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Abstract  26 

Background. Individualized treatment decisions for patients with multiple myeloma (MM) 27 

requires accurate risk stratification that takes into account patient-specific consequences 28 

of genetic abnormalities and tumor microenvironment on disease outcome and therapy 29 

responsiveness.  30 

Methods. Previously, SYstems Genetic Network AnaLysis (SYGNAL) of multi-omics 31 

tumor profiles from 881 MM patients generated the mmSYGNAL network, which 32 

uncovered different causal and mechanistic drivers of genetic programs associated with 33 

disease progression across MM subtypes. Here, we have trained a machine learning (ML) 34 

algorithm on activities of mmSYGNAL programs within individual patient tumor samples 35 

to develop a risk classification scheme for MM that significantly outperformed 36 

cytogenetics, International Staging System, and multi-gene biomarker panels in 37 

predicting risk of PFS across four independent patient cohorts.  38 

Results. We demonstrate that, unlike other tests, mmSYGNAL can accurately predict 39 

disease progression risk at primary diagnosis, pre- and post-transplant and even after 40 

multiple relapses, making it useful for individualized dynamic risk assessment throughout 41 

the disease trajectory. 42 

Conclusion. mmSYGNAL provides improved individualized risk stratification that 43 

accounts for a patient’s distinct set of genetic abnormalities and can monitor risk 44 

longitudinally as each patient’s disease characteristics change. 45 
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BACKGROUND 47 

Multiple Myeloma (MM) is characterized by uncontrolled proliferation of malignant plasma 48 

cells originating in the bone marrow and overproduction of monoclonal immunoglobulin 49 

or M-protein. Improvements in treatments based on better knowledge of underlying 50 

pathology have improved median overall survival (OS) to >6 years.(1) Prognosis is 51 

primarily assessed by revised International Staging System (R-ISS)(2) that combines 52 

levels of β-2 microglobulin, serum albumin, lactate dehydrogenase activity, and 53 

cytogenetics at diagnosis. Fluorescence in situ hybridization (FISH) is used to define high-54 

risk MM based on the presence of specific cytogenetic abnormalities, including 55 

chromosomal translocations involving the immunoglobulin heavy chain (e.g., t(4;14) and 56 

t(14;16)), and amplifications of regions involving oncogenes (amp1q) or deletions of tumor 57 

suppressors (del(17p)) that portend a shorter progression-free survival (PFS) and OS.(3-58 
7) While recent advancements like Seq-Fish show promise in improving the identification 59 

of chromosomal abnormalities and merit evaluation for their potential contributions to 60 

refining risk prediction models, FISH remains the current standard in most clinical 61 

laboratories.(8) However, FISH testing alone is insufficient to risk stratify MM since many 62 

patients with the same cytogenetic abnormality experience varied lengths of PFS and OS, 63 

suggesting potential to further improve outcomes with finer grained risk stratification. 64 

Accordingly, many studies have used gene expression profiling to better understand 65 

subtypes and stages of MM progression.(9-14) In particular, two multigene biomarker 66 

panels, SKY92 (EMC-92) and GEP70 (UAMS-70), that use expression patterns of 92 and 67 

70 genes, respectively, were commercialized into clinical tests to predict risk of disease 68 

progression.(15, 16) While gene expression panels are not routinely used in clinical practice 69 

they continue to play a role in advancing research efforts.(17-19) Recognizing their role in 70 

research, it is evident that  there exists an unmet need to develop more accurate tools for 71 

risk assessment. In particular, a clinical test to longitudinally assess MM prognosis at 72 

various stages could prove transformational in improving outcomes by enabling dynamic 73 

calibration of personalized treatment plans based on the unique disease trajectory of each 74 

patient.(20-24) 75 

 76 

Wall et al. advanced SYstems Genetic Network AnaLysis (SYGNAL) with Mining for 77 
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Node-Edge Relationships (MINER) to analyze multi-omics data from an 881 patient 78 

cohort and construct a transcriptional regulatory network for MM (mmSYGNAL).(25) 79 

mmSYGNAL delineated how subsets of mutations across the patient cohort causally 80 

modulated mechanistic regulators of co-regulated genes across ~3,000 regulons. 81 

Further, through clustering of regulons, mmSYGNAL identified 141 genetic programs 82 

whose activity profiles stratified patients into ~25 transcriptional states that were more 83 

predictive of clinical outcome than cytogenetic subtyping. In fact, the genetic programs 84 

also uncovered subtype-specific causal and mechanistic drivers of MM progression. 85 

Additionally, mmSYGNAL also explained how patients escaped treatment and relapsed, 86 

by providing insight into mechanisms of resistance manifesting from cellular and 87 

molecular interactions within the tumor microenvironment. mmSYGNAL demonstrated, 88 

for example, that network activity of targets of FDA-approved standard of care (SOC) 89 

drugs had decreased significantly at relapse, but also suggested that MM recurrence in 90 

some patients was associated with increased sensitivity to other investigational therapies. 91 

These findings suggested that mmSYGNAL could potentially serve as a prognostic as 92 

well as a predictive tool to stratify risk and to personalize therapy regimen based on the 93 

activity profiles of genetic programs containing drug targets.  94 

 95 

Here, we report a MM prognostic risk prediction framework based on mmSYGNAL 96 

program activity profiles within a patient’s myeloma cells. Specifically, we applied elastic 97 

net regression to identify programs within the mmSYGNAL network, whose activity 98 

profiles accurately predicted risk of disease progression in each individual across the 881 99 

patient cohort. By training the ML algorithm on subsets of patients, we developed models 100 

that provided finer grade risk stratification within cytogenetic subtypes of MM. We have 101 

combined these models into an mmSYGNAL risk prediction framework that was tested 102 

on four independent MM cohorts (three microarray datasets from cohorts of newly 103 

diagnosed patients and one RNASeq dataset from a prospective double-blind study on a 104 

cohort of patients sampled at varied stages of the disease). These independent cohort 105 

studies demonstrated that risk prediction with mmSYGNAL significantly outperformed 106 

cytogenetics, ISS, and multi-gene biomarker panels (SKY92 and GEP70), especially 107 

across different disease stages, including primary diagnosis, pre- or post-transplant, and 108 
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even after multiple relapses. Finally, we discuss how the causal and mechanistic 109 

underpinnings of genetic programs used for risk prediction also provided actionable 110 

insight into the selection of appropriate therapies for each patient.  111 

  112 
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Materials and Methods 113 

