data (Supplementary
347 Figure 14). AGTRI presents an example of targets where single cell data analysis might
348 enable interpretability of cell type relevance for disease progression.

349

350 We also found that for broad therapeutics that affect a family of genes, single cell data could
351 provide evidence for the most relevant family members based on specificity of expression in
352 the disease-relevant tissues. For example, the non-selective inhibitor Roflumilast targets all
353 phosphodiesterase-4 genes (PDE4A-D), however, only PDE4C shows selective expression in
354 activated smooth muscle cells and alveolar type 2 cells in the lung (Supplementary Figure
355 14). Non-selective inhibitors can cause multiple side effects. In the case of Roflumilast,
356 expression of PDE4B and PDE4D in the sensory nerves is thought to be responsible for
357 nausea side effects [38,39]. Therefore, single cell data can provide rationale for development
358 of selective PDE4C inhibitors for the treatment of pulmonary emphysema and other lung
359 conditions associated with hypertension.

360 Discussion

361

362 Lack of efficacy and safety are the leading causes for phase II and III clinical trial failures
363 [40]. Additionally, a promising target may fail to progress to phase I because of multiple
364 reasons. These include inability to establish a mechanistic link between target biology and
365 indication (target validation failure), insufficient promising chemicals, and/or safety risks
366 found during pharmacokinetic and early toxicology studies [4]. Taken together, all these
367 different causes account for the limited probability of a candidate therapeutic target and its
368 cognate drug passing all stages of pre-clinical, clinical research, and regulatory approval
369 (2005-2010 industry average: 5% [4]). Data-driven frameworks in drug discovery can
370 effectively mitigate some of these risks, as demonstrated by the use of genetics data to
371 support target-disease associations [16], but attrition from target ID to clinic remains high [4].
372 To further increase chances of success, target discovery workflows increasingly access
373 additional information aggregated from pre-clinical data resources, including data from
374 animal models, over-expression in disease-relevant bulk tissue samples, disease pathway
375 analyses, and other bioinformatics resources, as exemplified by the Open Targets Platform
376 [1]. Characterizing the potential impact and biases of different data sources for target
377 credentialing pipelines is critical to push new technologies to translational applications.

378

379 Single-cell technologies, along with the growing availability of large, shared single-cell
380 datasets on diseases and healthy controls [21] have opened-up unprecedented opportunities to
381 understand target biology at cellular resolution across disease areas and in diverse patient
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382 populations. Single-cell RNA-seq has been applied to investigate pathways driving onset and
383 progression of diseases [41-43], to understand the mechanism of action of different
384 therapeutics [44,45], and to discover biomarkers for patient stratification [46]. This suggests a
385 remarkable depth and breadth of information extractable from scRNA-seq datasets that could
386 support drug discovery.

387

388 The goal of this study was to measure how much using single-cell RNA sequencing data
389 from disease-relevant tissues can improve the chances of success for therapeutics by
390 systematically identifying connections between targets and diseases. By aggregating data for
391 30 diseases affecting 13 tissues, we found that candidate target genes supported by
392 scRNA-seq evidence have approximately three times the chances to lead to clinically
393 successful therapies (Figure 2B).

394

395 The association between scRNA-seq support and target clinical success is in line with the fact
396 that human diseases are typically tissue and cell type specific [47]. For example, tissue and
397 cell-type specific eQTLs are enriched for disease-associated SNPs [48—50]. Given the typical
398 timeframes of drug development, it is highly unlikely that any of the targets considered have
399 been initially prioritized or validated using single-cell transcriptomics. While it is possible
400 that other types of tissue-level transcriptomic data have driven decisions in target
401 development, we do not expect these instances to significantly bias the results of our analysis
402 on cell type specific expression. Furthermore, we found that scRNA-seq supported targets
403 were more likely to pass phase I and II than reaching approval. It is possible that cell type
404 specificity is a better indicator of low toxicity than broad efficacy, although this question
405 remains to be further explored.

406

407 We compared targets prioritized by scRNA-seq with those prioritized by genetic evidence,
408 which has been highlighted as an important predictor of clinical success [16,18]. Consistent
409 with previous results, for the diseases and target sets included in this analysis, we observed a
410 strong and statistically significant association between direct genetic support for
411 target-disease pairs and clinical development success (Figure 2B). Previous work has
412 highlighted that targets supported by human genetic data are more likely to be successful
413 [16]. It is likely that this has led the pharmaceutical industry to allocate greater resources to
414 development of drugs for these targets and has therefore created a bias amongst the targets in
415 clinical development. However, we also find that direct genetic association support exists
416 only for a subset of target-disease pairs with drugs in clinical development, and scRNA-seq
417 support exists for a larger set of target-disease pairs, with few targets supported by both types
418 of omic evidence (Figure 2A; Supplementary Figure 4). These complementary sets of targets
419 have distinct molecular and druggability characteristics (Figure 2C, Supplementary Figure
420 5B). For example, we observed that genetic support tends to prioritize evolutionarily
421 conserved genes (Supplementary Figure 5B-C, Supplementary Figure 7B), as previously
422 reported [27]. Loss-of-function-tolerant classes of druggable targets, such as GPCRs and
423 transporters, are instead prioritized by cell type or disease cell specificity, although
424 scRNA-seq data might be biased towards other classes, such as highly expressed genes. We
425 speculate that cell type specificity might prioritize targets of therapies managing symptoms or
426 modulating disease-relevant biological processes parallel to or downstream of genetic
427 causation, which are seldomly prioritized by genetic analysis [19,20]. Importantly, detecting
428 associations between genetic variants and disease requires data from hundreds to thousands
429 of individuals. In our analysis, association between clinical success and scRNA-seq support
430 was drawn from analysis of tissue from tens of individuals, and we show that increasing the
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431 size of the scRNA-seq cohort to hundreds of patients increases the fraction of prioritized
432 successful targets even further (Supplementary Figure 12C).

433

434 In this study, we considered two distinct patterns of cell type specific expression: cell type
435 specific expression in disease-relevant tissue (cell type specificity) and cell type specific
436 over-expression in disease-relevant tissue from disease patients compared to controls (disease
437 cell specificity). Both classes of genes were significantly associated with clinical success in
438 several diseases (Figure 3A). Cell type specific targets were less dependent on technical
439 features of the scRNA-seq dataset (Figure 2A, Supplementary Figure 12). This is important
440 because measuring cell type specificity does not require patient data, and this could be
441 computed systematically on open resources such as the Human Cell Atlas Data Portal
442 (data.humancellatlas.org) or the CZ CellxGene database [21].

443

444 When considering disease cell specific genes, we found that both genes over-expressed in
445 disease within small subsets of cell types, and genes over-expressed at tissue-level, contribute
446 to the association with clinical success (Supplementary Figure 9). Bulk transcriptomics
447 methods have been used for longer in clinical development pipelines and this is reflected in
448 stronger associations with success, although most disease cell specific successful targets were
449 only identified with cell type-aware analysis. Of note, in this study we define disease cell
450 specificity with naive cell type-level differential expression analysis, where technical effects
451 are only partially mitigated. We expect that improved experimental design and statistical
452 methods to recover expression differences in scRNA-seq in normal and diseased tissues
453 [51-53] and to distinguish disease-associated cell states [S4—56] could further improve the set
454 of target genes and will be highly impactful for target discovery programmes.

455

456 Our study is not free of limitations. We rely on the Cell Ontology-based cell type labels [23]
457 provided by data curators upon submission to the CZ CellxGene Discover database. This
458 approach has two primary drawbacks. Firstly, the Cell Ontology's incompleteness may result
459 in labelling rare tissue-specific subpopulations with broad cell type terms. Secondly,
460 inconsistencies may arise as different data curators use the same term for transcriptionally
461 distinct cells or conflicting terms for identical phenotypes. While our label harmonization
462 strategy addresses the latter issue to some extent, it introduces coarser annotations. We
463 anticipate that these issues will be mitigated by increased availability of expertly curated cell
464 type annotations across human tissues, and by unified models for cell type annotation [57].
465 These will not only enhance the identification of promising drug targets (Supplementary
466 Figure 10) but also facilitate more precise identification of disease-relevant cell types and
467 cellular mechanisms. Additionally, our analysis encompassed both historical and active
468 clinical development data for drug targets, for some of which the ultimate outcomes are still
469 unknown. Finally, we did not account for the similarity between indications, which is
470 important when considering related diseases where genetic association may be lacking for a
471 specific indication (e.g. pulmonary emphysema) but is present for related traits (e.g. lung
472 function).

473

474 Looking forward, more sophisticated analyses of cell atlases will boost further drug discovery
475 efforts. For example, analysis of drug target expression patterns across cell types have been
476 used to assess re-purposing potential and on-target toxicities [58]. Methods to infer
477 differentiation trajectories [59,60], cell-cell interactions [61,62], regulatory networks [63],
478 and immune repertoires [64] provide additional unexplored space for novel targets.
479 Furthermore, we envision that high-resolution spatial transcriptomics will provide an added
480 level of insight into drug target relevance based on their expression and disease tissue context
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481 [65—67]. Insights on cell and disease cell specific targets gained using high-throughput
482 genomics will inform the design of next generation precision therapeutics, for example
483 antibody-drug conjugates or lipid nanoparticle-mRNA vaccines. Overall, our study provides a
484 framework to assess the potential impact of alternative data analysis methods and modalities
485 on target discovery.

486

487 In summary, our work indicates that single-cell data can be a valuable tool for guiding the
488 process of drug target prioritisation and enhancing our understanding of the cellular basis of
489 safe, effective, and approved treatments for diseases.
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491

492 Figure 1: Single-cell dataset selection and pre-processing. (A)Overview of diseases and tissues
493 in scRNA-seq dataset. Table of disease-relevant tissue of samples (x-axis) and disease condition (y-axis) for
494 all scRNA-seq data considered in this study. The number and color of each square indicates the number
495 of individuals for whom scRNA-seq data are available. The availability of data from healthy individuals
496 is shown inthe top row (disease condition: normal). (B) Illustration of selection and pre-processing steps
497 for scRNA-seq datasets from CZ CellxGene Discover database (DR: disease-relevant). (C) Illustration of
498 rationale behind scRNA-seq support classes for target discovery: cell types expanding or acquiring aberrant
499 function in disease can be targeted using cell type specific targets. Cells specifically expressing aberrant gene
500 programmes can be targeted with disease cell specific targets (D) Workflow for analysis of association between
501 scRNA-seq support and clinical success. We identify cell type specific and disease cell specific gene-disease
502 pairs through differential expression analysis on pseudo-bulked data from the disease-relevant tissue (1). Data
503 on genetic association and clinical success of targets was collected from the OpenTargets database (2). For each
504 omic support class, we compute the odds ratio for the association between clinical success (passing clinical
505 trials) and different classes of omic support (3).
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506

