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Abstract 

The deep-learning models like variational autoencoder have enabled low dimensional cellular 

embedding representation for large-scale single-cell transcriptomes and shown great flexibility in 

downstream tasks. However, biologically meaningful latent space is usually missing if no specific 

structure is designed. Here, we engineered a novel interpretable generative transcriptional 

program (iGTP) framework that could model the importance of TP space and protein-protein 

interactions (PPIs) between different biological states. We demonstrate the performance of iGTP 

in a diverse biological context using Gene Ontology, canonical pathway, and different PPI curation. 

iGTP not only elucidated the ground truth of cellular responses but also surpassed other deep 

learning models and traditional bioinformatics methods in functional enrichment tasks. By 

integrating the latent layer with a graph neural network (GNN) framework, iGTP effectively inferred 

cellular responses to perturbations. We anticipate that iGTP offers insights at both PPI and TP 

levels, and holds promise for predicting responses to novel perturbations. 

Introduction 

With the rapid advent of single-cell technology, millions of cellular transcriptomes have been 

generated by large international consortia [e.g. Human Cell Atlas (HCA)1, Tabula Sapiens2 ] and 

various individual studies to advance our understanding of the human body, developmental 

biology, tumor heterogeneity, and immune system dynamics, leading to more precise diagnostic 

and therapeutic strategies3. The massive increase in cellular transcriptomes also provides 



opportunities to use deep-learning frameworks to learn and represent heterogeneous biological 

functions. 

The deep-learning framework Variational AutoEncoder (VAE)4, has been widely adapted for 

dimension reduction5 and a variety of applications 6,7,8  in the analysis of high-dimensional single-

cell RNA-seq data. Utilizing the probabilistic nature of VAE, these applications were designed to 

address challenges such as batch effect correction7, imputation, and perturbation response 

prediction8, which shows significant advantages over traditional statistical methods in terms of 

scalability and the ability to detect nonlinear patterns 9,10. Deep generative models excel in their 

specific modeling tasks but often lack interpretability and struggle to provide biologically relevant 

latent representations of protein-protein interactions (PPI) and biological pathways. Without 

implementing specific model structures, these models cannot directly capture variations in 

biological processes8. Elmarakeby et al. (P-NET)11 introduced a new fashion of using fully 

connected layers to encode various levels of biological information, including genes, pathways, 

and biological processes, for outcome prediction, providing a biologically meaningful 

interpretation via the weight between layers. However, P-NET is primarily designed for prediction 

purposes and is not a generative model. More recently, methods such as single-cell embedded 

topic model (scETM)12 engineered the decoder layer to enforce the embedding layers to represent 

the gene and topic embeddings topic models of genes and prior gene modules. However, the 

topics from the scETM can not be directly linked to biological meaning. The VAE Enhanced by 

Gene Annotations (VEGA)13 designed a VAE model to learn gene module variables (GMV) space 

via employing a sparse linear decoder with masking to preserve a connection from a GMV to an 

output gene exclusively if the gene is recognized as part of the specific gene module. However, 

this one-layer decoder simplified the linkage between genes and GMV, neglecting to incorporate 

prior knowledge like PPIs. 

 



To advance beyond these constraints, we propose iGTP (interpretable generative transcriptional 

program), a VAE with a masked multi-layer linear decoder informed by biological 

pathways/transcriptional programs (TPs) and protein-protein interactions. iGTP offers the 

following functions: 1) direct interpretable latent space for TPs related to biological state alteration 

and use these high dimensions to represent cellular embeddings; 2) uncover previously unknown 

associations between PPIs/TPs and cellular state alteration; 3) infer TP activity in unseen data 

using pretrained model; 4) infer gene expression alteration for unseen perturbation; 5) Lastly, 

assess the relative importance for TPs and PPIs, providing new insights for the underlying 

biological mechanism.  

Results 

iGTP framework 

We developed a customized variational autoencoder (VAE) model to capture the biologically 

meaningful embedding in latent spaces for scRNA-seq data, enabling the interpretation of 

transcriptional shifts and leveraging Graph Neural Networks (GNNs) for propagating gene 

alteration inferences through the PPI network (Fig. 1). To ensure a biologically interpretable latent 

layer, we engineered a sparse multilayer decoder with prior biological knowledge of transcription 

programs and PPIs, which explicitly guides the model to learn the differential TP and PPI 

responsible for cellular states shift. Similar to the previous graph-enhanced gene activation and 

repression simulator (GEARS) model14, we further incorporate the latent TP embeddings with 

gene-perturbation PPI embedding to predict the perturbation response of TPs and genes on 

unseen scenarios of certain genes.  

 

Distilling biological insights with interpretable latent space framework 

We first evaluate the capacity of the iGTP model to unveil the ground-truth biological processes 

in interferon-β-treated PBMC dataset15. We input the single-cell dataset and enforce iGTP to learn 



the gene ontology as the TP and PC commons as the PPIs. After training, we reparametrized 

latent space z generated from iGTP on 2D t-distributed stochastic neighbor embedding (TSNE). 