Study Design. The mmSYGNAL risk prediction models were generated with a training 114 

data set and performance was analyzed with six independent validation data sets. The 115 

Interim Analysis 12 (IA12) dataset from the CoMMpass study was acquired from the 116 

Multiple Myeloma Research Foundation (MMRF) and consisted of RNASeq and 117 

cytogenetic data for 881 patients and matched clinical outcomes for 769 patients.(26) The 118 

mmSYGNAL model was generated with the IA12 dataset in 2021 and while the newer 119 

IA18 dataset from the same CoMMpass study did not provide sufficient numbers of new 120 

patients to justify training a new model, it did provide an independent set of relapse 121 

patients for testing model performance. The RNASeq read counts were TMM normalized, 122 

transformed into TPM values, and Z-scored by each sample and across the cohort. Seven 123 

cytogenetic abnormality risk subtypes were identified in this cohort with six based on FISH 124 

(t(4;14), t(11;14), del(17p), del(1p), del(13), amp(1q)) and one based on overexpression 125 

of FGFR3 as a proxy for t(4;14).(27, 28)  126 

 127 

Three Affymetrix data sets of 559 (GSE24080(29)), 282 (GSE19784(13)) and 426 128 

(GSE136337(30)) patients with matching clinical outcomes, were normalized as described 129 

in their respective papers. A fourth dataset obtained through the Seattle Cancer Care 130 

Institute (SCCA) consisted of RNASeq, cytogenetics and clinical outcome data for 23 131 

patients at varied disease stages.(31) The RNASeq data for the SCCA cohort was 132 

normalized similarly to the IA12 data set. Age and gender distributions for all data sets 133 

are shown in Table 1. Patients within each cohort were sub-grouped into low-, high-, and 134 

extreme-risk classes (Table 2) based on Guan scores (Supplementary Methods).(32)  135 

 136 

Construction of risk prediction models based on genetic program activities within 137 

the mmSYGNAL network model. mmSYGNAL is a transcriptional regulatory network 138 

model inferred from IA12 data (Supplementary Methods). Gene expression and survival 139 

data from the IA12 cohort (n=769) were used to build risk prediction models for all patients 140 

(subtype-agnostic), and for the seven cytogenetic abnormality risk subtypes (t(4;14), 141 

del(1p), del(13), amp(1q), and FGFR3 (Table S1). Programs were discretized as over 142 

(+1), neutral (0), or under (-1) active, based on distribution of z-scored values of member 143 
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genes, as described previously.(25) Clinical outcomes were transformed to Guan score 144 

and discretized to low-, high- and extreme-risk groups (Fig. S1).(32)  Elastic net 145 

regression (with bootstrapping and jackknife cross-validation to avoid overfitting) was 146 

applied to identify programs whose activities could stratify patients into risk classes. 147 

Training was performed on all or subsets of patients to generate sub-type agnostic or 148 

subtype-specific models, respectively, except for del(17p) and t(11;14) subtypes, which 149 

had insufficient numbers of patients for model training.(33) Analysis of RNASeq profiles 150 

from CD138+ myeloma cells with appropriate models was used to classify patients into 151 

low- or high-risk if the score was less (or greater) than the standard machine learning 152 

cutoff of 0.5, and as ‘extreme’ if the score was >0.6. A cutoff of 0.6 also stratified 153 

approximately ~10% of all patients into extreme risk subgroup, which was consistent with 154 

the proportion of patients in this subgroup based on actual clinical outcome.  155 

 156 

Risk prediction using gene expression panels. SKY92 and GEP70 risk scores were 157 

produced with R code from the DREAM challenge(34), after ascertaining that our 158 

implementation reproduced Kaplan-Meier (KM) plots in the original papers (Fig. S2). 159 

Patients were classified as high- or low-risk if the score was higher or lower than a cutoff 160 

value reported in the original papers (SKY92=0.827 and GEP70=0.66).(15, 16)  161 

 162 

Statistical Analysis. Log-rank tests were used to evaluate the risk stratification of KM 163 

curves, and AUCs of ROC curves were used to evaluate accuracy of risk prediction. (More 164 

details on statistical analysis are in Supplementary Information: Methods) 165 

  166 
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RESULTS 167 

mmSYGNAL scheme for predicting risk of disease progression for an individual 168 

MM patient 169 

Previous work has shown that activity profiles of 141 programs in the mmSYGNAL 170 

network grouped 881 MM patients in the IA12 cohort into 25 transcriptional states, each 171 

associated with distinct median length of PFS.(25) Interestingly, patients with the same 172 

chromosomal abnormality were distributed across multiple low- and high-risk states, 173 

which indicated that cytogenetics alone was insufficient to accurately estimate risk of 174 

disease progression. Remarkably, activities of just two programs sub-stratified patients 175 

within each cytogenetic subtype (e.g., t(4;14)) into extreme (median PFS ~5 months), 176 

high (median PFS ~22 months) or low (median PFS ~30 months) risk subgroups. Building 177 

on this observation, we applied elastic net regression and identified 25 programs whose 178 

activity patterns accurately stratified 769 IA12 patients into low-, high- and extreme-risk 179 

groups. This model, which was trained on all patients, will here onwards be referenced 180 

as the “subtype-agnostic model”. We investigated risk prediction on a cytogenetic subtype 181 

basis as MM is increasingly being considered as a collection of related diseases 182 

characterized by different cytogenetic abnormalities, prognoses and responses to 183 

therapy, with distinct transcriptional profiles.(35-37) Accordingly, for each of five cytogenetic 184 

subtypes, t(4;14), del(1p), del(13), amp(1q), and FGFR3 (a proxy for t(4;14)), that were 185 

statistically well-represented in the patient cohort, a separate subtype-specific risk 186 

prediction model was trained (Methods). Performance of each model was evaluated on 187 

the IA12 dataset by calculating Area Under the Curve (AUC) of the Receiving Operating 188 

Characteristic (ROC) (Fig. 1A). Each risk model was assigned a grade based on their 189 

AUC score; t(4;14) and FGFR3 models (AUC > 0.9) received an ‘A’ grade; amp(1q), 190 

del(1p), and del(13) ( 0.8 >AUC< 0.9) were assigned a ‘B’ grade, and subtype-agnostic 191 

model (AUC<0.8) was assigned a ‘C’ grade. Unsurprisingly, AUCs for combined ROC 192 

curves within A, B, and C grade models also rank ordered in a similar fashion with AUCs 193 

of 0.915, 0.848, and 0.724 respectively (Fig. 1B). There was significant separation 194 

between the low-, high- and extreme-risk survival curves (log rank test p-value<=1.2e-195 

0.9) with distinct median PFS (34-44 months for the low-risk group, 19-28 months for the 196 

high-risk group and 6-14 months for the extreme-risk group; Fig. 1C. Table 3). Risk 197 
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prediction using all models across the 769 patients within the IA12 dataset yielded an 198 

AUC value of 0.77 (Fig. 1D and E). 199 

 200 

mmSYGNAL significantly outperforms cytogenetics in predicting risk of disease 201 

progression in MM 202 

Newly diagnosed MM patients with one or more high-risk chromosomal abnormalities, 203 

del(17p), t(4;14) and t(14;16), are considered by R-ISS to be at highest risk of disease 204 

progression3. However, there was high variability in disease outcome within cytogenetic 205 

subtypes and ISS stages across all data sets, which demonstrated that these 206 

classification methods are suboptimal in risk stratification (Fig. S3). We investigated the 207 

prognostic value of risk prediction based solely on cytogenetics by performing survival 208 

analysis of IA12 cohort patients stratified by the number of high-risk chromosomal 209 

abnormalities, viz. del(17p), t(4;14), t(14;16), and FGFR3. While the Kaplan-Meier (KM) 210 

plots showed proportional increase in risk of disease progression with the number of 211 

chromosomal abnormalities (Fig. 2A, Table 4), the number of cytogenetic abnormalities 212 

alone did a poor job of rank ordering patients on risk (AUC: 0.53) relative to the 213 

mmSYGNAL risk model (AUC: 0.65, Fig. 2B). While mmSYGNAL improved accuracy of 214 

predicting risk of disease progression in patients sub-grouped by numbers of high-risk 215 

cytogenetic abnormality (AUC=0.58), the overall performance was best with mmSYGNAL 216 

alone (AUC: 0.65). Finally, survival analysis also demonstrated that, relative to 217 

cytogenetic abnormalities, activities of transcriptional programs are better prognostic 218 

markers for MM (Fig. 2C). 219 

 220 

mmSYGNAL outperforms ISS and multigene biomarker panels GEP70 and SKY92 221 

We compared performance of mmSYGNAL risk prediction to GEP70 and SKY92, which 222 

use expression levels of 70 and 92 genes, respectively, to estimate risk of disease 223 

progression.(15, 16) The ISS prognostic classifier (the current standard R-ISS classification 224 

was not available) was also included as it is the standard of risk assessment for newly 225 

diagnosed patients.(2)  Accuracy of risk classification by the four approaches was tested 226 

on three cohorts (IA12, GSE19784, GSE24080). While mmSYGNAL was trained on the 227 
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IA12 cohort (albeit with jackknife cross-validation to avoid overfitting), GSE19784 and 228 

GSE24080 were independent and as such served as ideal test datasets. Importantly, 229 

SKY92 was developed with GSE24080, and expected to perform best on this dataset. 230 

Moreover, both RNASeq (IA12) and microarray (GSE19784 and GSE24080) data are 231 

included allowing for assessment of model performance on disparate technology 232 

platforms.  233 

The performance of mmSYGNAL, GEP70, and SKY92 were similar on the IA12 data set 234 

(AUCs of 0.65, 0.65, and 0.60, respectively) and GSE24080 (AUCs of 0.69, 0.70 and 235 

0.70, respectively). Interestingly, ISS performed the worst across all data sets with AUC 236 

scores of 0.61, 0.46 and 0.64 for IA12, GSE19784 and GSE24080, respectively. While 237 

mmSYGNAL performance on GSE19784 with an AUC of 0.65 was slightly lower than 238 

GEP70 (AUC: 0.69) and SKY92 (AUC: 0.73), further analysis revealed that this might be 239 

because the two panels had identified few high-risk patients in both cohorts (Fig. 3A). KM 240 

survival analysis demonstrated that mmSYGNAL, SKY92 and GEP70 were all effective 241 

in classifying patients into high- and low-risk groups (Fig. 3B), with median PFS values 242 

that were distinct for each dataset, but similar across all three approaches (Table 5). 243 

Again, ISS performance was the worst, particularly so for the GSE19784 data set with 244 

little separation between risk groups, and lower median PFS for Stage relative to Stages 245 

II and III. Importantly, only mmSYGNAL identified extreme-risk patients.  246 

 Finally, notwithstanding the significant overlap across methods, each method had 247 

identified distinct sets of high-risk patients (Fig. 3C). Interestingly, for the GSE19784 248 

cohort, while SKY92 and GEP70 correctly identified only 11 and 22 high-risk patients, 249 

respectively, mmSYGNAL correctly identified 40 high-risk patients. Thus, the higher true 250 

positive rate of the two gene panels in identifying high-risk patients (95% for SKY92 and 251 

100% for GEP70) relative to mmSYGNAL (82%) (Fig. 3D) came at the cost of significantly 252 

lower sensitivity, particularly so for SKY92. 253 

 254 

mmSYGNAL subtype-specific risk models outperform the subtype-agnostic model 255 

Consistent with the hypothesis that MM is a collection of diseases characterized by 256 

different chromosomal abnormalities with distinct transcriptional profiles, overlapping but 257 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.01.24305024doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.01.24305024


Prognostic test for Multiple Myeloma                                                                             Murie et al. 