507 Figure 2: Association between omic-based evidence and target clinical success. (A) Barplot of successful
508 phase I, II and approved target-disease pairs for 30 diseases, colored by type of omic support. Target-disease
509 pairs are grouped by the highest clinical phase reached by the therapeutic agent. (B) Odds ratio (x-axis, in log10
510 scale) of association between clinical success of a target and different sources of omic support (y-axis). We test
511 association with safe targets (passed phase I, top row), effective targets (passed phase II, middle row) and
512 approved targets (passed phase III, bottom row). Results using different universes of genes are shown in
513 different columns (SM: small molecule, AB: antibody). For each test, the numbers to the right show the number
514 of omic supported over total successful targets. Results are shown considering gene-disease (G-D) pairs for 30
515 diseases. The error bars denote 95% confidence intervals of the odds ratio. Points in red indicate cases where the
516 enrichment for successful targets was statistically significant (Fisher’s exact test p-value < 0.05). The dotted line
517 denotes Odds Ratio = 1 (no enrichment). (C) Upset plots showing the number of successful G-D pairs with omic
518 support (left barplot) and their intersection (top barplot). We show intersection for all safe, effective, and
519 approved targets. (D) Boxplots showing the fraction of unexplored supported genes (not clinically tested drug
520 targets, x-axis) for each class of omic support (y-axis) that are considered tractable based on the Open Targets
521 tractability assessment. Each point represents a disease. Odds ratios and 95% confidence intervals for
522 association between omic support and tractability are shown to the right (considering all protein-coding genes as
523 universe). We distinguish genes that are antibody-tractable, small molecule tractable, or tractable by any class of
524 therapeutic (tractable). The dotted line shows the fraction of tractable genes amongst all protein-coding genes.
525 27 diseases for which at least one gene had genetic association evidence are shown. In the boxplots, the center
526 line denotes the median; the box limits denote the first and third quartiles; and the whiskers denote 1.5x the
527 interquartile range (IQR).


https://doi.org/10.1101/2024.04.04.24305313
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.04.04.24305313; this version posted April 5, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

Significant enrichment

(Fisher's test p-value < 0.05) supported / total

¢ FALSE : o . . .
¢ TRUE Genetic association Cell type specific Disease cell specific
cardiomyopathy e I 0/11 — e 1111
non-small cell lung carcinoma 4 —— 3/190 [ 20/ 190 [ 33/190
lung adenocarcinoma e 1724 — e 2/24 e 11/24
cystic fibrosis - ; . 1/92 P 1792 [E— 8/92
squamous cell lung carcinoma A e 128 e /29 e 7129
myocardial infarction - | —e— 8/100 e 6/100 * 177100
breast cancer . 4199 . 30/199 . 51/199
COVID-19 1 Lo 3/227 e 301227 e 1077227
Crohn disease 1 e 5145 [ 6125 e 9145
chronic obstructive pulmonary disease 1 Le 7/m ie 9/111 > 147111
o) systemic lupus erythematosus 1 —— 4183 —e— 10/83 | —.— 17183
& type 1 diabetes mellitus —e— 2780 —e— 4/80 | 0780
_% interstitial lung disease 4 : 0/14 L e 614 e 1114
° pneumonia - 0/33 e 3/33 [ T 1133
chronic kidney disease : 0/156 e 251156 4 221156
pulmonary fibrosis i 0713 L —— 4713 ! 0713
influenza 4 ; 0/45 [— 9/45 - 3/45
follicular lymphoma 1 : 0146 e 3146 e 10746
acute kidney failure 4 i 0/s — 1/5 ——— 1/5
Barrett esophagus 4 ! 017 SR — 197 | 07
small cell lung carcinoma i 0742 L. 8/42 L e 12742
gastriﬂs 1 | 0/2 — L e 1/2 ' 0/2
pulmonary emphysema 4 ! 0712 I o—e—  5/12 ——e— 1112
benign prostatic hyperplasia 4 ! 0122 4 3/22 ! 0/22
001 010 100 10,00 100.00 001 010 100 1000 100.00 001 010 1.00 1000 10000
QOdds Ratio - effective (> phase Il)
Systemic lupus erythematosus (MONDO:0007915) - tissue: blood Gene class )
= nug:l(leyz:rfreoept?rs = {hodop ?({]DCF M kinases
: catalytic receptors M transporters  enzymes
approved effective safe M ion_channels other
(> phase IIl) (> phase II) (> phase 1)
5 targetcizss [ N DN B e
o cell type specific I .
@ disease cell specific n
£ Genetic association
g GRES PR ERY IS RNl PRS0 RIR32RS 500 1000 1500
TR FLo=BrsErcoop30RE256 SREE0 # unexplored genes
e L (8] E £ acag ﬁl— & E
z cn [=
- [
Supported target gene
C Pulmonary Emphysema (MONDO:0004849) - tissue: lung
approved effective safe
(> phase lll) (>phase II) (> phase 1)
5 target class {ANN" W m 1
§ cell type specific [ ] [ ] ‘I
» disease cell specific
g Genetic association r - - "
TOMNS LI roow <[3EDN'-¢'|“~§'—I]J
© Soll SEISNDZL TETHBSLas? # unexplored genes
Tro0 JuDso0 0 rrrEEsSSSSh
Z5<a <agaoila oo =%
p=4
IS

Drug target gene
528

529 Figure 3: Association between omic support and clinical success stratified by disease. (A) Odds ratio
530 (x-axis, logl0 scale) of association between clinical success (effective, passing phase II) of a target and omic
531 support calculated per disease (y-axis). Results are shown for 24 diseases with at least one approved target.
532 Diseases are sorted by odds ratios for association with genetic support. The gene universe used was
533 protein-coding targets. For each test, the numbers to the right show the number of omic supported over total
534 successful targets. The error bars denote 95% confidence intervals of the odds ratio. Points in red indicate cases
535 where the enrichment for successful targets was statistically significant (Fisher’s exact test p-value < 0.05). The
536 dotted line denotes Odds Ratio = 1 (no enrichment). (B-C) Supported drug targets for systemic lupus
537 erythematosus (B) and pulmonary emphysema (C). The right barplot shows the number of supported target
538 genes that are not known drug targets in clinical trial (unexplored, including both tractable and non-tractable
539 genes). In (B) only known targets supported by at least one omic class are shown.

540
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541 Methods

542 Single-cell RNA-seq data collection from CZ CellxGene Discover platform

543 To select a set of diseases and scRNA-seq datasets, we downloaded cell- and dataset-level
544 metadata for all H.Sapiens datasets from the CZ CellxGene Discover database, using the
545 cellxgene census python API (census version: 2023-07-25) [21]. Disease-relevant (DR)
546 tissues were manually annotated for the 58 disease terms in the database. We excluded
547 datasets profiled with targeted scRNA-seq assays (BD Rhapsody), inDrop and STRT-seq. We
548 further excluded fetal samples, based on Human Developmental Stage Ontology [68], where
549 available, and by manual curation for 12 datasets where stages were annotated as “unknown”.
550 10 disease terms were grouped into 4 broader terms (Supplementary Table 1).

551

552 After curation, 30 disease terms were retained for association analysis. Reasons to exclude
553 diseases included: missing overlapping disease terms in Open Targets, missing data from DR
554 tissue, data available from less than 3 donors with the disease, download errors (see
555 Supplementary Table 1 for a complete list of diseases and reasons to exclude from analysis).
556 After selecting suitable datasets, for each disease we downloaded full transcriptome gene
557 expression profiles for all cells from the DR tissue from healthy donors and disease patients,
558 as well as cell type labels (Cell Ontology terms [23]) and sample-level technical metadata
559 (scRNA-seq assay and suspension type, Supplementary Figure 15).

560

561 To ensure consistency in granularity of cell type annotations across studies, we implemented
562 a rollup procedure on the Cell Ontology tree, by relabelling cells with parent terms if a given
563 term 1is a descendant of another term in the dataset (see example outcome in Supplementary
564 Figure 1). For each term, the search for parent terms was limited only to a level of depth in
565 the ontology tree given by the total number of ancestors of the term divided by a factor of 5.
566 For example, if a term had 20 ancestors in the ontology tree, we searched for the 4 closest
567 parent terms in the dataset for relabelling. We recognize that this step reduces the resolution
568 of cell type annotations, yielding broader and partially redundant annotation labels. However,
569 it mitigates the need for batch correction, clustering, and manual cell type annotation across
570 30 datasets. We defined the cell type labels used after roll-up as high-level cell type
571 annotations.

572 Differential expression analysis and extraction of scRNA-seq supported gene-disease pairs

573 We identified cell type specific and disease cell specific genes for each disease using
574 differential expression (DE) analysis.

575

576 For each disease dataset, we aggregated cell-level gene expression profiles summing counts
577 and size factors (total counts per cell) by donor and high-level cell type annotations
578 (hereafter, pseudo-bulks), following best practice recommendations for DE analysis on
579 scRNA-seq data [69,70]. Only cell types found in at least 3 healthy donors (and 3 disease
580 donors for disease cell specificity analysis) were included in DE testing. To identify cell type
581 specific genes, we selected pseudo-bulks from healthy donors from the disease-relevant tissue
582 and we tested for DE between pseudo-bulks of one cell type against all other cell types. To
583 identify disease cell specific genes, for each cell type we tested for DE between diseased
584 donors and healthy donors. For each test, we selected the top 5,000 highly variable genes
585 amongst considered pseudo-bulks, using the method implemented in the R package scran
586 [71]. We tested for differential expression between groups with the edgeR quasi-likelihood
587 test [72] using the implementation in the R package glmGamPoi [73]. In all tests, we
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588 modelled the number of cells per pseudo-bulk as a confounder, as well as suspension type
589 (cell or nuclei) and scRNA-seq assay where possible (when the confounder was not perfectly
590 collinear with the disease label). After DE analysis, we obtained the effect size (log-fold
591 change, logFC) and Benjamini-Hochberg adjusted p-values for each tested gene in each
592 tested cell type.

593

594 We annotated a gene-disease (G-D) pair as cell type specific when the gene is significantly
595 over-expressed in at least one cell type compared to all other cell types in healthy
596 disease-relevant tissue (adjusted p-value < 0.01, logFC > 5). The choice of logFC threshold
597 was motivated by the observation that genes significantly over-expressed at lower log-fold
598 changes are often ubiquitously highly expressed, while those at higher fold changes are
599 genuinely cell type specific (Supplementary Figure 8C). We annotated a G-D pair as disease
600 cell specific when the gene is significantly over-expressed in disease in at least one cell type
601 in disease-relevant tissue (adjusted p-value < 0.01, logFC > 0.5). The total number of
602 supported G-D pairs for each disease is shown in Supplementary Figure 2. We annotated a
603 G-D as cell type and disease cell specific if supported by both classes of sScRNA-seq support.

604 Known drug relationships from Open Targets

605 Open Targets direct association evidence was accessed via download from the Open Targets
606 Platform (version 23.02) [1,25]. Downloads used for this analysis were the ‘Diseases’ and
607 ‘Direct Associations by Type’ tables. Experimental Factor Ontology (EFO) disease terms
608 used in Open Targets were mapped to their corresponding term in used in the CellxGene
609 database (MONDO IDs) using the ontology tree available in the Open Biological and
610 Biomedical Ontology Foundry (https://obofoundry.org/ontology/mondo.html). We annotated
611 G-D pairs for which approved or clinical candidate drugs exist using the ChEMBL evidence
612 score from the Open Targets Platform. Briefly, each G-D pair is assigned a score between 0
613 and 1 based on clinical precedence, then the score is down-weighted by half if the clinical
614 trial has stopped early for negative results (no effect of the drug) or safety and side effects
615 concerns.  Following the ChEMBL evidence scoring in  Open  Targets
616 (https://platform-docs.opentargets.org/evidence#chembl), we classified G-D pairs with a
617 ChEMBL evidence score > 0.1 as safe (> phase 1), pairs with score > 0.2 as effective (> phase
618 II), and pairs with score > 0.7 as approved (> phase III). While we do not explicitly exclude
619 gene-disease pairs supported by failed trials, the down-weighting in Open Targets ensured
620 that targets failed in early clinical trials are excluded, and targets failed in phase III were at
621 most classified as passing phase II.

