Abstract
Characterizing the genetic mechanisms underlying Alzheimer’s disease (AD) dementia is crucial for developing new therapeutics. Proteome-wide association study (PWAS) integrating proteomics data with genome-wide association study (GWAS) summary data was shown as a powerful tool for detecting risk genes. The identified PWAS risk genes can be interpretated as having genetic effects mediated through the genetically regulated protein abundances. Existing PWAS analyses of AD often rely on the availability of individual-level proteomics and genetics data of a reference cohort. Leveraging summary-level protein quantitative trait loci (pQTL) reference data of multiple relevant tissues is expected to improve PWAS findings for studying AD.
Here, we applied our recently developed OTTERS tool to conduct PWAS of AD dementia, by leveraging summary-level pQTL data of brain, cerebrospinal fluid (CSF), and plasma tissues, and multiple statistical methods. For each target protein, imputation models of the protein abundance with genetic predictors were trained from summary-level pQTL data, estimating a set of pQTL weights for considered genetic predictors. PWAS p-values were obtained by integrating GWAS summary data of AD dementia with estimated pQTL weights. PWAS p-values from multiple statistical methods were combined by the aggregated Cauchy association test to yield one omnibus PWAS p-value for the target protein. We identified significant PWAS risk genes through omnibus PWAS p-values and analyzed their protein-protein interactions using STRING. Their potential causal effects were assessed by the probabilistic Mendelian randomization (PMR-Egger).
As a result, we identified a total of 23 significant PWAS risk genes for AD dementia in brain, CSF, and plasma tissues, including 7 novel findings. We showed that 15 of these risk genes were interconnected within a protein-protein interaction network involving the well-known AD risk gene of APOE and 5 novel findings, and enriched in immune functions and lipids pathways including positive regulation of immune system process, positive regulation of macrophage proliferation, humoral immune response, and high-density lipoprotein particle clearance. Existing biological evidence was found to relate our novel findings with AD. We validated the mediated causal effects of 14 risk genes (60.8%).
In conclusion, we identified both known and novel PWAS risk genes, providing novel insights into the genetic mechanisms in brain, CSF, and plasma tissues, and targeted therapeutics development of AD dementia. Our study also demonstrated the effectiveness of integrating public available summary-level pQTL data with GWAS summary data for mapping risk genes of complex human diseases.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the National Institutes of Health (NIH), National Institute of General Medical Sciences (NIGMS, R35GM138313, for T.H., Q.D., and J.Y), and National Institute on Aging (NIA, AG071170, for Q.D. and M.P.E.). The authors would like to thank the ROS/MAP studies for providing whole genome sequencing data (available with approved access from https://doi.org/10.7303/syn10901595) that are used to generate reference LD matrices for implementing the OTTERS tool.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The source data were openly available before the initiation of the study. Summary-level pQTL data of brain, CSF, and plasma tissues can be accessed by emailing niagads{at}pennmedicine.upenn.edu to set up an FTP transfer of the data. OTTERS tool is available from https://github.com/daiqile96/OTTERS. PMR tool is available from https://github.com/yuanzhongshang/PMR. The code used in this study for conducting PWAS of AD dementia are available from GitHub https://github.com/tingyhu45/PWAS_OTTERS. Trained pQTL weights by five PRS methods and our PWAS summary data will be deposited to SYNAPSE once this work is accepted.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes