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Abstract 22 

Plastic pollution is a pressing global issue, with over 400 million tons produced annually and projections of 1.1 billion tons by 2050. Microplastics 23 

(MPs), ranging from 5 mm to 1 µm, are pervasive in the environment. They are found in air, sea, freshwater, soils, food chains and studies show that 24 

tiny MPs, smaller than 10 μm, can cross cellular membranes, posing potential health risks through oxidative stress, inflammation, immune dysfunction, 25 

neurotoxicity and reprotoxicity.  26 

In recent years, research has shown that microplastics have negative effects on the female reproductive systems of animals. However, there is still a 27 

lack of evidence on how the accumulation of microplastics affects the reproductive health of human females. This study aimed to examine the presence 28 

of microplastics in the ovarian follicular fluid of 18 women undergoing assisted reproductive treatment whose samples were processed using a patented 29 

method endorsed nationally and internationally. Plastic particles <10 µm were measured using SEM with EDX detection. Preventive measures were 30 

taken to avoid contamination during the process. Microplastics (dimensions <10 µm) were detected in 14 out of 18 samples of follicular fluid, with 31 

an average of 2191 p/ml (0 - 7181p/ml) and with a mean diameter of MPs of 4.48 µm (3.18-5.54 µm). A significant correlation was found between 32 

microplastic concentration and FSH (p-value <0.05), as well as a weak correlation with BMI, age and Estradiol. There was no correlation with 33 

fertilization outcomes, miscarriages, or live birth. This is the first study to provide evidence for microplastics' presence in ovarian follicular fluid in 34 

women undergoing assisted reproductive treatment, representing a potential threat to female reproductive function. 35 

 36 
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1. Introduction 45 

 46 

The increasing presence of plastic and its degradation products in the environment has become a global emergency. Every year, over 400 million tons 47 

of plastic are produced and this number is expected to increase even further, being highly likely that by 2050, annual production will reach 1.1 billion 48 

tons (UNEP, 2021). The pervasiveness of plastic is deeply influencing the planet's ecosystem and biogeochemical cycles to a point where it has 49 

become a ubiquitous and distinctive element in the Earth's geology at every latitude, so much so that the term "Plasticene" can be defined as the 50 

geological era characterized by this massive presence (Rangel-Buitrago and Neal, 2023).  51 

From the degradation process of plastic, particles of plastic on a micrometric scale are created, known as microplastics, ranging from 5 mm to 1 µm 52 

in size, and nanoplastics with a diameter smaller than 1µm. Microplastics (MPs) can have different shapes (fibers, fragments, spheres, beads, films, 53 

scales, pellets, and foam) and colors depending on the original form of the large plastics from which they derive. MPs derived by fragmentation of 54 

plastic wastes are called “secondary” MPs, while “primary” MPs are specifically produced by humans both for their abrasive properties and to improve 55 

the stability of certain products, consequently MPs are intentionally added in cosmetics, toothpaste, household products, detergents, and paints formula 56 

(Ricciardi et al., 2021). Due to their small size, they are transported everywhere, and therefore we find them increasingly in the air, sea and freshwaters, 57 

soils, and being bioconcentrated in the food chain (Ferrante et al., 2022; Garrido Gamarro, 2022; Liu et al., 2023; Oliveri Conti et al., 2020) MPs 58 

reach humans (Pironti et al., 2021).  59 

There is a growing concern regarding human health. MPs primarily enter the human body through the ingestion of food and beverages, as well as 60 

through inhalation, and finally through skin absorption of MPs contained in cosmetics (Yang et al., 2023). Especially, the large consumption of water 61 

mineral PET bottles results in a concentration of MPs between 110,000 and 370,000 particles (90% are nanoplastics and 10% microplastics) (Qian et 62 

al., 2024). Thanks to the use of an extremely sensitive methodology, the Estimated Daily Intake (EDI) of 1,531,524 p/kg/body-weight/day, 63 

corresponding to 40.1 μg/kg/body-weight/day, and 3,350,208 p/kg/body-weight/day, corresponding to 87.8 μg/kg/body-weight/day, was evaluated. 64 

Several studies on mammals indicate that MPs smaller than 10 μm can cross cellular membranes, posing potential health risks through oxidative 65 

stress, inflammation (Pulvirenti et al., 2022), immune dysfunction (Yang et al., 2022), neurotoxicity (Wang et al., 2022), altered biochemical and 66 
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energy metabolism, impaired cell proliferation, gut microbiota alteration (Huang et al., 2021) or disrupted microbial metabolic pathways, abnormal 67 

tissue development, and carcinogenicity (Haddadi et al., 2022; Najahi et al., 2022). Evidence continues to accumulate in this regard, particularly 68 

concerning endocrine disruption (Ullah et al., 2023), and reproductive toxicity (Huang et al., 2023). 69 

Furthermore, MPs, due to their hydrophobic surface, act as a Trojan horse for other types of notoriously toxic environmental contaminants (such as 70 

dioxins, polychlorinated biphenyl ethers, bisphenols, phthalates, polybrominated diphenyls, polycyclic aromatic hydrocarbons, and heavy metals) 71 

which can bind to them and, through processes of bioaccumulation and biomagnification, cause additional harm to living organisms through 72 

synergistic effects (Schell et al., 2022; Ullah et al., 2023). Beyond that, nano and MPs can serve as vehicles for microorganisms and promote infections 73 

(Beans, 2023). 74 

All of this toxic burden to which the population is increasingly exposed represents one of the reasons why in recent decades there has been a decline 75 

in human fertility (Aitken, 2022; Pan et al., 2024). A recent report from the World Health Organization (WHO) estimates a global prevalence of 17.5% 76 

of couple infertility (WHO, 2023) and a recent meta-analysis has recorded a global decrease in total sperm count of 62.3% from 1973 to 2018 (Levine 77 

et al., 2023). Moreover, this has also been accompanied by an increase in the incidence of testicular tumors and a decrease in testosterone, because 78 

the male reproductive system is particularly sensitive to environmental contaminants (Gallo et al., 2020; Montano, 2020; Montano et al., 2018). 79 

However, there are areas within the same country or region that have higher pollution rates, accompanied by a higher incidence of reproductive 80 

problems for both males (Bergamo et al., 2016; Ferrero et al., 2024; Lettieri et al., 2020) and females (Ding et al., 2022; Xue et al., 2021). 81 

Therefore, the significant impacts that environmental contaminants have on reproductive function are alerting the scientific community and 82 

policymakers to the increasing burden and potentially adverse effects on human health, starting from the reproductive health of emerging contaminants 83 

such as nano and MPs. In this regard, the discovery of MPs in the human seminal fluid has greatly heightened these concerns (Montano et al., 2023). 84 

Although there is currently a lack of evidence of reproductive effects in humans, several studies on animals demonstrate significant alterations in male 85 

reproductive function. In male mice exposed to polystyrene particles (PS-MPs 5.0-5.9 μm) in saline solution for six weeks, a reduction in sperm 86 

motility, an increase in abnormal sperm forms, and a decrease in testosterone levels were observed (Coffin et al., 2022). 87 
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Another study following exposure to PS-MPs observed processes of desquamation, atrophy, and apoptosis of germ cells in much of the seminiferous 88 

epithelium with increased levels of interleukins, effects closely related to the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 89 

(HO-1)/nuclear factor-kappa B (NF-κB) signaling pathway (Hou et al., 2021). As revealed in an in vivo study on mouse sperm, polystyrene 90 

nanoplastics (PS-NP) trigger elevated ubiquitination of Ras-related C3 botulinum toxin substrate 1 (RAC1) and cell division cycle 42 (CDC42) (Xu 91 

et al., 2023). The calculated minimal human equivalent MPs dose causing a reduced semen quality was 0.016 mg/kg/day (Zhang et al., 2022). 92 

On the female sex, ovarian functionality is also particularly sensitive to the effects of various endocrine disruptors that induce reproductive health 93 

issues, such as infertility, imbalances in sex hormones, and premature ovarian insufficiency (Ding et al., 2022). Although there is a lack of studies on 94 

the effects of MPs on humans, there is evidence from animal models demonstrating their adverse effects. In a study on mice, after administration of 95 

polyethylene MPs (PE-MPs) of 10-150 μm, (40 mg/kg/day) for 30 days, reduced oocyte maturation was observed, with a decreased capacity for 96 

fertilization of these oocytes, alterations in the development of the resulting embryos, related to oxidative stress damage with implications for DNA 97 

and mitochondrial dysfunction in the exposed oocytes (Zhang et al., 2023). Another study has shown a reduction in plasma levels of 17β-estradiol 98 

(E2) and testosterone (T) in female Oryzias melastigma after 60 days of exposure to PS-MPs (Wang et al., 2019). Exposure to 0.5 μm PS-MPs (0, 99 

0.015, 0.15 and 1.5 mg/day for 90 days) has been shown to induce overproduction of reactive oxygen species (ROS) and thus oxidative stress 100 

contributes to ovarian tissue alterations (An et al., 2021). 101 

In any case, these findings in mammals lead us to consider that nano and microplastics can also accumulate in ovarian tissue and therefore produce 102 

adverse effects on female fertility.  103 

The main purpose of this preliminary study was therefore to verify the presence of microplastics in the follicular fluid of 18 women undergoing 104 

assisted reproduction according to a protocol developed by some of the authors. This study, to the best of our knowledge, represents the first evidence 105 

of MPs in human follicular fluid. Although still limited in numbers, this discovery should serve as an important warning signal about the invasiveness 106 

of these emerging contaminants in the female reproductive system, considering that they can alter its composition and have an impact on the oocyte 107 

(Gosden et al., 1988; Petro et al., 2012), thus posing a significant reproductive risk for our species.  108 
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 aterials and methods 109 

2.1 Patients’ enrolment 110 

The study was performed in accordance with the guidelines and regulations described by the Code of Ethics of the World Medical Association 111 

(Declaration of Helsinki) and falls within the scope of the EcoFoodFertility project (https;//www.ecofoodfertility.it, accessed on 08 Febr 2024), 112 

approved by the Ethical Committee of the Local Health Authority Campania Sud-Salerno (Committee code n. 43 of 30 June 2015). EcoFoodFertlity 113 

is a human biomonitoring project which is investigating the presence of various contaminants in biological fluids and their potential effects on 114 

reproductive health. All patients were fully informed about the project and signed an informed consent to participate. N.18 ovarian follicular samples 115 

were collected from women undergoing assisted reproductive treatment at IVF (In Vitro Fertilisation) center of Mediterraneo PMA (medically assisted 116 

procreation) in Salerno (Campania Region, Southern Italy) between February 2019 and January 2020.  Every participant had declared to consume 117 

plastic packaged food and plastic bottled water or beverages during the three years before sampling. N.4 women out of 18 participants had secondary 118 

infertility. The primary infertility causes included declined ovarian reserve (DOR), polycystic ovary syndrome (PCOS), tubal factors, advanced age, 119 

and unexplained infertility. 120 

The principal characteristics of study participants can be summarized in Table 1. More detailed information on all participant parameters can be found 121 

in the supporting material. 122 

Table 1. Main characteristics of study participants. 123 

Number of participants 18 

Age 35.9±5.8 

Menarche 11.9±1.15 

Nulliparous 14 (77.78%) 

Pluriparous 4 (22.22%) 

Contraceptives 10 (55.56%) 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
has granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder, who(which was not certified by peer review)The copyright holder for this preprint this version posted April 5, 2024. ; https://doi.org/10.1101/2024.04.04.24305264doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.04.24305264
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

Previous 

PMA 

IUI 6 (33.3%) 

FIVET 1 (5.6%) 

ICSI 6 (33.3%) 

Previous 

Abortions 

Spontaneous 7 (38.9%) 

Volunteer 1 (5.6%) 

Body mass index (BMI) 26.9±3.97 

Waist circumference (cm) 82,57±11.3 

Waist-to-hip ratio 0.74±0.11 

Ferriman-Gallwey 

 

Score 1 8 (44.4%) 

Score 2 10 (55.6%) 

Smoker 

Yes 2 (11.1%) 

No 10 (55.6%) 

Previous 6 (33.3 %) 

Alcohol 
No 14 (77.8%) 

Occasional 4 (22.2%) 

3° 

day 

of 

cycle 

FSH mUI/mL 6.52±1.38 

Estradiol pg/mL 60.6±28.8 

AMH ng/mL 2.42±2.05 

Gynecologic

al medical 

history 

 

Normovulatory 7 3 (8.9%) 

Polycystic 

ovary syndrome 

6 (33.3%) 

Endometriosis 3 (16.7 %) 

Oligomenorrhea 2 (11.1%) 

n. oocytes - pick-up 127 
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Oocytes metaphase I 10 (7.9%) 

Oocytes metaphase II 117 (92.1%) 

Fertilized oocytes 117 (92.1%) 

Blastocyst 107 (91.5%) 

Transfers performed 17 (94.4%) 

Beta HCG > 400 UI/mL 8 (47.1%) 

Miscarriages 4 (23.5%) 

Live birth 4 (23.5%) 

IUI: Intra-uterine insemination; FIVET: In Vitro Fertilisation and Embryo-Transfer; ICSI: IntraCytoplasmic Sperm Injection. 124 

 125 

2.2 Collection of biological samples    126 

For follicular fluids sampling, BD glass tubes treated with reinforced USP Type III non-siliconized, 5 ml with red cap without additives were used 127 

and always stored horizontally. For the pick-up, Wallace 17G needles were used for all patients, in place of Falcon conical tubes in PPE, preheated 128 

BD glass tubes were used (Becton, Dickinson and Company, 2100 Derry Road West Mississauga, Ontario, Canada), follicular fluid was observed in 129 

preheated glass Petri dishes and then placed in BD glass tubes. All follicular fluids were processed to assess the possible presence of blood traces with 130 

the Albumin test, only suitable ones were stored at -20°C and analyzed for MPs. 131 

2.3 Extraction and dosage of MPs  132 

 133 

The samples of follicular fluid were prepared for extracting MPs according to a new patented method nationally and internationally protected 134 

(PCT/IB2019/051838 of March 7, 2019 coupled with the accepted Italian patent number 102018000003337 of March 07, 2018) validated with a 135 

recovery >81% (calculated using fortified samples with microparticles based on 3 μm red PS particles purchased from Merck – Sigma Aldrich, 136 
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Germany, with a recovery ranging of 83–103%) and a LOD of 0.1 µm (Zuccarello et al., 2019a, 2019b). This methodological approach doesn’t use 137 

the filtration step to avoid the irremediable loss of NPs or MPs with size lowest to the pore filter diameter.  138 

We identified and measured extracted MPs (as the sum of all types of plastics) focusing our results on MPs <10 µm (for better biological plausibility 139 

of their occurrence in this biological fluid against MPs with the highest sizes). Qualitative and quantitative determinations were performed using a 140 

Zeiss Scanning Electron Microscopy (SEM Zeiss LEO-1430) coupled with an EDX (X Energy Dispersion Detector) detector using the AZTEC 141 

Version 5.1 software. The EDX use permitted us to discriminate between plastic and not-plastic particles. The calculation was applied to an overall 142 

reading area within 1 mm2 of stub (Aluminium-Copper stub, coated with pure gold), examining 228 fields at 1500 X magnification. Results were 143 

expressed as the number of particles per ml (p/ml) of follicular fluid sample. 144 

To prevent potential cross-samples or environmental sample contamination from personal synthetic clothing (nylon, polyester, etc...) and plastics use 145 

during the process of sample preparation, authors adopted the following preventive measures: glassware and metal equipment were used whenever 146 

possible thoroughly rinsed with filtered (1 µm - Whatman glass filter) Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) 147 

Grade water and acetone; dust-free nitrile gloves were worn, use only of clean 100% cotton-based laboratory coats; all samples were extracted in a 148 

clean room under a horizontal laminar flow cabinet with controlled access; sample containers were preserved with glass box and protected by 149 

aluminium foil when not handled. Three reagent blanks were run with each batch of samples, and any measurable MPs weren't detected in these 150 

blanks, showing that any potential contamination occurring from the sample treatment was null. 151 

 152 

2.4 Dosage of biochemical markers 153 

 154 

To determine the concentrations of hFSH, hLH, and Estradiol, an immunoassay in chemiluminescence with paramagnetic particles was used, using 155 

the Access 2 Immunoassay System by Beckman Coulter according to the manufacturer's instructions. The values are expressed as follows: hLH and 156 

hFSH in mIU/mL; Estradiol in pg/mL. For the quantitative measurement of circulating anti-Müllerian Hormone the ELFA (Enzyme Linked 157 

Fluorescent Assay) technique was used, with an automatic VIDAS analyzer from BioMerieux-France, according to the manufacturer's instructions. 158 

Values are expressed in ng/mL. 159 

 160 
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2.5 Statistical analysis 161 

 162 

A statistical descriptive analysis was carried out using the Excel 2021 (Microsoft, Excel 2021). A preliminary explorative analysis of data suggested 163 

to authors the application of Pearson’s correlation test to evaluate the positive, negative, or null linear correlation between the pair of variables. For 164 

each pair of variables, Pearson's product moment correlation coefficient “r” was calculated as null, weak, moderate and straight force of linear 165 

correlation approaching the Interpretation data suggested by (Chen and Anderson, 2023). The interpretation of the r value 166 

(https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/regression-and-correlation/strength-of-correlation.html) is 167 

reported in the supporting material. 168 

The significance level was set at p-value = 0.05. A p-value > 0.05 means that deviation from the null hypothesis is not statistically significant and the 169 

null hypothesis is not rejected (Andrade, 2019).  170 

 171 

3. Results and discussion 172 

In the present study, microplastics (dimensions <10 m) were detected in human follicular fluid in 14 out of 18 participants, with an average of 2191 173 

p/ml (0 - 7181p/ml) and with a mean diameter of MPs of 4.48 m (3.18-5.54 m) (see Tab. 1). Results for all samples showing the details are reported 174 

in Table 2 and Figure 1. These latter shows that the total concentration of MPs in sample N. 18 is the highest, followed by samples No. 4 and No. 7. 175 

No correlation was found between microplastic concentration, fertilization, miscarriages, and live birth. Instead, a moderate correlation was found 176 

between MPs <10 µm and FSH (r = 0.52) with a p-value <0.05. In addition, weak correlations between MPs <10µm with BMI (r = 0.31), age (r = 177 

0.24) and E2 (r = 0.22) but all with p >0.05, were found (See Supporting material).   178 

Probably, the weak correlations could be justified by the limited number of analyzed samples. 179 

 180 

 181 

 182 
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Table 2. Results of MPs in the follicular fluid samples   183 

 184 

ID samples  MPs <10m (p/ml)   Average diameter µm (particles <10 µm) 

1 442 4.12 

2 2276 4.78 

3 1101 4.58 

4 5600 4.94 

5 3601 3.9 

6 3736 5.5 

7 4566 3.66 

8 0  

9 4326 4.76 

10 0  

11 2431 5.44 

12 0  

13 897 5.44 

14 0  

15 1242 5.28 

15 1816 5.22 

17 2875 5.32 

18 7181 4.5 

   

min  0   3.66 

max 7181 5.54 

average 2196 4.46 

 185 
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 186 
  187 

Figure 1. Concentration of MPs in follicular fluid samples. 188 

 189 

Scanning Electron Microscope (SEM) is a useful tool in providing high-resolution particle surface structure characteristics of the material. In this 190 

study, a field emission scanning electron microscope was used to visualize microplastics and evaluate the size and shape of the particles in human 191 

follicular fluid samples. Figure 2 shows the selected SEM images of typical microplastics isolated from human ovarian follicular fluid. 192 
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 193 

Figure 2. Selected SEM-EDX image microplastics in follicular fluid. 194 

 195 

 196 

 197 

Microplastic particles < 10 um

Sample LC-LF
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4. Discussion 198 

The usage behaviors of plastic products of the participants are very similar since all of them declared to use plastic-made items in their life, therefore 199 

trying to understand and differentiate a possible exposure route is hardly truthful. We can only speculate that micro and nano plastics enter the human 200 

body by ingestion and/or inhalation and direct skin contact as now globally recognized (Pironti et al., 2021).  201 

Thousands of micro and nano plastic particles can be accumulated by adults during their lifetime (Lim, 2021), as they have been found in various 202 

human tissues, including kidneys, liver, hair, lungs, and spleen (Kutralam-Muniasamy et al., 2023) but also in meconium, breast milk, placenta, blood 203 

(Leslie et al., 2022), urine (Pironti et al., 2023) and sperm (Montano et al., 2023). In literature is reported that MNP exposure was associated with 204 

microstructural changes in the reproductive system of female animals, such as oviduct dilatation, an increase in the number of ovarian cysts and corpus 205 

luteum, a thinner granular layer of secondary follicles, and a decrease in the number of developing follicles (An et al., 2021; Hou et al., 2021; Park et 206 

al., 2020). A potential mechanism that may explain the presence of MPs in the human ovarian follicular fluid could be related to the possibility that 207 

MPs pass from the bloodstream to the follicle and thus cross the blood-follicle barrier, which is a more dynamic and less stable barrier than the blood-208 

testicular barrier, perhaps closer to the placental barrier. Therefore, microplastics could enter the ovaries through the circulatory system reaching the 209 

granulosa cells (Figure 3). The biggest cells in the follicle, ovarian granulosa cells (GCs), are responsible for secreting estrogen and progesterone. GC 210 

proliferation and differentiation impact all major ovarian functional processes, including follicular growth and development, ovulation, luteal 211 

formation, and steroid hormone production. MPs have been demonstrated to enter rat ovarian GCs, resulting in a substantial decrease in blood levels 212 

of anti-Mullerian hormone (AMH) and E2 expression, as well as enhanced expression of fibrosis markers (An et al., 2021). This ultimately led to 213 

sluggish follicular development and an irregular estrous cycle. In addition, it has been reported that PS-MPs lowered cytoskeletal protein levels in rat 214 

ovaries, including α-microtubulin, breaking physical-functional linkages between the ovarian stroma and parenchyma and compromising oocyte-cell 215 

synchronization (Haddadi et al., 2022). This work also reported on the location and accumulation of PS-MPs in the rat ovary (Haddadi et al., 2022). 216 
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 217 

Figure 3. Schematization of the mechanism by which MPs pass into the ovarian follicular fluid: through environmental exposure (inhalation, ingestion 218 

and dermal contact) they enter the human body, reaching the female reproductive apparatus, particularly crossing the blood-follicle barrier. 219 

Tests done in rodents reveal that MPs reach the vaginal canal and appear to induce a reduction in follicle number while boosting ovarian oxidative 220 

stress and apoptosis in granulosa cells. In addition, maternal exposure to MPs enhanced oxidative stress in oocytes while decreasing polar body 221 

extrusion. Oral administration of MPs in gravid mice resulted in a faster rate of embryonic resorption and placental and fetal development (Yang, 222 

2023). Moreover, MPs may alter oocyte maturation and function, resulting in decreased fertility (Zhang et al., 2023). In this work, the authors 223 

demonstrated that the administration of PS-MPs impaired oocyte maturation and decreased the quality of oocytes by promoting apoptosis via increased 224 
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ROS levels. Furthermore, in combination with DEHP, PS-MPs synergistically activated the CNR1/CRBN/YY1/CYP2E1 and Hippo pathways and 225 

induced ovarian granulosa cell cycle arrest and necroptosis via the generation of OS and DNA oxidative damage (Wu et al., 2023). In summary, 226 

exposure to MPs may exacerbate several reproductive toxicities in female mammals, mainly through OS, apoptosis and fibrosis. These mechanisms 227 

may ultimately lead to a range of structural and functional reproductive alterations, including reduced oocyte numbers, impaired follicular growth, 228 

granulosa cell apoptosis, reduced ovarian reserve function, and uterine and ovarian fibrosis. After all, studies have shown that the accumulation of 229 

ROS can lead to apoptosis of GCs and cause follicular atresia in mice (Shen et al., 2012), which may be the causal factor resulting in anovulatory 230 

infertility (Liu et al., 2019; Wang et al., 2018). Wei et al. (Wei et al., 2022) exposed male and female mice to fluorescent PS-MPs of 5.0–5.9 μm 231 

diameter, for two days and found that fluorescent PS-MPs had entered the testes and ovaries of the mice being more fluorescent PS-MPs in the ovaries 232 

than in the testes. Moreover, they found that the ovary size in the PS-MPs treatment group was smaller and the number of follicles in the PS-MPs 233 

treatment groups at each stage was lower than that of the control group. 234 

The ovary is an important reproductive and endocrine organ that produces oocytes and secretes steroid hormones. It is particularly prone to be affected 235 

by many environmental substances. A recent study found that MPs accumulated in rats’ ovaries, inducing granulosa cell apoptosis through oxidative 236 

stress and fibrosis of the ovary via Wnt/β-Catenin signaling pathway activation (An et al., 2021) and causing abnormal folliculogenesis (Haddadi et 237 

al., 2022). The follicle is the basic structural unit of the ovary, which can be divided into preantral follicles and antral follicles. During the growth of 238 

the oocyte, the follicle is filled with follicular fluid, which plays a crucial role in the maturation and development of the oocyte. Haddadi et al. (Haddadi 239 

et al., 2022) assessed the impact of oral exposure, during four estrous cycles, of 5 μm PS-MPs on ovarian function in rats. They found particles of PS-240 

MPs in the duodenum and the different compartments of the ovarian tissue. A reduced relative ovarian weights and a reduced serum concentration of 241 

estradiol were associated with the toxicity of PS-MPs, causing also an alteration in the folliculogenesis and the estrous cycle duration. These defective 242 

ovarian functions are most probably caused by the induction of oxidative stress, evidenced by increased superoxide dismutase (SOD) and catalase 243 

(CAT) activities and an increased malondialdehyde (MDA) concentration as well as a decreased protein sulfhydryl (PSH) level in the rat ovary. 244 

Moreover, they demonstrated a significant decrease in the expression of cytoskeletal proteins by immunofluorescence and RT-PCR: α-tubulin and 245 

disheveled-associated activator of morphogenesis (DAAM-1) in the ovary of rats exposed to PS-MPs at proteomic and transcriptomic levels.  246 
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Regarding the correlation between MPs concentration and FSH, an interesting study on mice was focused on examining the various impacts of PS-247 

MPs on the reproductive systems of both female and male mice, as well as assessing the impact of PS-MPs exposure on their fertility. Results indicated 248 

that PS-MPs led to greater accumulation and oxidative stress in the ovary compared to the testis, reduced ovary size and follicle number, increased 249 

FSH levels (Wei et al., 2022).  250 

As for the weak correlation found between MPs concentration and BMI, in current literature the “obesogen” effects of these particles on cells are well 251 

described, in fact, Kannan & Vimalkumar (Kannan and Vimalkumar, 2021) reported this phenomenon in kidney and liver cells for MPs <20 µm, in 252 

which MPs altered energy and fatty acid metabolism that can affect, in the end, body weight. In mice the obesogenic role of MPs was explained in 253 

perturbing the gut-liver-adipose axis and altering nuclear receptor signaling and intermediary metabolism by Zhao et al., (Zhao et al., 2024) . Jeong 254 

et al. demonstrated, through omic analyses, that environmental NPs can act as obesogens in childhood (Jeong et al., 2024). In the Najahi et al. study 255 

(Najahi et al., 2022), authors demonstrated that adipose mesenchymal stromal cells, when exposed to MPs <1 um, these do not differentiate in the 256 

normal programmed tissue. Additionally, there may also be some effect on E2, considering that microplastics have been shown to have a negative 257 

effect on granulosa cells, which produce this estrogen (An et al., 2021).  Of course, these evaluations are based on still limited numbers, so more 258 

extensive recruitment is necessary to have more reliable elaborations on the effects of these emerging contaminants on the reproductive function of 259 

human females (Geng et al., 2023; Zurub et al., 2024).  260 

 261 

5. Conclusion 262 

Once again plastic molecules were found to invade our bodies at deeper levels. As far as we know, this is the first study to provide evidence for 263 

microplastics' presence in ovarian follicular fluid in women undergoing assisted reproductive treatment. Although a certain relationship between 264 

quantities of MPs and some important parameters for the regulation of ovarian function has been observed in this study, albeit needing to be evaluated 265 

with more consistent numbers, it indicates the need to continue in this direction to better understand the effects of these emerging contaminants on 266 

female reproductive health. Therefore, this study should be considered extremely relevant for the scientific community.  267 
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1. Additional information on study participants 465 

Table S1. Detailed information on all participant parameters. 466 

ID 

sam

ples  

MPs 

<10m 

(p/ml)   

average 

diameter 

µm 

(particles 

<10 µm) 

age BMI waist  waist-

to-hip 

ratio 

nullipar

ous 

multiparo

us 

contrace

ptives 

previous assisted 

reproduction procedures 

 

          IUI FIVET ICSI 

             

1 442 4.12 31-35 23.4 85 0.73 yes no yes 1 0 2 

2 2276 4.78 31-35 30.2 88 0.92 no 1 yes 0 0 1 

3 1101 4.58 25-30 25.0 70 0.55 yes no yes 0 0 0 

4 5600 4.94 35-40 33 80 0.9 yes no yes 0 0 0 

5 3601 3.9 35-40 38 110 0.95 yes no yes 2 0 0 

6 3736 5.5 40-45 27 105 0.5 yes no yes 3 1 0 

7 4566 3.66 31-35 23 71 0.78 yes no no 0 0 0 

8 0  31-35 25 96 0.8 yes no no 3 0 1 

9 4326 4.76 40-45 24 74 0.68 no 1 no 0 0 0 

10 0  35-40 27 70 0.68 yes no no 3 0 0 

11 2431 5.44 35-40 23 69 0.7 yes no no 0 0 1 

12 0  35-40 29 81 0.69 yes no yes 0 0 1 

13 897 5.44 25-30 28.2 76 0.71 no 1 yes 0 0 0 

14 0  25-30 25.6 77 0.7 yes no yes 0 0 0 

15 1242 5.28 40-45 26.2 87 0.71 no 2 yes 0 0 0 

15 1816 5.22 40-45 20.7 80 0.7 yes no no 0 0 0 

17 2875 5.32 25-30 27.1 80 0.81 yes no no 0 0 0 

18 7181 4.5 35-40 29.6 87.2 0.86 yes no yes 1 0 1 
 467 

 468 
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Table S2. Detailed information on all participant parameters (continued). 470 

ID 

samples  

MPs 

<10m 

(p/ml)   

average 

diameter µm 

(particles 

<10 µm) 

Ferriman-

Gallwey 

 

 

Smoker 

 

 

Alcohol 

 

 

FSH 

 

 

E2 

 

 

AMH 

 

 

 

   score (1-5) 

   

mUI/mL 

 

pg/mL 

 

ng/mL 

 

 

   (stage of 

hirsutism) 

   

blood collection from the 3rd 

to 5st day of the cycle 

 

1 442 4.12 1 

 

No 

 

No 

 

7.88 

 

29.5 

 

0.5 

 

normovulatory  

 

2 2276 4.78 2 

 

No 

 

Occasional 

 7.2 80.6 3.54 

normovulatory  

 

3 1101 4.58 1 

 

 

si 

 

 

Occasional 

 

 

5.7 

 

 

25.0 

 

 

7.3 

 

 

oligomenorrhea with 

reduced ovarian reserve 

4 5600 4.94 2 

 

 

no 

 

 

no 

 

 

7.99 

 

 

19.8 

 

 

0.36 

 

 

oligomenorrhea with 

reduced ovarian reserve 

5 3601 3.9 2 

 

 

Former 

 

 

Occasional 

 

 

6.5 

 

 

49.0 

 

 

0.73 

 

 

polycystic ovary 

syndrome 

6 3736 5.5 2 

 

 

No 

 

 

No 

 

 

8.9 

 

 

38.9 

 

 

1.43 

 

 

polycystic ovary 

syndrome 

7 4566 3.66 2 

 

 

Former 

 

 

Occasional 

 

 

7.9 

 

 

113.7 

 

 

5.3 

 

 

polycystic ovary 

syndrome 

8 0  2 

 

 

Si 

 

 

No 

 

 

5.8 

 

 

65.9 

 

 

1.1 

 

 

polycystic ovary 

syndrome 
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9 4326 4.76 2 

 

 

Former 

 

 

No 

 

 

7.1 

 

 

47.0 

 

 

3.93 

 

 

polycystic ovary 

syndrome 

10 0  2 

 

 

No 

 

 

No 

 

 

6.01 

 

 

74.3 

 

 

4.97 

 

 

polycystic ovary 

syndrome 

11 2431 5.44 1 

 

 

 

No 

 

 

 

No 

 

 

 

6.66 

 

 

 

120.0 

 

 

 

0.45 

 

 

 

Endometriosis + 

polycystic ovary 

syndrome 

12 0  2 

 

 

 

Former 

 

 

 

No 

 

 

 

5.2 

 

 

 

43.7 

 

 

 

0.19 

 

 

 

Endometriosis + 

polycystic ovary 

syndrome 

13 897 5.44 1 

 

Former 

 

No 

 

3.98 

 

80.3 

 

4.21 

 

normovulatory  

14 0  1 

 

Former 

 

No 

 

7.84 

 

54.1 

 

2.04 

 

normovulatory  

15 1242 5.28 
1 

 

No 

 

No 

 

4.9 

 

36.5 

 

0.09 

 

normovulatory + with 

reduced ovarian reserve 

15 1816 5.22 1 

 

 

 

No 

 

 

 

No 

 

 

 

4.8 

 

 

 

42.2 

 

 

 

1.46 

 

 

 

Endometriosis + 

polycystic ovary 

syndrome 

17 2875 5.32 1 

 

No 

 

No 

 

4.95 

 

70.3 

 

3.64 

 

normovulatory  

18 7181 4.5 2 

 

No 

 

No 

 

8.12 

 

100.4 

 

2.41 

 

normovulatory  

 471 
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Table S3. Detailed information on all participant parameters (continued). 474 

ID 

samples  

MPs 

<10m 

(p/ml)   

average 

diameter 

µm 

(particles 

<10 µm) 

drug 

therapy 

 

 

 

retrived 

ovocytes 

 

 

 

 

 

Metaphase 

 

 

 

 

 

 

Metaphase 

 

  

 

 

 

 

ferti

lized 

oocy

tes 

 

 

 

eight-cell 

embryos 

 

 

 

 

 

transfer 

perform

ed 

 

 

 

 

beta HCG 

 

 

> 400 

UI/ml 

aborti

ons 

 

 

 

 

 

live birth 

 

 

 

 

 

 

    Pick-up oocytes I 

 

oocytes II 

 

  

   

 

1 442 4.12  6 0 6 6 6 yes negative / / 

2 2276 4.78  7 0 7 7 7 yes positive / yes 

3 1101 4.58  
7 0 7 7 5 yes negative / 

/ 

4 5600 4.94  
7 0 7 7 6 yes positive / 

yes 

5 3601 3.9  
7 1 6 7 6 yes positive yes 

/ 

6 3736 5.5  
8 2 6 7 7 yes positive yes 

/ 

7 4566 3.66  
5 1 4 4 1 no negative / 

/ 

8 0   
7 0 7 7 7 yes negative / 

/ 

9 4326 4.76  
7 0 7 7 7 yes negative / 

/ 

10 0   
8 0 8 8 8 yes negative / 

/ 

11 2431 5.44  
4 0 4 4 4 yes negative / 

/ 

12 0   
9 3 6 6 6 yes positive / 

yes 

13 897 5.44  
11 2 9 9 9 yes negative / 

/ 

14 0  betametha

sone 

5 

 

 

0 

 

 

5 

 

 

5 

 

 

4 

 

 

yes 

 

 

negative 

 

 

/ 

 

 
/ 
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15 1242 5.28 betametha

sone 

7 

 

 

0 

 

 

7 

 

 

6 

 

 

5 

 

 

yes 

 

 

positive 

 

 

yes 

 

 
/ 

15 1816 5.22  
7 1 6 6 6 yes positive / 

yes 

17 2875 5.32  
9 0 9 8 7 yes negative / 

/ 

18 7181 4.5  
6 0 6 6 6 yes positive yes 

/ 

 475 

 476 

 477 

  478 

 479 

2. Statistical analyses 480 

Table S4. Interpretation of the r value. 481 

r value Interpretation 

r=1 Perfect positive linear correlation 

1>r≥0.8 Strong positive linear correlation 

0.8>r≥0.4 Moderate positive linear correlation 

0.4>r>0 Weak positive linear correlation 

r=0 No correlation 

0>r≥−0.4 Weak negative linear correlation 

−0.4>r≥−0.8 Moderate negative linear correlation 

−0.8>r>−1 Strong negative linear correlation 

r=−1 Perfect negative linear correlation 
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 483 

 484 

Figure S1. Correlation graph between number of MPs and FSH. 485 
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 487 

Figure S2. Correlation graph between number of MPs and BMI. 488 
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 490 

 491 

Figure S3. Correlation graph between number of MPs and Age. 492 

 493 
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 494 

Figure S4. Correlation graph between number of MPs and E2. 495 
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