As shown in Fig. 2a&2b, we identified that iGTP can differentiate both cell types and stimulation 

status. In Fig. 2c, we found that the TP “GO:0035456: response to interferon-β” simulation had 

overall higher activities in stimulated cells, confirming the ability of iGTP to capture pathway 

activity in its latent space. Comparable cellular “GO:0035455: response to interferon-α” and 

“GO:0035456: response to interferon-β” were observed in immune cells16. The iGTP framework 

captured the higher PPI activity between ISH15 and IFNB1 (Interferon Beta 1) within the BP TP 

of 'GO:0035456: response to interferon-β' in the stimulated cells (Fig. 2d). We also benchmarked 

the conventional single sample GSEA (ssGSEA) method1718 to calculate the activity of the same 

TPs in each cell. As shown in Fig. 2e, the TP activity of response to interferon-β is much lower 

(or close to resting status) in stimulated adaptive immune cells (CD8+ T cells, CD4+ T cells, and 

B cells) than in other stimulated innate immune cells (NK cells, Dendritic cells, 

FCGR3A+monocytes, and CD14+monocytes). Compared to Fig. 2c and Fig. 2e, both algorithms 

exhibited similar patterns, but iGTP demonstrated a stronger change in biological activity. The 

phenomena were also validated by a recently published paper16, suggesting ssGSEA and iGTP 

might reflect the real response activity. As shown in Fig. 2f, the volcano plot for differential TPs 

across all cell types between stimulated vs control with plaid-based Bayers factor as the fold 

changes magnitude. The top stimulated TPs were BP of “GO:0009615: response to virus”, BP of 

“GO:0034340: response to type I interferon”, and other interferon-related TPs. We also 

benchmarked the conventional gene-set enrichment analysis (GSEA) method to measure the 

activity of the same TPs in each cell type with iGTP results. In Fig. 2h, we showed the TPs in both 

Bayers factor from iGTP and normalized enrichment score from GSEA. We pinpointed that BP of 

“GO:0009615: response to virus” and other interferon-related TPs were in the top-right corners of 

CD8 T cells and CD14+ Monocytes. Interestingly, the BP TP of “GO:0045088: regulation of innate 

immune response” was predicted to be much lower in CD8 T cells than CD14+ Monocytes by 



iGTP. On the other hand, GSEA predicted it among the top TPs in both cell types, which is 

contradicted by the fact that TP “regulation of innate immune response” is mainly regulated in 

innate immune cells instead of CD8 T cells19.  Collectively, these findings imply that iGTP TP 

accurately represents the anticipated primary biological pathways in PBMCs, thereby potentially 

serving as a valuable tool for projecting cells from other datasets into an interpretable framework. 

This approach enables the detailed exploration of cell-type-specific patterns at the level of cellular 

processes. Lastly, we leveraged this PBMC dataset to comprehensively compare our iGTP model 

and another deep learning model VEGA, with different knowledge of PPI and TP databases. Then, 

we evaluated the model performance using NMI, ARI, silhouette labels, and graph connectivity 

for evaluation. Overall, iGTP (GO merged +PPI compiled) is the best model by averaging all 

evaluation metrics. 

iGTP model captures both known and unknown TP activities related to brain cellular 

function and Alzheimer’s disease 

We input cells from Alzheimer’s disease (AD) and cognitive normal (CN) individuals with similar 

AD genetic risk to our iGTP model. We selected AD and brain function-related TP from our 

previous work20. The normalized mean TP activities by each cell type and disease condition were 

visualized in Fig. 3a. We identified the TP activities that were enriched with corresponding cell 

types, such as biological pathway (BP) adaptive immune response in Microglia, cellular 

component (CC) Synapse in both inhibitory neurons and excitatory neurons, suggesting TP 

embedding from our iGTP model could capture meaningful biological activities. Moreover, we also 

identified a few well-known AD-related TP with more activated states, such as molecular function 

(MF) of “GO:0048156: Tau protein binding” in AD excitatory neurons 21,22 and BP of “GO:1990000: 

Amyloid fibril formation” in AD excitatory and inhibitory neurons23. The embeddings of these TPs 

were further visualized in 2D (Fig. 3b) for Astrocyte and Microglia. The dot shifts between AD and 

CN indicate our TP embeddings could capture biological differences in AD and CN. More 

interestingly, we delineated PPI connections, PTPRC-CD4 24 and SORL1-APOE, linked to BP 



“GO:0002250: Adaptive immune response” and BP of “GO:1990000: Amyloid fibril formation” 

respectively, across cell types. This highlighted distinct PPI activities between AD and CN cells, 

as shown in Fig. 3c. To identify the TPs that predominantly distinguish AD from CN, we highlighted 

the 15 most variable TPs from iGTP in Fig. 3d. Corresponding TP activities, validated through 

ssGSEA (Fig. S1), exhibit a median Spearman correlation coefficient of 0.74 across cell types for 

these TPs. A few neurotransmitter receptors (such as MF of “GO:0008066: glutamate receptor 

activity”, MF of “GO:0016917: GABA receptor activity”, and MF of “GO:0005539: 

glycosaminoglycan binding”) have higher activities in excitatory neurons, inhibitory neurons, and 

OPCs. MHC protein complex were mainly expressed in Microglia, OPCs, and Oligodendrocytes. 

As shown in Fig. 3e, the difference in cellular embedding distribution between AD and CN 

indicates our TP embeddings in excitatory neurons and microglia in synapse-related functions 

(BP of “GO:0050808: synapse organization” and CC of “GO:0005874: microtubule”). In our 

analysis of these TPs, we specifically identified PPI links with significant differences between AD 

and CN cells. For example, the NTRK2-DYNLL1 link in the BP of synapse organization showed 

a notable disparity. Interestingly, a variant in NTRK2 has been previously associated with AD in 

earlier research 25. As Figure 3f illustrates, the PPI link between MTUS1-CLTC in the BP of 

microtubule formation exhibits distinct cellular activities in Alzheimer's disease (AD) compared to 

cognitively normal (CN) individuals. This observation is consistent with previous studies showing 

elevated MTUS1 expression in specific brain regions of AD patients relative to CN controls 26. 

 

Generalizability to predict out-of-sample single-cell PBMC data 

Next, we examined if iGPT could generalize to accurately infer an interpretable latent 

representation of data not seen during training (out-of-sample data). We evaluated iGTP in two 

settings for this purpose. In the first case, we assessed the biological generalization of iGTP's 

inference by excluding some pairs from the same dataset during training. Specifically, we 

explored whether the inferred iGTP activities for the omitted cells conveyed meaningful biological 



information while not in training. For this, we excluded cells infected by influenza from the COVID-

19 dataset during training. Then, we inferred the PBMC “GO:0009615: response to virus”-related 

TP activities on the removed samples (influenza) using the model trained by the remaining cells. 

As shown in Fig. 4a, CD14+ monocytes and dendritic cells from severe influenza patients tend to 

have higher activities than cells from COVID-19 Low-Dose Naltrexone (LDN) treatment or healthy 

controls in BP TP of “GO:0034340: response to type 1 interferon” and TP “GO:0009615: response 

to virus”. We selected the 8 transcription factors (TPs) and 4806 related protein-protein 

interactions (PPIs) which represent the biological activities of virus invasion across various cell 

types. We tested the Pearson correlation coefficient r of the Bayes Factor in pretrained samples 

and predicted samples. Except for B cells, other cell types maintained r >0.4 in intra-sample 

comparison (Fig. 4b & 4c). Next, we explored whether the iGTP model could predict this unseen 

similar cellular condition population from a new batch study. Here, we trained our model using the 

COVID-19 dataset and predicted the TP activities in the Kang et al. dataset. As shown in Fig. 4d, 

CD14+ monocytes and dendritic cells from the Kang et al. dataset tend to have higher activities 

than in interferon-β stimulated cells and lower activities in resting cells from COVID-19 dataset in 

BP TP of “GO:0034340: response to type 1 interferon” and TP “GO:0009615: response to virus”. 

We further tested the coefficient r of the Bayes factor between the COVID-19 dataset and 

predicted the Kang et al. dataset by each cell type. The overall prediction performance in Fig. 4e 

& 4f failed to reach the performance in Fig. 4b & 4c, suggesting the virus infection conditions on 

heterogeneous individuals have a more complex impact than the cellular response to stimulation 

of interferon-β only27,28. 

 

Inference unseen perturbation on genes using pretrained TP embeddings 

Next, we investigated if our distinct TP embedding and decoder architecture could effectively 

capture the impact of perturbations on gene expression levels, thereby offering an in silico 

evaluation of the perturbation response. Consequently, we have integrated our TP embedding 



with a perturbation relationship graph, which is an adaptation from GEARS, a deep learning 

framework based on Graph Neural Network (GNN) architecture14. The Norman et al. dataset 29 

contained 105 single CRISPRa perturbations on K562 chronic myelogenous leukemia cell line. 

As shown in Fig. 5a, we input the gene matrix of unperturbed K562 cells in the same study to 

obtain the unperturbed TP embeddings. We combined TP embedding with knockdown gene 

embedding generated from the perturbation graph, where edges connecting genes are extracted 

from GO (Fig. 1). After two layers of GNN training, gene embedding representing its spatial pattern 

inherited in the perturbation graph further concatenates TP embedding as the input of perturbation 

prediction layers. As shown in Fig. 5a, we predicted the mean difference after perturbation of 

MAPK1 and compared the top 20 most differentially expressed genes with the real perturbation 

distribution. We benchmarked our iGTP framework with GEARS and identified a similar overlap 

(10 out of 20 genes) and trend of the top 20 most differentially expressed genes (Fig. 5b). Lastly, 

we observed a much larger perturbation in genes within perturbed TP than in genes out of 

perturbed TP with t-test p-value 1.97e-72 and Mann-Whitney U test p-value 1.24e-76 (Fig. 5c).  

 

SHAP importance of TPs in predicting PBMC states and cell-type-specific PPIs 

In the final step, we examined the performance of iGTP and the relationship between the layers 

of the decoder. Initially, we evaluated if the iGTP embedding can differentiate the stimulation 

status in the PBMC dataset from Kang et al (Fig. 6a). We used AUC to compare the embedding 

of iGTP TP, iGTP PPI, Vega TP, conventional ssGSEA, and raw gene expression features. iGTP 

TP embedding had the highest AUC (0.9904) in our comparison. Next, we used SHAP values to 

validate the contribution from the TP embeddings in differentiating the stimulation status. Fig. 6b 

lists the SHAP values among the top 10 TPs and the sum of other TPs. As expected, many of the 

top-ranking TPs closely matched those with the highest Bayes factors (Fig. 2f). Furthermore, TPs 

with shared function (genes) such as BP "GO:0009615: response to type virus" and BP 

"GO:0043331: response to dsRNA" shared similar SHAP value distribution. In Fig. 6c & 6d, we 



further dissected the PPI embeddings in these two TPs among different cell types. Specifically, 

we selected the top 10 most differentiable PPIs (with the biggest MAD difference in stim vs ctrl) 

from PPIs between CD8+ T Cells and CD14 + Monocyte. Interestingly, we found that the BST2-

TRIM25 PPI within the "GO:0035455: response to interferon-α" TP had the highest difference. 