11 
 

distinct subsets of programs contributed to risk of disease progression for each subtype 258 

of MM (Fig. S4). While subtype-specific risk models significantly outperformed the 259 

subtype-agnostic model in the IA12 dataset (Fig. 1A), only the t(4;14) model could be 260 

evaluated on 13 and 27 t(4;14) patients in GSE19784 and GSE24080, respectively (Table 261 

S1). Therefore, performance of del(13) del(1p) and amp(1q) subtype-specific models 262 

were tested on a fourth dataset (GSE136337) with 77, 90, and 4 patients, respectively. 263 

While GEP70 or SKY92 risk scores could not be calculated due to unavailability of 264 

matching probe sets, the clinical metadata includes GEP70 risk classifications (high or 265 

low) and ISS stage for each patient. While all methods were effective at risk stratifying all 266 

patients (minimum p-value: 2.2e-04), the mmSYGNAL agnostic model outperformed 267 

GEP70 and ISS (Fig. 4A-E). Although median PFS for high- and low-risk groups (25 and 268 

51 months respectively) were similar for the agnostic model and GEP70, only the former 269 

identified an extreme-risk (median PFS: 16 months) (Fig. 4F). ISS performed worst with 270 

median PFS values ranging from 30 to 58 months (Stage I to Stage III). Performance of 271 

del(13) and del(1p) subtype-specific models was even better, especially in identifying 272 

high-risk (median PFS of 21 months) and extreme-risk groups (median PFS of 9.5 and 4 273 

months, respectively). The subtype-specific models were also better at rank ordering 274 

patients by risk, generating AUC scores of 0.62, 0.68 and 0.70 for the agnostic, del(1p) 275 

and del(13) subtypes, respectively (amp(1q) AUC was 1.0 albeit with only 4 samples). In 276 

sum, while cytogenetic abnormality alone was not a robust prognostic marker, subtype-277 

specific mmSYGNAL models performed significantly better at predicting risk of disease 278 

progression, even relative to the subtype-agnostic risk model. 279 

 280 

mmSYGNAL accurately predicts risk of PFS at varied disease stages, including 281 

after multiple relapses 282 

We investigated the effectiveness of the gene panels, mmSYGNAL and ISS for 283 

longitudinal monitoring of disease progression risk beyond primary diagnosis. We applied 284 

the three risk prediction methods and ISS to 86 relapse patients in the IA18 CoMMpass 285 

dataset, who were on their second or third line of treatment. mmSYGNAL outperformed 286 

all methods in stratifying patients into low and high/extreme risk groups (KM survival curve 287 

p-values: 0.0009 (mmSYGNAL), 0.012 (GEP70), 0.076 (SKY92) and 0.020 (ISS) (Fig. 288 
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5A). The median length of PFS for patients classified as extreme-risk by mmSYGNAL 289 

(2.1 months) was comparable to median PFS of patients classified as high-risk by SKY92 290 

and GEP70 (2.2 months for both). ISS stage III patients by contrast had significantly 291 

longer median PFS of 4.9 months; and there was minimal separation between survival 292 

curves for ISS Stage I (20 patients, median PFS: 8.4 months) and II (32 patient; median 293 

PFS: 8.1 months). mmSYGNAL also identified a group of high-risk patients with a median 294 

PFS of 6.1 months (Fig. 5B). Relative to high/extreme-risk patients, there was greater 295 

separation in mmSYGNAL survival curves for low-risk patients with median PFS of 8.1 296 

months, as compared to median PFS of 7.4 months for SKY92 and GEP70. Importantly, 297 

mmSYGNAL identified a greater number of patients as extreme or high-risk (41 patients) 298 

than both GEP70 (18 patients), SKY92 (21 patients, Fig. 5C). 299 

 300 

After establishing superior performance of mmSYGNAL in risk assessment of relapsed 301 

patients, we performed a double-blind study to evaluate performance of all methods 302 

across disease stages (primary diagnosis, pre- and post-transplants, and after multiple 303 

relapses). In this double-blind study, RNASeq was performed on CD138+ bone marrow 304 

mononuclear cells from 23 patients, including 8 newly diagnosed, 8 relapsed refractory 305 

(median of 5 relapses), and 7 pre- or post-transplant patients (SCCA). Notably, the cohort 306 

also represented diversity in clinical outcomes (OS: 9 -148 months and PFS: 0.7 to 52 307 

months; Fig. 5D). Of all approaches tested, only mmSYGNAL was accurate in risk 308 

stratification (Fig. 5E).  Regardless of their disease stage, mmSYGNAL stratified the 23 309 

patients into distinct risk groups (p-value=0.001): 12 in the low-risk group, 7 in the high-310 

risk group and 4 in the extreme-risk group. Although there was separation in survival 311 

curves of patients stratified by cytogenetics, the risk stratification was not significant (p-312 

value=0.101), with longer median PFS for the extreme-risk group relative to the high-risk 313 

group (24 vs 3 months, respectively). By contrast, mmSYGNAL differentiated among all 314 

three risk groups with median PFS of 52 months for high-risk and 1 month for extreme-315 

risk patients; the survival curve for the low-risk patients did not cross the 50% probability 316 

threshold (Fig. 5E). These results underscore the limitations of cytogenetics-based risk 317 

stratification, especially for patients with high-risk cytogenetic subtypes of MM, further 318 

motivating the need for a mmSYGNAL-type risk stratification approach. 319 
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 320 