622 Genetic association

623 We annotated G-D pairs with genetic support using the genetic direct association score
624 provided in Open Targets, aggregating evidence for association of genes and rare and
625 common variants from several sources (https://platform-docs.opentargets.org/evidence) [1].
626 We classified as supported by genetics any G-D pair with genetic association score > 0.

627 Association between omic evidence and clinical success

628 To test for association between omic evidence (cell type specificity, disease cell specificity,
629 genetic association) and clinical success (passing clinical phase I, II or III) we computed the
630 odds ratio and Fisher exact test p-value under the null hypothesis that the true ratio between
631 the odds of being a successful G-D pair with omic support and of being successful without
632 support is 1. In all association tests, drug indications for clinical success and data for omic
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633 support are aligned by disease. To compute odds ratios, 95% confidence intervals and
634 p-values, we used the odds ratio calculation implementation in the python package scipy [74].
635

636 To enumerate the space of possible G-D pairs for odds ratios analysis, we used the following
637 gene sets as “gene universes”: protein-coding genes (N=19620) were obtained from Ensembl
638 v108; antibody-tractable (N=12527) and small molecule-tractable (N=6550) genes, based on
639 the Open Targets’ druggability assessment
640 (https://platform-docs.opentargets.org/target/tractability), were obtained from Minikel et al.
641 [18]; Genes targeted by therapies in clinical trial for any indication (known drug targets,
642 N=936) were obtained from Open Targets v23.02; sets of typically druggable targets
643 (Supplementary Figure 5B-C) were obtained from Minikel et al. [18]. Unless otherwise
644 specified, odds ratios shown in the manuscript were computed using protein-coding genes as
645 the gene universe.

646 Drug-level analysis

647 We extracted compound-level data from Open Targets for 17,095 drug molecules together
648 with their year of first approval, list of indications, list of targets, and maximum clinical
649 phase using Open Targets “molecule” and “mechanismOfAction” data objects. Among these
650 drugs, we then identified those that had in their approved or investigational indications list
651 any of the 30 diseases considered in the target-level analysis (n = 2358 drugs) and then
652 further narrowed this list of drugs to those in phase II or greater (n = 1219) and phase III or
653 phase IV clinical trials for the 30 diseases considered in this analysis (n=695). Drugs were
654 annotated as having single cell or direct genetic association support for the considered
655 indications if any of their target-disease pairings had this evidence in the preceding
656 target-disease evidence analysis. To examine the number of indications for each drug for one
657 of the 30 diseases in our analysis with genetic or sScRNA-seq support, we aggregated Open
658 Targets drug information and counted the total number of approved or investigational
659 indications for each of these drugs.

660

661 We used a multiple linear regression model to investigate the possible associations of single
662 cell support, and direct genetic support with the number of indications approved or under
663 investigation per drug, accounting for year of the clinical trial as a confounder
664 (Supplementary Figure 6). To satisfy model assumptions, log(number of indications per drug)
665 was used as the dependent variable to address right-skew in number of indications. Single
666 cell and genetic evidence could be synergistic, so an interaction term was used between these
667 during modelling (Supplementary Table 5).

668 Comparison of fine annotation and ontology-based annotation on lung diseases

669 To compare gene-disease pairs prioritized with ontology-based annotation and with uniform
670 integration-based annotations, we downloaded the extended Human Lung Cell Atlas
671 (eHLCA) [30] wusing the CellxGene census API (CellxGene census datasetID:
672 91222629-9¢39-47d0-b83f-e08d610c7479), selecting normal lung and patient data for 3
673 diseases (pneumonia, cystic fibrosis and pulmonary fibrosis). These diseases were selected
674 because all scRNA-seq data considered in the ontology-based analysis was included in the
675 eHLCA dataset, therefore allowing us to compare the impact of annotations on matched data.
676 We pseudo-bulked each disease dataset using the finest author-provided annotation (column:
677 ann_finest level in CellxGene metadata) and performed differential expression analysis as
678 described above.
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679 Disease-specific target analysis

680 To categorize the targets supported by different classes of omic evidence in systemic lupus
681 erythematosus and pulmonary emphysema, we used the annotation of tractable gene classes
682 as defined by Minikel et al. [18]. Gene ontology enrichment analysis was performed using the
683 Enrichr method [75] as implemented in the Python package GSEApy [76]. The categorization
684 of IFN-gamma pathway genes into receptors, transcription factors, targets, and secreted
685 proteins (Supplementary Figure 13D) was obtained from OmniPath [77] and Dorothea
686 [78,79].

687 Data availability

688 All scRNA-seq data analysed in this study is available via the CZ CellxGene Discover
689 database and CxG Census API (https://chanzuckerberg.github.io/cellxgene-census/, version:
690 2023-07-25). Data on clinical precedence for known drugs for each target-disease pair, as
691 well as gene-disease genetic association scores, was downloaded from Open Targets (version
692 23.02, https://platform.opentargets.org/downloads/data). Data on gene tolerance to
693 loss-of-function mutations (LOEUF, loss-of-function observed/expected upper bound
694 fraction) was extracted from gnomAD.v2.1’s pLoF metrics by gene data [80]
695 (https://enomad.broadinstitute.org/downloads). Gene sets used as universes for association
696 analysis are available at
697 https://github.com/emdann/sc_target evidence/blob/master/data/universe genes.csv.

698 Processed datasets and analysis outputs are available as supplementary tables and via figshare
699 (doi:10.6084/m9.figshare.25360129).

700 Code availability

701 All code to reproduce data downloads, processing and analysis is available at
702 https://github.com/emdann/sc_target evidence.
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Supplementary Figure 1: Example outcome of harmonisation of cell type annotations based on Cell Ontology. The y-axis shows
the original Cell Ontology label used in CZ CellxGene database for the myocardial infarction dataset (disease-relevant tissue: heart) and
the x-axis shows the updated label after label harmonisation. The heatmap color and number indicate the number of cells for each label.
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Supplementary Figure 2: Number of clinically successful and supported targets per disease. Barplot of number of gene targets in
clinical success groups (green) and with omic support (black) by disease (y-axis). Diseases are ordered by the number of approved (>
phase III) targets. The dotted lines denote the mean across diseases. The total number of G-D pairs for each class is reported above the
bar plots.
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Supplementary Figure 3: Space of analysed genes for odds ratio analysis (gene universes). Upset plot showing total size (left) and
intersection size (top) for different gene universes used in the analysis. SM: small molecule; AB: antibody
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Supplementary Figure 4: Year of approval of considered drugs. Barplot showing year of first approval for drugs in phase III/IV for
any of the 30 studied diseases. Color indicates if target-disease pairs for a given drug have scRNA-seq support (blue), genetic association
support (red), or both (purple). Drugs without single cell or genetic support are shown in grey.
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Supplementary Figure 5: Comparison with genetic support. (A) Odds ratio for association with clinical success with combined
genetic association and scRNA-seq support. Association is computed using protein-coding genes as the gene universe. (B) Odds ratio for
association between omic evidence and clinical success for different classes of druggable proteins. For each test, the numbers to the right
show the number of omic-supported targets over total successful targets. The error bars denote 95% confidence intervals of the odds ratio.
Points in red indicate cases where the enrichment for successful targets was statistically significant (Fisher’s exact test p-value < 0.05).
The dotted line denotes Odds Ratio = 1 (no enrichment). (C) Box plot of tolerance to loss-of-function mutations, estimated by
Loss-of-function Observed/Expected Upper-bound Fraction (LOEUF) in gnomAD v2.1 (y-axis) for each class of druggable target shown
in B (x-axis) (Nuclear receptors: N=46; kinases: N=338; catalytic receptors: N=246; ion channels: N=320; enzymes: N=864; transporters:
N=510; GPCRs: N=574). Gene classes are sorted by mean LOEUF score. 15 outlier genes with LOEUF > 3 are not shown. In the
boxplots, the center line denotes the median; the box limits denote the first and third quartiles; and the whiskers denote 1.5x the
interquartile range (IQR).
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Supplementary Figure 6: Number of approved or investigational indications per drug by year of first approval and scRNAseq
evidence support. Boxplots of number of approved or investigational indications (y-axis) for drugs approved (>= Phase III) for the 30
diseases considered in this study. Drugs are stratified by year of first approval (x-axis), and by presence or absence of omic support (fill).
The left plot shows the number of indications for drugs supported by genetic association. The right plot shows the number of indications
for drugs supported by scRNA-seq (either cell type specific or disease cell specific targets). In the boxplots, the center line denotes the
median; the box limits denote the first and third quartiles; and the whiskers denote 1.5x the interquartile range (IQR).
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Supplementary Figure 7: Tractability of unexplored targets across diseases. (A) Scatter plot of fraction of tractable unexplored genes
(x-axis) for 27 diseases (y-axis) for different classes of omic evidence (color). We consider three categories: antibody tractable, small
molecule tractable, and tractable by either class of drugs. Dashed lines represent the fraction of tractable genes across all protein-coding
genes. Diseases for which no gene with genetic evidence was found are not shown (n=3). (B) Violin plots of tolerance to loss-of-function
mutations, estimated by Loss-of-function Observed/Expected Upper-bound Fraction (LOEUF) in gnomAD v2.1 (y-axis) for each
tractable or non-tractable gene considered for analysis in figure 2D (x-axis). The left plot shows LOEUF estimates for antibody tractable
genes. The right plot shows LOEUF estimates for small molecule tractable genes. The values on top of each plot show the p-value for
Wilcoxon rank-sum test comparing the mean LOEUF between tractable and non-tractable genes (null hypothesis: no difference). In the
boxplots, the center dot denotes the median; the box limits denote the first and third quartiles; and the whiskers denote 1.5x the
interquartile range (IQR).
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Supplementary Figure 8: Analysis of parameters for definition of targets with scRNA-seq support. (A) Odds ratio (x-axis, in log10
scale) of association between target clinical success (y-axis) and scRNA-seq support for the target, computed from highly variable genes
in scRNA-seq datasets of disease-relevant tissue. For each test, the numbers to the right show the number of omic supported targets over
total successful targets. (B) Barplot of number of supported G-D pairs with increasing log-Fold Change (logFC) threshold on differential
expression (DE) analysis results, for cell type specific genes (left) and disease cell specific genes (right). (C) Example from lung
adenocarcinoma scRNA-seq data showing cell type specificity of candidate target genes at high DE log-fold changes. The left scatterplot
shows the mean expression (log-normalized counts, x-axis) and DE log-fold change for one-vs-all test (y-axis) used for cell type
specificity analysis for each significantly over-expressed gene (1% FDR). The dotplots to the right show the expression, in terms of mean
(color) and cell fraction (size) for 5 randomly selected cell type specific genes detected in 10 lung cell types (the cell ontology term is
indicated on top of the plots). The top plot shows significant genes with logFC > 5 and the bottom plot shows significant genes with
logFC < 5. (D) Odds ratio (x-axis, in logl0 scale) of association between clinical success (y-axis) of a target and scRNA-seq support
defined using an increasing threshold for DE log-fold change (y-axis). The dotted blue line denotes the threshold selected for analyses
throughout this study. For each test, the numbers to the right show the number of omic supported targets over total successful targets. The
error bars denote 95% confidence intervals of the odds ratio. Points in red indicate cases where the enrichment for successful targets was
statistically significant (Fisher’s exact test p-value < 0.05). The dotted line denotes Odds Ratio = 1 (no enrichment).
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Supplementary Figure 9: Cell type-level and tissue-level differential expression analysis for disease cell specificity. (A) Illustration
of strategy to compare genes identified as disease specific with cell type-level or tissue-level differential expression analysis between
normal (labelled N) and diseased (labelled D) samples. For each disease, we compare gene expression between healthy and diseased
tissue either per cell type (left panel, cell type-level) or summed across all cell types (right panel, tissue-level). Differential expression in
any of these categories is classed as disease cell specific support. (B) Barplot showing the number of successful targets at different
clinical stages (x-axis) annotated as disease cell specific at the cell type level (blue) or the tissue level (red). (C) Odds ratio (x-axis, in
logl0 scale) of association between clinical success of a target and scRNA-seq support (y-axis) selected using up- or down-regulated
genes (based on DE analysis log-Fold Change and adjusted p-value > 0.01) with tissue or cell type level analysis, as defined in (A).
Results are shown considering gene-disease pairs for 30 diseases. We test association with safe targets (passed phase I, top row), effective
targets (passed phase II, middle row) and approved targets (passed phase III, bottom row). For each test, the numbers to the right show
the number of omic supported targets over total successful targets. The error bars denote 95% confidence intervals of the odds ratio.
Points in red indicate cases where the enrichment for successful targets was statistically significant (Fisher’s exact test p-value < 0.05).

The dotted line denotes Odds Ratio = 1 (no enrichment).
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Supplementary Figure 10: Impact of fine cell type annotations on scRNA-seq support for target discovery. (A) Confusion table
matching the number of cells with coarse annotation labels (uniformed Cell Ontology labels in CZ CellxGene database, x-axis) and fine
integration-based annotations on the extended Human Lung Cell Atlas (eHLCA) dataset [30] (CellxGene census datasetID:
91222629-9¢39-47d0-b83f-e08d610c7479) (y-axis). (B) Upset plots showing the total size (left bars) and size of intersections (top bars)
of genes prioritized for 3 lung diseases (pulmonary fibrosis, cystic fibrosis, pneumonia) using fine annotations from eHLCA or coarse
annotations from CZ CellxGene database. We compare genes prioritized by cell type specificity (top plot) and by disease cell specificity
(bottom plot). (C) Odds ratio (x-axis, in logl0 scale) of association between clinical success of a target and scRNA-seq support (y-axis)
computed using fine or coarse cell type annotations. For disease cell specificity, we also considered genes prioritized by tissue-level
analysis, as described in Supplementary Figure 9A. Results are shown considering gene-disease pairs for 3 lung diseases sampled in the
eHLCA dataset (pulmonary fibrosis, cystic fibrosis, pneumonia). We test association with safe targets (passed phase I, top row), effective
targets (passed phase II, middle row) and approved targets (passed phase III, bottom row). Protein-coding genes were used as gene
universe. For each test, the numbers to the right show the number of omic supported targets over total successful targets. The error bars
denote 95% confidence intervals of the odds ratio. Points in red indicate cases where the enrichment for successful targets was
statistically significant (Fisher’s exact test p-value < 0.05). The dotted line denotes Odds Ratio = 1 (no enrichment).
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Supplementary Figure 11: Association between omic support and clinical success stratified by disease. Odds ratio (x-axis, in log10
scale) of association between clinical success of a target and scRNA-seq support (y-axis) computed stratifying by disease. Results are
shown for 22 diseases with at least 1 approved target. Diseases are sorted by odds ratios for association with genetic support. The gene
universe used was protein-coding targets. For each test, the numbers to the right show the number of omic supported targets over total
successful targets. The error bars denote 95% confidence intervals of the odds ratio. Points in red indicate cases where the enrichment for
successful targets was statistically significant (Fisher’s exact test p-value < 0.05). The dotted line denotes Odds Ratio = 1 (no
enrichment).
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Supplementary Figure 12: Variability in scRNA-seq supported targets between diseases. (A) Scatterplots showing the number of
tested cell types in disease-relevant tissue (x-axis) against the number of identified cell type specific (left) and disease cell specific (right)
genes. Dots are colored by disease-relevant tissue. Pearson’s correlation coefficient and p-value for permutation test are shown on top.
(B) Scatterplots showing the number of disease donors (left column) and control donors (right column) in scRNA-seq dataset for each
disease against the number of identified cell type specific (bottom row) and disease cell specific (top row) genes. Pearson’s correlation
coefficient and p-value for permutation test are shown on top. (C) Boxplots showing the fraction of known clinical targets supported by
disease cell specificity (y-axis) for different diseases grouped by size of disease donors cohort (x-axis). The p-value for Wilcoxon Rank
Sum test comparing small and medium sized cohorts is reported on top. Fractions of safe (> phase I, left), effective (> phase II, center)
and approved targets (> phase III, right) are shown. In the boxplots, the center line denotes the median; the box limits denote the first and
third quartiles; and the whiskers denote 1.5x the interquartile range (IQR).
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Supplementary Figure 13: Functional analysis of supported targets for systemic lupus erythematosus (SLE). (A-C) Gene Ontology
(GO) enrichment analysis on unexplored supported genes in SLE (excluding known drug targets). In each graph, we show significantly
enriched (adj. p-value < 0.01) GO terms (y-axis) sorted by adjusted p-value (x-axis, negative logl0). Terms are grouped by Gene
Ontology class (biological process, cellular component, molecular function). For each term, a sample of up to 10 genes associated to the
term are shown. We show terms enriched in genetic supported genes (A), disease cell specific genes (B) and cell type specific supported
genes (C); (D) Binary table displaying genetic, disease cell, or cell type specificity support for IFN Gamma pathway genes in pulmonary
emphysema. The filled bars denote whether the evidence exists (black) or does not exist (white) for each gene. IFN Gamma pathway
genes were derived from the MSigDB Hallmark database (only genes supported by at least one class of omic evidence are shown). Genes
were categorized into four functional groups (receptors, transcription factors (TFs), targets, and secreted proteins) using OmniPath [77]
and Dorothea [78,79]. Each bar represents the presence of genetic, disease cell, or cell type marker evidence.
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Supplementary Figure 14: Pulmonary emphysema drug target gene expression in healthy human lung atlas. Dotplot of expression
of safe, effective and approved drug target genes for treatment of pulmonary emphysema (y-axis) across cell types found in human lung
tissue (x-axis). Dot color denotes the mean expression (log-normalized counts) in a cell type across donors. Dot size denotes the fraction
of donors in which the gene in expressed. Lung cells are annotated using curated labels from the Human Lung Cell Atlas [30]. Boxes
indicate targets for either Roflumilast (phosphodiesterase-4 inhibitor) or Tretinoin (all-trans retinoic acid). Genes highlighted in red show
genes classified as cell type specific by DE analysis.
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Supplementary Figure 15: Technical metadata for disease scRNA-seq datasets. Heatmap showing the scRNA-seq assay and
suspension type (x-axis) for samples of different tissues and diseases (y-axis). Heatmap color and annotated numbers denote the number
of samples analysed for each group. Diseases are grouped by disease-relevant tissue.
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Supplementary Tables

Supplementary Table 1: Table of diseases available in CZ CellxGene database considered for study
[disease] name of disease used in study

[disease_ontology id] MONDO identifier for disease used in study

[disease_relevant_tissue] Manually curated annotation for disease-relevant tissue

[disease_name original] Name of disease found in CZ CellxGene database

[disease ontology id original] MONDO identifier for disease found in CZ CellxGene database
[reason2exclude] if not NA, description of reason to exclude disease from final analysis

Supplementary Table 2: Sample-level metadata for scRNA-seq datasets from CZ CellxGene database used in study
[assay] scRNA-seq protocol

[tissue] original tissue annotation

[tissue_general] high-level mapping of a tissue

[suspension type] indicates whether cells or nuclei were isolated

[disease] disease condition of donor

[dataset_id] Identifier for dataset in CellXGene Census

[donor id] Identifier for donor in dataset

[development stage ontology term id] Human Developmental Stages ontology term for age of donor
[sample_id] sample identifier (donor, assay, tissue)

[disease name_original] name of disease found in CZ CellxGene database

[disease_ontology id _original] MONDO identifier for disease found in CZ CellxGene database
[disease_ontology id] MONDO identifier for disease used in study

[disease relevant tissue] Manually curated annotation for disease-relevant tissue

Supplementary Table 3: Table of target-disease pairs with annotation of clinical success and omic support
[gene id] Ensembl ID for gene

[disease ontology id] MONDO identifier for disease

[disease] name of disease

[gene name] gene name

[gene class] annotation of tractable gene classes

[genetic_association] OpenTargets genetic association score
(https://platform-docs.opentargets.org/evidence#evidence-data-sources)

[known_drug] OpenTargets known drug score (https://platform-docs.opentargets.org/evidence#evidence-data-sources)
[is_druggable, is_safe, is_effective, is_approved] clinical status for each gene-disease pair

[GWAS evidence] is gene-disease pair supported by genetic association

[ct marker evidence] is gene-disease pair supported by cell type specificity

[disease evidence] is gene-disease pair supported by disease cell specificity

[ct marker and disease evidence] is gene-disease pair supported by cell type and disease cell specificity
[disease evidence celltype] is gene-disease pair supported by disease cell specificity (celltype-level)
[disease evidence tissue] is gene-disease pair supported by disease cell specificity (tissue-level)

Supplementary Table 4: Results of association analysis between omic support and clinical success across diseases
[odds_ratio] Odds ratio of association between evidence and clinical success

[ci_low] 95% confidence interval of odds ratio (bottom)

[ci_high] 95% confidence interval of odds ratio (top)

[pval] Fisher exact test p-value for enrichment (alternative hypothesis: odds ratio higher than 1)
[n_success] Number of successful gene-disease pairs

[n_insuccess] Number of not successful gene-disease pairs

[n_supported approved] Number of successful gene-disease pairs supported by omic evidence
[n_supported] Total number of gene-disease pairs supported by omic evidence

[evidence] omic support class (all_sc_evidence indicates cell type and disease cell specific genes)
[clinical status] Clinical success class

[universe] Name of considered gene universe

[universe size] Number of genes in gene universe
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Supplementary Table 5: Results of multiple linear regression model predicting log(number of investigational or approved
indications of a drug) from its year of first approval, drug target-disease support by any single cell evidence, and drug
target-disease support by any direct genetic association.

Supplementary Table 6: Results of association analysis between omic support and clinical success for each disease (gene
universe: protein-coding genes)

[odds_ratio] Odds ratio of association between evidence and clinical success

[ci_low] 95% confidence interval of odds ratio (bottom)

[ci_high] 95% confidence interval of odds ratio (top)

[pval] Fisher exact test p-value for enrichment (alternative hypothesis: odds ratio higher than 1)
[n_success] Number of successful gene-disease pairs

[n_insuccess] Number of not successful gene-disease pairs

[n_supported approved] Number of successful gene-disease pairs supported by omic evidence
[n_supported] Total number of gene-disease pairs supported by omic evidence

[evidence] omic support class (all _sc_evidence indicates cell type and disease cell specific genes)
[clinical status] Clinical success class

[disease ontology id] MONDO identifier for disease

[disease] name of disease

[disease_relevant tissue] Manually curated annotation for disease-relevant tissue
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