The interferon-inducible protein, BST-2 (or, tetherin), plays an important role in adaptive immune 

response30 and TRIM25, also known as tripartite motif-containing 25, can regulate the immune 

response of viral infection31. The absolute MAD has a higher value of this PPI in CD8+ T Cells 

than CD14+ Monocyte. On the other hand, the RSAD2-APOC1 PPI within the “response to type 

one interferon” TP was the second most differentiable between CD8+ T Cells and CD14 + 

Monocyte (Fig. 6d). Recent research indicates that RSAD2 is up-regulated when exposed to type 

one interferon at the monocyte's single-cell level16. These findings suggest that our iGTP model 

could capture the top TPs and fine-grained cell-type-specific responses PPIs response to 

interferon-β stimulation. To delineate the relationship between layers of the iGTP decoder, 

Sankey Diagram (Fig. 6e) shows the relative weight flow, in between TP “GO:0035455: response 

to interferon-α” to IFITM3 and GATA3 genes within the TP. Intuitively, the thickness of the link 

between TP and PPIs reflected the normalized importance of PPIs to the TP. The PPI 

IFITM3_STAT3 was found to have the largest contribution to this TP, with the IFITM3/STAT3 axis 

playing a key role in regulating immune responses through interferon signaling. IFITM3 modulates 

the phosphorylation and activation of STAT3, thereby influencing gene expression related to 

inflammation and immunity32. Similarly, the thickness between the PPIs and genes suggested the 

relative importance of genes to this PPI. Lastly, IFITM3 was found to have the largest contribution 

to this TP. 

Discussion 

The deep-learning framework Variational AutoEncoder (VAE) has gained more attention for the 

scalability and flexibility to handle the growing single-cell RNA-seq data. In this work, we 



developed an interpretable generative transcriptional program (iGTP) VAE-based framework that 

quantifies the biological networks composed of TPs and PPIs in driving the cellular state alteration. 

We used examples in the PMBC dataset with interferon-β treatment dataset, COVID-19 PMBC 

dataset, and AD dataset, suggesting our iGTP model could accurately capture the known 

biological process and discover new TP that was not well-characterized before. Moreover, we 

tested our model robustness within intra-sample and inter-sample tasks, showing the VAE has 

the potential transferability. Lastly, we integrated one GNN-based module to provide an in silico 

perturbation estimation for the known perturbation effect. The integration of this feature 

substantially augments our model's proficiency in accurately interpolating responses to 

perturbations at each TP. This advancement demonstrates substantial potential in facilitating 

extensive in silico predictions, which could be pivotal for strategizing and optimizing real-world 

experimental approaches. 

In this work, we innovatively engineered a biologically meaningful decoder that incorporates prior 

knowledge to enforce the VAE model to capture the hierarchical structures of biological processes 

among TPs-PPIs-genes. In the Kang et al PBMC dataset, we successfully replicated the BP of 

“GO:0009615: response to virus”, BP of “GO:0034340: response to type I interferon” as the 

biological processes corresponding to interferon-β treatment (Fig. 2f, 6b). In addition, the model 

not only differentiates the cell state (w/wo interferon-β stimulation) but also captures the activity 

difference between Monocytes and T cells(Fig. 2c). Moreover, we identified a few key PPIs with 

cell-type specific importance (such as, BST2-TRIM25 and RSAD2-APOC1) with the top MAD 

difference between stim vs ctrl for CD4+ T cells and CD14+ Monocytes (Fig. 6c & 6d) , indicating 

that these PPIs within the TPs contribute to the cellular states alteration. In the AD dataset, we 

confirmed iGTP could capture the cell-type-specific TP activities and pinpointed a few novel TPs 

might be responsible for the molecular mechanism for AD pathogenesis. Despite that we obtained 

a spearman correlation coefficient (r) as 0.74, some top differential TP was predicted to flip in 



cells from AD and CN individuals between the results of iGTP and ssGSEA. For example, iGTP 

identified the higher activity of CC “GO:0005874: microtubule” in synapse, oligodendrocytes, and 

astrocytes for cells from AD individuals, while the activity signals were predominant in synapse 

only in the result of ssGSEA (Fig. S1). In oligodendrocytes, microtubules play a crucial role in 

extending processes to contact axons and elongating the myelin sheath. In astrocytes, 

neighboring cells and the extracellular environment can influence changes in cell shape and 

branching33. The BP “GO:0050808: synapse organization" is essential for neuron communication. 

In Alzheimer's, amyloid plaques and tau tangles disrupt this, leading to cognitive decline. OPCs 

play a role in signal transmission by interacting with neurons and forming neuronal-OPC synapses, 

which exhibit synaptic plasticity similar to that observed in neuron-neuron synapses34. However, 

while iGTP identifies signals in OPCs, ssGSEA fails to detect much activity (see Fig. S1). This 

discrepancy might be raised by the methodology difference. As ssGSEA17,18 calculates each 

cellular TP score by comparing the distribution of gene expression ranks inside and outside the 

TP, it may not capture the complex, non-linear relationships that iGTP can. Therefore, further 

analysis incorporating ground truth knowledge about TP activities is necessary to enhance our 

understanding. 

We evaluated the transferability of iGTP on PBMC datasets subjected to different immune 

stimulations: one from a virus (COVID-19 and influenza) and the other from interferon-β. Viral 

invasion can stimulate interferon-β production, boosting the immune response in a similar way to 

interferon-β stimulation. The model was trained on COVID-19 patients in various conditions, 

including critical, severe, mild, receiving COVID-19 treatment, and normal. It can predict the 

biological activity in two TPs: the BP of "GO:0009615: response to virus" and the BP of 

"GO:0034340: response to type I interferon" in previously unseen patients with severe influenza 

infection. The model also shows the difference in biological activity is linked to the conditions (Fig. 

4a). When the entire COVID-19 dataset was used to train iGTP and predict the Kang et al PBMC 



dataset, the model could differentiate the cell state with and without interferon-β stimulation (Fig. 

4d). Both results suggest that iGTP can transfer knowledge from one dataset to another while 

maintaining some common biological rationale. However, overall prediction performance in the 

same dataset is better than in different datasets (Fig. 4b, 4c, 4e & 4f). This suggests that virus 

infection conditions in diverse individuals have a more complex impact than the cellular response 

to stimulation of interferon-β alone. 

As shown in Fig.6a, our iGTP model obtained a very close AUROC among conventional 

bioinformatics approaches and other deep-learning-based methods in predicting PBMC data with 

stimulation or not. Compared to traditional bioinformatics tools, deep learning-based methods 

demonstrate significant advantages in learning feature representation within high-dimensional 

spaces. These vectorized spaces could be further integrated with other frameworks (such as 

GEARS) to handle a more complex task, such as response to perturbation prediction.  

Although the reconstruction rate of iGTP is lower compared to the VEGA model, particularly 

against designs using fully connected layers or a single sparse masker layer (as employed by 

VEGA), this trade-off is intentional to enhance the interpretability of biological mechanisms in our 

approach. We envision GEAR in iGTP, which could also be useful to prioritize drugs based on 

pathway expression in cancer, as studying the response of specific cell populations may inform 

drug sensitivity and resistance. Integrating drug response prediction models with such 

explanatory models could benefit designing novel therapeutic strategies. 

 

Methods and Materials 

Datasets and preprocessing 

Kang et al. PBMC dataset 

The Kang et al. dataset15, (accessed by 10/23/2023 from GSE96583), comprises two states of 

Peripheral Blood Mononuclear Cells (PBMCs): a control state and another stimulated with 



interferon-β. Data was processed by Seurat35 and filtered with the following metrics “percent.mt 

<= 50 & nCount_RNA > 677 & nFeature_RNA > 500 & multiplets == ‘singlet’”. In total, we obtained 

a gene matrix of 13,672 cells by 35,635 genes. Cell type annotation and states were directly 

adapted from the original MetaData file in the GSE96583 repository. Megakaryocytes were 

excluded for their small population. We then converted the Seurat object to Scanpy AnnData 

object36  for further analysis.  

Ahern et al. COVID-19 PBMCs dataset 

The Ahern et al.37 dataset was downloaded from the Chan Zuckerberg (CZ) CellxGene portal38 

(accessed by 11/10/2023). The dataset provided an extensive scRNA-seq analysis to construct 

a blood atlas of patients across a spectrum of COVID-19 severity levels, comparing it with cases 

of influenza, sepsis, and healthy volunteers. We conducted the standard quality control process 

using Scanpy36. Specifically, we filtered cells with 200 expressed genes and genes expressed in 

less than three cells. Then, we kept the cell with the following criteria [n_genes_by_counts < 

10000; pct_counts_mt < 20; total_counts < 50000]. Cell type annotation was adapted from the 

original dataset and cell types were renamed with the Kang et al dataset, leading to 599,044 cells 

in total, including the following sample sources: COVID-19 in-patient critical (COVID_CRIT ), 

COVID-19 in-patient severe (COVID_SEV); COVID-19 in-patient mild (COVID_MILD); 

COVID_LDN (COVID-19 in-patient with low-dose Naltrexone treatment), Influenza and Normal 

(healthy volunteer). Detailed description for phenotype can be found in Ahern et al.37.  

Alzheimer’s Disease single-cell RNA-seq and Polygenic risk score process 

We adapted snRNA-seq data from Synapse portal (syn2580853, accessed by 4/15/2023), which 

contains 454 individuals from Religious Orders Study/Memory and Aging Project (ROS/MAP).  

We obtained the matched whole-genome-sequence (WGS) data from the Synapse portal 

(syn11724057, accessed by 11/10/2022). LDPred239 was used to estimate the individual’s risk by 

adapting the effect size from Wightman et al. GWAS summary statistics40. In total, we obtained 

407 individuals with matched snRNA-seq and WGS data. To balance the resilience signals and 



sample sizes, we defined the top 20 quantiles PRS individuals were set for comparison, which 

includes 53 high-risk Alzheimer’s disease (AD) cases and 15 high-risk cognitive normal (CN) 

individuals with similar PRS-background.Data was processed by Seurat35 and filtered with the 

following metrics “percent.mt <= 50 & nFeature_RNA > 200.” We adapted the cell type annotation 

from the original study. 

Norman et al. CRISPR Perturbation dataset and embedding integration 

Norman et al. raw data was downloaded from scPerturb processed data (accessed by 

11/17/2023), which contained 105 single CRISPR activation (CRISPRa) perturbations with at 

least 20 cells. We used the same QC process as the Ahern et al. dataset. After conducting 

pretraining on the Norman dataset. We obtained iGTP embedding of TPs and NPs, Z_TP and 

Z_NP, further serving as input for our perturbation network. Specifically, given the perturbation 

set P = (P1, …, P_M), we initially apply iGTP encoder f_iGTP: Z -> R^{N_TP} that maps each cell 

into a cell embedding. Then, a GNN-based encoder f_pert_graph: Z-> R^{d} is adopted to map 

each perturbation p /in P to a d-dimensional perturbation embedding. We then combine the set of 

perturbation embeddings with each element (TP embedding) of cell embeddings as the input of 

cross-TP decoder f_pert_dec: {R^{d+1}_i}_{i=1}^{N_TP} -> R^{N_Gene} to generate 

postperturbation gene expression vector. 

Transcriptional program curation 

We incorporated three TP resources. The GO curation (Biological Process: BP, Molecular 

Function: MF, and Cellular Component: CC) comprises 1303 non-redundant GO terms from 

WebGestalt41,42 (accessed on 5/7/2021). Lastly, we curated 2082 canonical pathways from three 

major resources: Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and BioCarta 

pathways from the Molecular Signatures Database 43 (MSigDB 7.4 C2 category, accessed on 

5/10/2021). The brain and AD-related curation is adapted from our previous work, containing 167 

TPs20.  

 



Human protein-protein interaction (PPI) curation 

Our human PPI curation included one public database and one in-house curation. 

Pathway Commons curation 

Pathway Commons is an integrated resource of publicly available biological pathways information, 

biochemical reactions, biomolecular complex assembly, transport, catalysis events, and physical 

interactions involving proteins, DNA, RNA, and small molecules. We downloaded the Pathway 

Commons V11 “All.hgnc.txt”, which contains the PPI curations from 18 databases 44. We 

extracted the file annotation with human source only and used the annotation of 

“INTERACTION_TYPE = interaction only”, leading to 485,383 human protein-protein interactions 

and 17,733 unique proteins. 

PPI_compiled curation 

PPI compiled was curated from 6 different resources: BioGRID41,42,45, ESCAPE41, HINT46, 

IRefIndex 47, ReactomeFI48,49, and STRING50. In short, we extracted all the human PPI with 

physical interaction evidence from each of these resources. Specifically, BioGRID is version 

“BBIOGRID-ALL-3.5.171” was downloaded 4/15/2019. ESCAPE is a database for integrating 

high-content published data collected from human and mouse embryonic stem cells 

(http://www.maayanlab.net/ESCAPE/). All human interactions were accessed by 4/8/2019. High-

quality INTeractomes (HINT) database was curated for PPI with experiment validation and was 

accessed by 4/6/2019. iRefIndex 15.0 for human “9606.mitab.22012018” was used (accessed by 

4/10/2019). ReactomeFI (version 2017) for protein complex was downloaded (accessed by 

4/11/2019). The STRING version was downloaded. All the PPIs from six resources were merged, 

including 419,971 protein-protein interactions and 21,216 unique proteins.48 

 

 

 



iGTP model explaination 

iGTP is a deep learning model based on the Variational Autoencoder (VAE) structure and utilizes 

an encoder with fully connected layers to process input gene expression data (𝑿). The data is 

transformed into a biologically interpretable latent space (𝒁), with each dimension representing a 

Transcriptome Program (TP). From the TP space, a vector 𝒁 undergoes decoding through a 

specifically designed network to reconstruct the gene features 𝑿෡.  

iGTP differs from the traditional VAE model in that the decoder network is designed to incorporate 

prior knowledge of the relationship between TP and genes. Specifically, we employ a sequence 

of masked fully connected layers as the decoder network to reconstruct the gene features 𝑿෡.  

The gene features {𝐺ଵ, 𝐺ଶ, 𝐺ଷ, … , 𝐺௣} were encoded to derive latent variables 𝒁்௉ . Each latent 

variable of 𝒁்௉ corresponds to a single transcriptome program. To ensure that each dimension of 

𝒁்௉  is a TP, we enforce the decoder network to embed only (masked) linear operations, i.e. 

masked fully connected layers.  

To reconstruct the gene features, 𝒁்௉ is transformed by a decoder network with two masked fully 

connected layers. First, 𝒁்௉   is transferred into Gene by going through the first masked fully 

connected layer, whose weights are a binary matrix 𝑾 
்௉ିீ௘௡௘ . The weights of 𝑾 

்௉ିீ௘௡௘  are 

predefined using prior knowledge of TP-gene relations: for each entry 𝑾 
்௉ି௚௘௡௘(𝑖, 𝑗), its value is 

one if the 𝑖-th gene is a member of 𝑗-th TP and zero otherwise. Second, the output matrix, denoted 

as 𝑶,, will go through another masked fully connected layer, 𝑾 
ீ௘௡௘ିீ௘௡ , to reconstruct the gene 

features {𝐺ଵ, 𝐺ଶ, … , 𝐺௣}. Each entry of  𝑾 
ீ௘௡௘ିீ௘௡ (𝑖, 𝑗) denotes whether the 𝑖-th gene and 𝑗-th 

gene has PPI relations: one if the relation exist and zero otherwise. The weight matrix  𝑾 
ீ௘௡௘ିீ௘௡௘ 

is, therefore, a symmetric matrix. The decoder network reconstructs gene features as following 

𝑶 = 𝑅𝑒𝑙𝑢(𝑾 
்௉ିீ௘௡௘𝒁்௉) 

൛𝐺ଵ, 𝐺ଶ, … , 𝐺௣ൟ = 𝑾 
ீ௘௡௘ିீ௘௡௘𝑶  



Similar to the traditional VAE, the goal of training iGTP is to reconstruct the gene expression 𝑿 

from the TP space 𝒁்௉, by maximize the likelihood of reconstruction 

𝑝(𝑋|𝜽) =  න 𝑝(𝑿|𝒁, 𝜽)𝑝(𝒁|𝜽)𝑑𝒁 

where 𝜽 is the parameters of iGTP, 𝑋 is the input gene expression data, and 𝒁 is the embedding 

in the TP space. 

Model training 

The raw scRNA-seq read count data 𝑋 is fed into iGTP,which is a matrix of 𝑛 rows (cells) and 𝑝 

columns (genes). The training of iGTP follows the training of traditional VAEs by forming a data 

compression and reconstruction task. The encoder network to maps the 𝑋 to embedding vector 

𝑍, and the decoder neural networks reconstruct 𝑋෨ to approximate the input. iGTP is trained by 

optimizing the reconstruction loss as the KL divergence loss as below, 

𝑙𝑜𝑠𝑠 =  ෍ ෍ MSE(𝑋, 𝑋)

௣

௝ୀଵ

௡

௜ୀଵ

+ 𝛽 ෍ 𝐾𝐿൫𝑞(𝑍|𝑋)ห𝑝(𝑍)൯ 

Measuring Differential TP activity via Plaid-based Bayes Factor 

Different treatment conditions often triggers different activities and TPs. In order to identify such 

differential activity genes and/or TPs, we leverage the Bayesian Differential gene expression 

method inspired by Lopez et al.  

The method assumes that cells are independent, and employs a Monte Carlo sampling approach 

via random sampling of cells from the two treatment group, denoted as 𝑔௔ , 𝑔௕ respectively. For 

each transcriptome program 𝑞, the method builds two hypothesis for any pair of cells 𝑥௔ ∈ 𝑔௔ and 

𝑥௕ ∈ 𝑔௕,  

ℋ଴
௤

≔ 𝐸௚ൣ𝑍௔
௤

൧ > 𝐸௚ൣ𝑍௕
௤

൧; ℋଵ
௤

≔ 𝐸௚ൣ𝑍௔
௤

൧ ≤ 𝐸௚ൣ𝑍௕
௤

൧ 

to test if the transcriptome program q is different activation in the two cells from different conditions. 

The log-Bayes factor 𝐾 is defined as  



𝐾 ≔ log௘
௣(ℋబ

೜
|௫ೌ,௫್)

௣(ℋభ
೜

|௫ೌ,௫್)
, 

where the sign and magnitude of K denotes likelihood of each hypothesis and the significance 

level, respectively.  

To have a robust conclusion, the method aggregate the Bayes factors of a group of cells and 

compute their average. In iGTP, we use a threshold of 5 (K larger than 5) to denote significant 

differentiation of TP activity. The process of randomly sampling cells from different groups can 

introduce bias, especially when dealing with the presence of various cell types, some of which 

may have very small numbers. To address this challenge, we draw inspiration from the Geometric 

Sketching method proposed by Hie et al. Geometric sketching is a sampling method to summarize 

the single-cell transcriptomic landscape. The method highlights rare cell states compared to 

traditional uniform sampling methods. This approach allows us to subsample large single-cell 

RNA sequencing (scRNA-seq) datasets while preserving the representation of rare cell states. 

Geometric Sketching samples cells from cell types according to each cell type’s area of geometric 

plaid covering in the latent space. The sampling approach is less prone to bias by more evenly 

sampling according to cell types’s landscape, rather than uniform sampling which may 

underrepresent the rare cell types. 

Perturbation Prediction 

iGTP considers perturbation with unseen perturbed genes and iGTP TP embedding from a 

dataset with N cells D = {(g^i,P^i)}{n=1}^{N}, where g^i is gene expression of cell i and P^i stands 

for perturbated gene at cell i. Specifically, given a perturbation P, we firstly utilized GNN encoder 

f{pert}: Z -> R^{d} that maps each perturbed gene to d-dimensional vector. Concatenated with TP 

embedding vector generated with unperturbed cell, cross-TP MLP predicts perturbed gene 

expression.  

 

 



Figures and Figure Legends 

 

Fig.1. The iGTP Pipeline overview: The single-cell data is processed by the iGTP non-linear 

Encoder, generating the transcriptional program (TP) embedding (z) using reparameterization for 

input TPs. The Decoder consists of two layers: 1)The TP-Gene layer, 2)The Gene-Gene layer. 

Both layers apply a sparse matrix to the gradient to eliminate non-existent connections, leaving 

only the true connections. For instance, in the TP-Gene layer, the value is one if a gene is present 

in a given TP; otherwise, it's zero. During backpropagation, the weight of the true connection is 

retained, while all others are forced to zero. The two layers are used to reconstruct the gene 



expression within each cell, allowing each TP to be learned by TP-related genes and the gene-

gene interaction within those genes. The TP embedding Z is then extracted for visualization and 

differential TP analysis. Additionally, TP embedding Z can be concatenated with gene 

perturbation embeddings (embp) derived from one PPI-guided gene relationship graph. This 

graph is generated using genetic perturbation data and graph propagation of the genetic 

perturbation impact (P on gene Gp), constructed from Protein-Protein Interactions. The 

concatenated embeddings then go through two layers of Multilayer Perceptron (MLP), designed 

to link TPs with genes. This results in the model outputting altered gene expressions, which 

represent the predicted overall impact of perturbations on other genes. The top altered gene 

expressions are ordered and highlighted using a boxplot. Finally, the Layer 2 node values in the 

Decoder can be extracted for visualization and differential TP analysis. 

 

 

Fig.2. Benchmarking the model performance of iGTP on stimulated and resting PBMC 

dataset. First, we evaluate the ability of iGTP to distinguish between different cell types and 

stimulation statuses. Fig. 2a labels the cells on the t-SNE plot based on their cell types, while Fig. 

2b labels them based on the stimulation condition. In Fig. 2c, we label the score representing the 



activity of interferon beta in each cell. We observe that the interferon beta-stimulated cells have 

higher activity (red) compared to the unstimulated cells (blue). In addition, we found NK cells, 

Monocytes, and Dendritic cells with higher biological activity than other cells. Furthermore, in Fig. 

2d, we label the PPI score (ISH15 and IFNAR1) on the same map and find that stimulated T cells 

(CD4+ and CD8+) have lower activity than stimulated Monocytes. We also validated our results 

using conventional ssGESA (Fig. 2.e) and found similar results for the TP (stimulated by 

interferon-beta). In Figure 2.f, we plotted the volcano plot and labeled some important biological 

pathways (∣loge(Bayes factor)∣ > 3 & mean absolute difference (MAD) > 6). Additionally, a positive 

ln(Bayes factor) indicates a true positive (TP) with higher activity in stimulated cells than 

unstimulated cells. A higher MAD indicates a more significant difference within the latent space 

between stimulated and unstimulated cells.  We also confirm the correlation between the Bayes 

factor and NES (GSEA) in Figure 2.g. This correlation is observed in two different cell types, CD8 

T cells and CD14+ Monocytes, on highly differentiated TP according to the results from Bayes 

factor. In Fig. 2.h., we compared several state-of-the-art benchmark metrics with ssGESA, VEGA, 

and iGTP using scVI metrics. 

 



 

Fig.3. TP embeddings characterize biological activities of brain-related and AD-related 

functions. a. Heatmap for visualizing the mean TP embedding values in each cell type and 

condition for 14 representative TPs for brain-related and AD-related functions. The mean TP 

embedding values were conducted z-score transformation within each TP. b. Dot plot visualizing 

the cellular relationship in TP embeddings between two TPs across two cell types, stratified by 

AD in red and CN groups in blue. c. Dot plot visualizing the cellular relationship in TP embeddings 

between two PPI pairs across two cell types, stratified by AD (red) and CN (blue) groups. d. 

Heatmap for visualizing the mean TP embedding values in each cell type and condition for the 



top 15 most differential TPs in AD and CN from GO TP sets. The mean TP embedding values 

underwent a z-score transformation within each TP.  e. Dot plot visualizing the cellular relationship 

in TP embedding values between two top TPs across two associated cell types, stratified by AD 

(red) and CN (blue) groups. f. Dot plot visualizing the cellular relationship in TP embeddings 

between two TP PPI pairs across two associated cell types, stratified by AD (red) and CN (blue) 

groups.  

 

 

Fig4. Prediction performance of intra- and inter- sample for representative TPs and PPIs.  

a. Distribution of TP activities in COVID-19 PBMC training samples, alongside predictions of intra-

sample activities in the testing dataset. Specifically, the sample source labeled with an asterisk 

(*) represents the unseen intra-sample (testing sample) from the same COVID-19 PBMC dataset. 

For this testing sample, TP activity predictions were made using a pretrained model, which was 

trained on all other cell types. Two TPs were used to demonstrate the related biological 

mechanism in CD14+ monocytes and dendritic cells, respectively. b. Bar plot for each cell type 

shows the distribution of Pearson correlation coefficient (r) between the Bayes factor (BF) of 

selected TPs from GO in pretrained samples and the corresponding predicted TP BF values for 

the unseen intra-samples (testing sample) on the same COVID-19 PBMC dataset. c. Bar plot for 



each cell type shows the distribution of Pearson correlation coefficient (r) between the PPIs of the 

selected 8 TPs from GO in pretrained samples and the corresponding predicted PPI BF values 

for the unseen intra-sample (testing sample) on the same COVID-19 PBMC dataset. d. 

Distribution of TP activities in COVID-19 PBMC training samples, alongside predictions of inter-

sample activities in the Kang et al. PBMC dataset. Specifically, the sample source labeled with 

an asterisk (*) represents the unseen intra-sample (testing sample) from Kang et al. PBMC 

dataset. For this testing sample, TP activity predictions were made using a pretrained model, 

which was trained on all cell types from COVID-19 PBMC dataset. Two TPs were used to 

demonstrate the related biological mechanism in CD14+ monocytes and dendritic cells, 

respectively. e. Bar plot for each cell type shows the distribution of Pearson correlation coefficient 

(r) between the BF of selected TPs from GO in pretrained samples and the corresponding 

predicted TP BF values for the unseen inter-sample (testing sample) of the Kang et al. PBMC 

dataset. f. Bar plot for each cell type shows the distribution of Pearson correlation coefficient (r) 

between the PPIs of the selected 8 TPs from GO in pretrained sample and the corresponding 

predicted PPI BF values for the unseen intra-sample (testing sample) of the Kang et al. PBMC 

dataset. 

 



 

Fig5. The Comparison between GEARS and iGEARS on the perturbation prediction  



 iGTP perturbation (iGEARs) assesses the change in gene expression and benchmark with 

GEARs. a&b, Changes in gene expression in iGEARs and GEARs. Violinplot and Boxplot indicate 

experimentally measured gene expression difference after perturbing the corresponding gene, 

where 10 genes (bold) are identified from top 20 post-perturbation genes in response to 

perturbation. Genes were ordered by change magnitude. The red dots show the mean change in 

gene expression predicted by our model. The green dotted line represents unperturbed control 

gene expression. a shows top 20 variated genes after perturbation on gene MAPK1 in iGTP.  c. 

We investigated the change in gene expression over MAPK1 perturbation. We tested whether 

genes in the TP group containing MAPK1 or genes in the TP group excluding MAPK1 differed 

significantly, using t-tests and U-tests to compare their mean differences. 



 

Fig6. Model performance and interpretability for TP, PPI, and gene on Kang et al. PBMC 

dataset. a. Benchmark prediction as stimulated cell label on Kang et al. PBMC dataset. b. SHAP 

value derived from XGBoost, utilizing all TP embedding z values as the features (X) and the 

cellular state (either 'stimulated' or 'control') as the label (Y). Beeswarm plot for the top 10 TPs 

with the biggest absolute SHAP values and the sum of all other features. c & d, Barplot for top 10 



MAD difference of PPIs derived from stim vs ctrl states in CD14+ Monocyte and  CD8 T cell for 

“GO:0035455: response to interferon-α” and “GO:0034340: response to type I interferon”, 

respectively.  e. Sankey diagram illustrated relative weight flow in decoder of iGTP framework for 

TP “GO:0035455: response to interferon-α” and their related genes within TP, showing how TP 

embeddings towards reconstruction of gene expression levels through PPIs.  
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