Risk prediction by both gene expression panels performed poorly across all patients, with 321 

GEP70 calling all but one patient (P-21) high-risk, and SKY92 stratifying all patients into 322 

the high-risk group (Fig. S5). Interestingly, while mmSYGNAL risk scores were inversely 323 

correlated with length of PFS across all patients (r = -0.38), no correlation with PFS was 324 

observed for risk scores generated by SKY92 (r=0.1) and GEP70 (r=0.01, Fig. S5). 325 

Except for patient P-21, all patients with multiple relapses (P-1, P-2, P-4, P-10, P-14, P-326 

20, P-25) were classified as high-risk by cytogenetic subtyping (Table S2). Yet, 327 

mmSYGNAL sub-stratified these patients into extreme-risk (P-2, P-10 and P-20), high-328 

risk (P-1 and P-4), and low-risk (P-14, P-21 and P-25). Apart from P-25, who was 329 

misdiagnosed as low-risk, mmSYGNAL risk categorization was accurate across all three 330 

risk groups (Fig. 5F). ln fact, mmSYGNAL risk scores were significantly anticorrelated 331 

with length of PFS for all relapsed patients (r=-0.81), even upon excluding P-21 (r=-0.64), 332 

whose significantly longer PFS was an outlier.  In contrast, the association between 333 

GEP70 and SKY92 risk scores and PFS were weaker, especially after removing P-21 334 

(GEP70: r = -0.01; SKY92: r = -0.29). Thus, this study demonstrated the effectiveness of 335 

mmSYGNAL for longitudinally monitoring the risk of disease progression in a patient, 336 

regardless of the stage of the disease –at primary diagnosis, pre- and post-transplant, 337 

and even after multiple relapses. 338 

 339 

Risk-associated programs are significantly associated with targeted cancer 340 

therapies 341 

We hypothesized that the dynamic risk assessment capability of mmSYGNAL was likely 342 

because the model was built upon causal and mechanistic principles, which could also 343 

potentially aid in drug discovery and therapy selection. To test this hypothesis, we 344 

performed survival analysis and discovered that only 25 of the total 141 programs had 345 

contributed significantly in varied weighted combinations to risk prediction by at least one 346 

model (Fig. 6A). While 14 programs were essential for risk prediction by a single model 347 

(e.g., Pr-98 for amp1(q) model, and Pr-110 for the subtype-agnostic model), 11 programs 348 

were important across multiple models (e.g., Pr-61 (4 models), Pr-104 (5 models) and Pr-349 

0 (5 models)). Strikingly, under-activity of 20 programs predicted poor PFS, whereas over-350 
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activity of just 5 programs were associated with poor prognosis. The under- and over-351 

activity of risk stratifying programs was consistent with dysregulation of similar gene sets 352 

in other cancers with poor prognosis. For example, Pr-0, a significant prognostic marker 353 

of disease progression across all subtype-specific models, was enriched for genes that 354 

have been associated with at least four other cancers (angioimmunoblastic lymphoma, 355 

leukemia, neuroblastoma, and bladder cancer).(38-41) Another evidence for mechanistic 356 

association of risk stratifying programs with etiology of MM was the overrepresentation of 357 

genes that are differentially regulated during early and late stages of normal differentiation 358 

from tonsil B cells -> tonsil plasma cells -> bone marrow plasma cells, with distinct 359 

expression patterns in MM plasma cells(9) (Table S3, File S2).  360 

 361 

If the programs were causally and mechanistically associated with disease progression, 362 

then we predicted that they should contain a significant number of targets of anticancer 363 

drugs, including MM therapies. Indeed, the 25 risk-associated programs were significantly 364 

enriched (Fischer exact test p-value=0.0003) for targets of 129 out of 399 drugs used for 365 

MM, in a Phase IV cancer trial, or in at least a Phase I MM trial. Strikingly, consistent with 366 

their mechanism of action, targets of 28 agonists and 88 antagonists were in programs 367 

associated with bad prognosis when they were under- and over-active, respectively 368 

(Fisher exact test p-value=0.0006; Supplementary Methods). This list included targets 369 

of drugs used in SOC for MM, such as dexamethasone(42, 43) and prednisone32,33 both of 370 

which are agonists that target the human glucocorticoid receptor NR3C1, a TF of regulon 371 

R-3191 in Pr-104. Specifically, mmSYGNAL implicated NR3C1 in transcriptional 372 

activation of regulons within Pr-104 (Cox HR=0.66, 95% CI=(0.57, 0.77), p-value=1.510-373 
7) and Pr-110 (Cox HR=0.67, 95% CI=(0.56, 0.80), p-value=9.610-6), and Pr-69, which 374 

was not included in the risk models but had significant risk association (Cox HR=1.52, 375 

95% CI=(0.1.29, 0.1.81), p-value=7.410-7). In all three cases (Pr-104, Pr-110, Pr-69) an 376 

agonist acting on NR3C1 would differentially regulate each program in a therapeutic 377 

direction, i.e., towards a low-risk state (up-regulating Pr-104 and Pr-110 and down-378 

regulating Pr-69) (Fig 6B and Fig. S6). Thus, these findings demonstrate the potential for 379 

leveraging the causal and mechanistic association of risk-associated programs to further 380 

develop mmSYGNAL into a predictive test for discovery of novel targets, repurposing 381 
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drugs approved for other indications, and selecting therapeutic interventions based on 382 

the activity profiles of disease-driving programs in each patient. 383 

384 
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DISCUSSION 385 

Personalized clinical care decisions including treatment selection for newly diagnosed 386 

MM patients is based on prognostic biomarkers such as chromosomal abnormalities that 387 

are still hindered by significant variability in survival outcomes. Given the poor accuracy 388 

of cytogenetics and the lack of use of gene expression panels there is an unmet need for 389 

improved risk assessment tools in the clinical setting. For example, in the IA12 cohort, 390 

53% of patients with t(4;14) or FGFR3 (high-risk chromosomal abnormalities) actually had 391 

good prognosis (long PFS). Alternatively, presumed low-risk patients with t(11;14) or no 392 

chromosomal abnormalities had significant proportions (37% and 32%, respectively) with 393 

shorter PFS.(25) In this regard, risk stratification based on mmSYGNAL program activities 394 

significantly improved risk stratification, even within cytogenetic subtypes, demonstrating 395 

that transcriptional states of myeloma cells are more accurate than cytogenetic 396 

abnormalities at predicting disease progression. Furthermore, our risk prediction models 397 

were tested using the IA12 data, incorporating updated cytogenetic annotations derived 398 

from Seq-FISH classifications. The results showed comparable or improved performance, 399 

underscoring the robustness and accuracy of our models (Supplementary Information 400 

S7). Interestingly, GEP70 and SKY92 also performed comparably across IA12, 401 

GSE19784 and GSE24080, further demonstrating that gene expression patterns do 402 

indeed contain valuable information regarding disease etiology. However, only 403 

mmSYGNAL was accurate in predicting dynamic risk across the disease trajectory of a 404 

patient. 405 

 406 

The relatively poorer risk prediction by cytogenetics and gene expression panels, 407 

especially in later stages of MM, is likely because they are based on correlates of clinical 408 

outcomes and not directly associated with causal and mechanistic drivers of disease 409 

progression. The myriad mutations in myeloma cells of MM patients act in complex 410 

combinations that are both contextual in the bone marrow microenvironment and too large 411 

in number to model in a statistically significant manner. However, the consequences of 412 

the mutations were captured by mmSYGNAL in the architecture and activity patterns of 413 

regulons and programs that were associated with disease progression in a biologically 414 

and clinically meaningful manner.(25) Additionally, the improvement of cytogenetics-based 415 
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risk stratification upon including program activity suggests that other mutations as well as 416 

non-genetic factors, such as the microenvironment, have major influence on disease 417 

prognosis.(44-48) While it is complicated to measure specific microenvironment 418 

characteristics, the activity patterns of regulons and programs within mmSYGNAL already 419 

seems to account for many of these non-genetic influences as previously demonstrated 420 

by its ability to recapitulate mechanisms of microenvironment-induced drug resistance 421 

and immune suppression within the bone marrow of relapse patients.(25) There is great 422 

potential to further improve the predictive power of mmSYGNAL by incorporating other 423 

risk factors considered in the R-ISS, including proportion of plasma cells and other cell 424 

types in the bone marrow aspirate and M-protein abundance –information that was 425 

unfortunately not available for any of the multiple patient cohorts analyzed in this study. 426 

 427 

In addition to a prognostic tool for dynamic risk assessment of MM patients, there is also 428 

a need for a predictive tool that can inform clinicians on selecting non-SOC drugs matched 429 

to the characteristics of a patient’s disease. In particular, while there is broad consensus 430 

on SOC therapy for MM, there is greater uncertainty for choosing drugs for relapsed 431 

refractory MM patients.(4, 49-51) In this regard, mmSYGNAL could be developed further into 432 

a predictive tool for discovering and tailoring existing and new therapies to the unique 433 

biological characteristics of a patient’s disease. Our discovery that FDA-approved anti-434 

cancer therapies (in particular SOC and investigational MM drugs) were enriched within 435 

risk-associated programs lends credibility to this strategy. Specifically, our findings 436 

suggest that activity patterns of disease-associated programs in myeloma cells could be 437 

leveraged in a rational approach to select appropriate therapies, including novel drugs. 438 

For instance, Pr-0 and Pr-86, associated with bad prognosis when under-active, were 439 

enriched in genes that were upregulated in myeloma cells exposed to Aplidin (plitidepsin, 440 

enrichment p-values: 5.37E-10 and 2.23E-2, respectively). Aplidin, a marine-derived anti-441 

myeloma compound, inhibits proliferation of myeloma cells by inducing apoptosis(52) and 442 

is in Phase 3 clinical trial (NCT01102426) in combination with dexamethasone for 443 

relapsed refractory MM.(53) We hypothesize that high-risk patients with under-active Pr-0 444 

and Pr-86 would likely benefit from Aplidin treatment (see File S2 for additional examples 445 

for selecting drugs based on program activity profiles). Thus, by virtue of its causal and 446 
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mechanistic association with the etiology and progression of MM, mmSYGNAL has the 447 

demonstrated utility as a prognostic tool for individualized dynamic risk assessment along 448 

the disease trajectory, and the potential for development into a predictive tool for selecting 449 

treatments that specifically target disease drivers in each patient.  450 
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Tables 484 

 485 

Table 1: Age and gender distributions of patients in the training and validation data sets. 486 

Model was trained on the IA12 data and validated with the GSE19768, GSE24080, SCCA, 487 

GSE136337 and IA18 relapse data sets. Note that 6 patients in the IA18 relapse data set have 488 

both second- and third-line treatments and are thus repeated in the analysis which resulted in a 489 

total of 86 samples. 490 

 491 
 IA12	 

(n=769) 
GSE19784	

(n=282) 
GSE24080	

(n=559) 
SCCA 
(n=23) 

GSE136337 
(n=426) 

IA18	

relapse	

n=(80)	
Age Female Male Female Male Female Male Female Male Female Male Female	 Male	

25-35 0 3 1 3 0 1 0 0 2 0 0	 0	

35-45 9 14 14 17 3 3 1 0 15 21 2	 1	

45-55 40 55 31 52 24 31 3 3 42 57 3	 3	

55-65 78 117 72 86 62 89 6 2 64 106 6	 14	

65-75 87 129 3 3 81 129 2 2 41 77 15	 17	

75-85 37 49 0 0 50 80 1 3 1 0 9	 10	

85-95 6 9 0 0 2 4 0 0 0 0 0	 0	

  492 
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Table 2: Clinical risk group PFS and relapse cutoffs generated from analysis of Guan 493 

scores. Guan scores transform survival data, PFS and relapse events, into a single numerical 494 

risk score ranging from 0 (low risk) to 1 (high risk). The inflection point for the rank ordered Guan 495 

scores for each of the three training (GSE19784, GSE24080, GSE136337) and test (IA12) data 496 

sets was identified numerically (Guan=0.5) and used as the separation point between high- and 497 

low-risk subjects. The 8 month cutoff for extreme-risk patients was based on half the median 498 

progress free survival of high-risk subjects found in Shah et al(54). The PFS values mapped from 499 

the Guan score inflection point risk cutoff were virtually identical across all data sets.  500 

Risk Relapse PFS (months) 

extreme yes	 <=	8	months	

high yes	 <	33.5	months	and	>	8	months	

low any	 Not	in	extreme-	or	high-risk	group	

  501 
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Table 3: Median PFS (months) and predicted risk classification sample sizes for the three 502 

mmSYGNAL grades.  503 

 Median  PFS (months) n 

Grade extreme	 high	 low	 extreme	 high	 low	

A 20.0	 20.8	 45.2	 37	 10	 59	

B 14.2	 23.6	 45.2	 37	 31	 257	

C 11.3	 23.9	 41.3	 37	 90	 642	

  504 
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Table 4: Median PFS (months) for the high-risk cytogenetic subtype count groups.  505 

Number of 

abnormalities 

median PFS (months) n 

4 12.7	 5	

3 23.8	 33	

2 30.1	 81	

1 32.6	 194	

0 39.1	 456	

  506 
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Table 5: Median PFS (months) for mmSYGNAL, GEP70, and SKY92 across the IA12, 507 

GSE19784 and GSE24080 data.  508 

Datasets: IA12 GSE19784 GSE24080 

methods extreme	 high	 low	 extreme	 high	 low	 extreme	 high	 low	

mmSYGNAL 18.4	 27.4	 39.9	 8.9	 20.7	 31.5	 12.1	 28.7	 74.1	

GEP70 NA	 20.0	 40.5	 NA	 6.3	 30.6	 NA	 20.8	 74.1	

SKY92 NA	 15.8	 39.1	 NA	 3.4	 28.9	 NA	 22.3	 74.6	

ISS category III	 II	 I	 III	 II	 I	 III	 II	 I	

ISS 26.4	 29.7	 48.7	 26.2	 37.3	 23.4	 37.4	 65.9	 77.6	

  509 
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Figures 510 

 511 
Fig 1: Performance of mmSYGNAL genetic subtype-specific risk and graded models. (A) 512 

ROC curves and sample sizes (n) of subtype specific mmSYGNAL risk models applied to 769 513 
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IA12 MM patients. Subtype risk models are organized into 3 grades based on their respective 514 

AUC scores (A >= 0.9, 0.9 < B >= 0.8, C < 0 .8). (B) ROC curves for the IA12 patients grouped 515 

by the grade of the subtypes exhibited by each patient. A patient may be included in multiple 516 

graded groups if they exhibit multiple subtypes. If a patient exhibits 2 or more subtypes in a single 517 

grade, then the mean of the risk scores is used. (C) Survival plots associated with each grade 518 

with Kaplan-Meier log-rank test p-values. (D) Scheme for precision risk prediction for new patients 519 

using the “best” model(s). Per this scheme, the risk score of a patient that exhibits multiple 520 

subtypes is calculated using the highest-grade risk prediction model (A > B > C). For example, if 521 

a patient exhibited both the t(4;14) and the amp(1q) subtypes then the patient’s risk score would 522 

be based on t(4;14) subtype model, which had an A grade, rather than the amp(1q) subtype 523 

model, which was determined to be of B grade. If a patient exhibits multiple subtypes that are 524 

associated with equivalent graded models, then the risk score is calculated as the mean of scores 525 

generated by the highest-grade models. The patient’s risk classification defaults to the C grade 526 

subtype-agnostic model if their MM subtype is not represented by any of the subtype-specific 527 

models. (E) ROC curve of the mmSYGNAL best quality risk prediction scheme as described in 528 

(D) for the 769 IA12 patients. Extreme risk patients are considered as high risk in the ROC 529 

analysis. 530 

  531 
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 532 
Fig. 2: Performance of best quality mmSYGNAL model and cytogenetics. (A) Survival curve 533 

of risk stratification based on number of high-risk cytogenetic subtypes (t(4;14), t(4;16), del(17p), 534 

FGFR3, amp(1q)) exhibited by each patient (0 to 4). (B) ROC curve risk ordering based on 535 

mmSYGNAL best model, cytogenetics, and patients ordered by mmSYGNAL risk probability 536 

within each cytogenetic count group (“both”). (C) Survival curves and KM log-rank p-values for 537 

mmSYGNAL best model and cytogenetics risk classification (patients showing zero, one, or more 538 

than one high-risk cytogenetic abnormality are considered as low-, high- and extreme-risk groups 539 

respectively).  540 
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Fig. 3: Risk prediction results for mmSYGNAL, GEP70, SKY92 and ISS. Methods were 542 

applied to the IA12 training data and two microarray validation data sets (GSE19784 and 543 

GSE24080) (A) ROC curves and their respective AUC scores for mmSYGNAL, GEP70 and 544 

SKY92. (B) Survival curves and KM log-rank p-values for mmSYGNAL, GEP70, SKY92 and ISS. 545 

All survival curves showed very low p-values. minimum p-value: 3.5e-8 except for ISS with 546 

GSE19784. (C) Overlap of patients that have been classified as high-risk (high- or extreme-risk 547 

for mmSYGNAL) (D) Percentage of correct calls made within the respective methods high- and 548 

low-risk classification groups. For example, 58% of the patients classified as high-risk by GEP70 549 

applied to the IA12 data were also high-risk patients according to clinical outcome. (E) Table of 550 

false positive rates for high (high and extreme) and low risk classification groups. 551 
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 553 
Fig. 4: Performance of mmSYGNAL agnostic and subtype-specific models, GEP70 and ISS 554 

in the GSE136337 cohort. While we were not able to generate GEP70 or SKY92 risk scores 555 

from the processed expression data in the public repository due to unavailability of matching 556 

probe sets, the clinical metadata did include the GEP70 risk classifications (high or low) and the 557 

ISS stages for each patient and are thus shown in the analysis. Survival curves and KM log-rank 558 

p-values for (A) agnostic, (B) del(13) (C) ISS and (D) del(1p) and I GEP70 risk models. (F) Table 559 

of median PFS scores for all methods which correspond to the colored vertical dashed lines in 560 

the survival curves (red = extreme- risk or ISS stage III, green = high-risk or ISS stage II and blue= 561 

low-risk or ISS stage I). 562 
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 564 
Fig. 5: Descriptive and performance plots for mmSYGNAL, GEP70 and SKY92 applied to 565 

relapse patients. Methods were applied to 23 SCCA patients and 86 IA18 CoMMpass patients. 566 

(A) Survival curves for mmSYGNAL, GEP70, SKY92 and ISS applied to relapse patients from 567 

the IA18 CoMMpass trial (n=86). Tables showing the (B) median PFS values for each method 568 
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and (C) sample sizes of predicted risk classifications for each method (one patient was missing 569 

ISS classification). (D) Swimmer plots for the SCCA patients. The arrows indicate that a patient 570 

is still going through treatment while those without arrows are either deceased or are not being 571 

followed clinically. The solid circles indicate when the RNASeq samples were obtained, and the 572 

solid lines show how long a patient was on a particular treatment before a relapse or refractory 573 

event (including death). Note that there is a mixture of samples taken at initial diagnosis and 574 

samples taken at different times along the disease trajectory. (E) Survival curves and KM log-575 

rank p-values for mmSYGNAL and cytogenetics risk classification. Cytogenetic classification 576 

where low-, high- and extreme-risk categories are based on whether a patient exhibits either 0, 577 

1, or more than one high-risk subtype, respectively.  (F) Scatter plots and associated Pearson’s 578 

correlations of mmSYGNAL, GEP70 and SKY92 risk scores vs PFS (months) for the 8 multiple 579 

relapse/refractory patients. Patient 21’s PFS value is an outlier and thus correlations with and 580 

without that patient’s PFS identify how strongly the outlier influences correlation.  581 
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 583 
Fig. 6: Risk-associated programs provide mechanistic insights into the biology of 584 

disease progression and therapy selection. (A) Relative importance of programs in risk 585 

prediction by subtype-agnostic and each subtype-specific model. Twenty-five programs that 586 

were associated with distinct survival outcomes (based on KM analysis, log-rank test p-value 587 

<0.05) contributed significantly to risk prediction by at least one model. A number of the 25 588 

programs were significant for multiple programs which resulted in a total of 41 instances of a 589 

risk-associated program showing significance for a particular subtype. Size of each bubble is 590 

proportional to relative importance of a given program in estimating risk as determined by the 591 

scaled (0-100) absolute value of the t-statistic for each program generated by the elastic net 592 

linear regression model. Color shading of bubbles indicates the difference in median PFS of 593 

patients when the program is over-active vs. when it is under-active. For instance, Pr-29 594 

contributed the most to the del(1p) risk model (size of bubble); median PFS of patients when 595 

this program was under-active was 50 months shorter relative to when it was over-active (dark 596 

red bubble). (B) The causal mechanistic flow of the regulatory network for Pr-104. The network 597 

diagram depicts SYGNAL inferred causal influences of 35 mutations on modulating 14 TFs that 598 

were implicated in mechanistic regulation of 102 genes within 14 regulons of Pr-104. 599 

Furthermore, 17 drugs in clinical trials for MM (any phase) or any other cancer (Phase IV) are 600 

shown with their respective causal flows highlighted (mutations, regulators or genes). Two 601 

causal networks show drug targets, NR3C1 (purple) and TP53 (orange), that are regulators of 602 

program Pr-104 regulons and a third where the drug target, SRD53 (yellow) is a member of two 603 

Pr-104 regulons.   604 
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 618 

Definitions: 619 

mmSYGNAL: multiple myeloma SYstems Genetic Network AnaLysis 620 

MM: Multiple Myeloma 621 

OS: Overall Survival 622 

PFS: Progress Free Survival 623 

FISH: Flourescent In Situ Hybridization 624 

MINER: MIning for Node-Edge Relationships 625 

AUC: Area Under the Curve 626 

ROC: Reciever Operating Curve 627 

R-ISS: Revised International Staging System 628 

ISS: International Staging System 629 

KM: Kaplan-Meier 630 

IA12:  Interim Analysis 12 631 

IA18: Interim Analysis 18 632 

GEP: Gene Expression Profile 633 

CoMMpass: Relating Clinical Outcomes in MM to Personal Assessment of Genetic 634 

Profile 635 
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SCCA: Seattle Cancer Care Alliance 636 

FDA: US Food and Drug Association 637 

MMRF: Mulitple Myeloma Research Foundation 638 

TMM: Trimmed Mean of M values 639 

TPM: Transcript Per Million 640 

 DREAM: Dialogue for Reverse Engineering Assessment and Methods 641 
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