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Abstract  

Background: Machine learning is nowadays commonly used for disease prediction, including 

cardiovascular disease. There is growing evidence of the effectiveness of machine learning 

algorithms for stroke risk prediction models.  

Aims: A systematic review was conducted to identify and comprehensively evaluate the 

available evidence.   

Summary of review: Relevant studies were identified from the three electronic databases (i) 

MEDLINE via Pubmed, (ii) Scopus, and (iii) IEEE Xplore from inception to 1st December 2020. 

Out of 12,626 studies identified, 40 used machine learning for ischemic or hemorrhagic stroke 

risk prediction models. Synthesis without meta-analysis identified that a boosting algorithm 

(median C-statistics = 0.9 (interquartile range [IQR]: 0.88-0.92)), and neural network (median C-

statistic = 0.80 (IQR: 0.77-0.92)) performed best among ML models in the low risk of bias 

studies. Moreover, a boosting algorithm also performed best in overall (both low and high risk of 

bias) studies (median C-statistic = 0.92 (IQR: 0.90-0.95)).  

Conclusions: The systematic review found promising results of the ML algorithm model 

performances compare with the gold standard conventional models, such as FSRP (C-statistic 

0.653) and revised FSRP (C-statistic 0.716). In term of the algorithm, boosting and neural 

networks are robust, but are considered as black-box models, since they are composed of non-

linearity and complex algorithms. It remains questionable whether a physician would adapt these 

algorithms to use in a real clinical setting. Moreover, less than half of the studies (16 out of 40) 

were at low risk of bias in our systematic review. More researches with good methodology and 
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study design, alongside explainable and good performance models, may become available in the 

future. 

Trial Registration Information: The International Prospective Register of Systematic Reviews 

(PROSPERO) database (ID: CRD42021234081). 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.28.24305014doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.28.24305014
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

5 

Introduction  

Stroke is commonly characterized by a sudden focal injury to the central nervous system, 

primarily a cerebral vascular event.1 Apart from significant stroke-associated mortality, 

morbidity can vary from minimal deficit to severe, including the bedridden or vegetative states. 

Seven million adults were reported having a stroke in the United States between 2013 and 2016,2 

approximately 795,000 people experiencing new episodes or recurrent strokes per year equating 

an incidence of  2.5% mostly (87%) due to ischemic stroke.3 Stroke represents a significant 

healthcare burden given the significant morbidity, and also its impact and suffering to relatives.4 

Stroke prevention can significantly reduce this burden. For effective prevention, it is necessary to 

accurately assess individual stroke risks.   

 

There are multiple risk factors associated with stroke, given the different pathological pathways 

involved in the disease process.5 While the Framingham Stroke Risk Profile is a widely used 

model which predicts the 10-year likelihood of stroke risk for men and women based on eight 

risk factors (i.e., age, systolic blood pressure, antihypertensive therapy, diabetes mellitus, 

cigarette smoking, cardiovascular disease, atrial fibrillation, and left ventricular hypertrophy),6 

the INTERSTROKE group suggested that these modifiable risk factors were responsible for 90% 

of the stroke population-attribute risk.7 Foremost, hypertension is the most important modifiable 

risk factor of hemorrhagic stroke, whereas smoking, diabetes mellitus, hypercholesterolemia, and 

cardiac concerns are more critical factors in ischemic stroke. Globally, high systolic blood 

pressure is a leading single risk factor for developing stroke (57%; 95% CI: 49.8% - 64.4%), 

while metabolic risks (e.g., body mass index, systolic blood pressure, plasma glucose, cholesterol 

level) accounted for 72.1% (95% CI: 66.4% - 77.3%).8 
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Some of the risk factors of stroke are not modifiable (e.g., ethnicity, age, sex, etcetera), whereas 

others are modifiable (e.g., hypertension, diabetes mellitus, smoking, dyslipidemia, alcohol 

consumption, etcetera), which could be improvable thereby enabling improved risk factor control. 

Several risk prediction models have been developed from general adult populations (e.g., 

Framingham Stroke Risk Profile (FSRP),6 revised FSRP,9 or Copenhagen City Heart Study,10 

and from specific disease (e.g., HAS-BLED,11 CHAD2 score,12 CHAD2S2-VASc,13 etcetera for 

atrial fibrillation). Most of the widespread risk prediction scores were developed using 

conventional statistical approaches using regression modeling, which assumes linear associations, 

but that may not always be a valid assumption.14 In addition, those risk factors may modify each 

other, and so might limit conventional regression approaches. In addition, the conventional 

model is sometimes limited to appropriate capture of non-linear relationships. That is one 

concern which can be addressed through machine learning (ML) approaches.15 Nevertheless, ML 

algorithms do not always offer improved modeling beyond traditional statistical approaches.16,17  

 

Nowadays, there is advanced and widespread use of ML models in multiple healthcare fields. In 

addition, predictive modeling using MLs and data mining of real-world data (RWD) (e.g., 

electronic health record (EHR), health surveys, administrative claims data) is growing, as well as 

the development of stroke risk prediction modeling. However, there are many aspects to consider 

while developing and validating a risk prediction model (e.g., type of study population, study 

design, variables and measures, model algorithm, model evaluation, etcetera), which can affect 

the model performance and applicability but varied between studies. Though there are growing 

papers using ML in stroke risk prediction models, they are less widely applied in clinical practice. 
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This might be due to multi-factors including  research quality, the explainability of the ML 

model, different settings, and lack of external validation. Therefore, a systematic review of 

stroke risk prediction models developed from the ML models was conducted to identify the key 

features used, type of ML models, study phase (derived, internal/external validations), and model 

performance in ischemic and hemorrhagic strokes.  

 

Methods 

The Preferred Reporting Information for Systematic Reviews and Meta-Analysis (PRISMA) 

protocol was followed to conduct this systematic review which was registered with 

the International Prospective Register of Systematic Reviews (PROSPERO) database (ID: 

CRD42021234081). 

 

Patients and Public Involvement 

Patients and the public were not involved in any way. 

 

Search strategy 

The author (S.L) was in charge of searching the relevant studies from three electronic databases 

(i) MEDLINE via Pubmed, (ii) Scopus, and (iii) IEEE Xplore® since inception to 1st December 

2020. Search terms and strategies were constructed based on the Patients, Intervention, 

Comparator, and Ooutcome framework18; see Supplemental Table 1. 
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Study selection 

The search results were imported to the EndNotetm 20. The author (S.L) and another group of 

reviewers (C.S, N.P, T.S, M.Y) independently screened the titles and abstracts based on the 

eligibility criteria. Inconsistent results were discussed among the team, disagreements were 

resolved by a member of the second group not involved in the screening.  

Studies published in any language were eligible if they met following criteria: Constructed a 

stroke risk prediction model in adults (≥18 years), had at least two risk features considered 

within the predictive model, applied any ML algorithm, reported model performance in terms of 

calibration or discrimination, and had the outcome as acute ischemic or hemorrhagic stroke.  

 

Studies were excluded with the following criteria: aimed to assess the association between risk 

features and stroke without constructing a risk prediction model, had outcome as various stroke 

(e.g., venous sinus thrombosis, Moyamoya syndrome, or hematologic disease),   combination of 

stroke with others (e.g., cardiovascular disease (CVD), major advanced cardiovascular event 

(MACE), acute myocardial infarction, or peripheral arterial disease), published in non-English 

language which could not be translated by Google translation. 

 

 

Data extraction and assessment of risk of bias 

Two reviewers (S.L and C.S) independently extracted study design (e.g., pro-retro-spective 

cohorts, nested case-control), study phase (derived, internal/external validations),  type of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.28.24305014doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.28.24305014
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

9 

outcome and measures, follow-up time, predictors (e.g., numbers, types (continuous / 

categorized), timing, selection), missing data handling techniques, models (type of statistical or 

ML models), discrimination performance (C-statistics, sensitivity, specificity, precision, 

accuracy), calibration performance, and interpretation. (e.g., using the model compared to other 

studies). 

 

Quality assessment 

The risk of bias (RoB) was assessed independently by two reviewers (S.L. ad C.S.) using the 

prediction model study risk of bias assessment tool (PROBAST) checklist.19 The tool evaluates 

four domains (i.e., participants, predictors, outcomes, and analysis). Each domain assesses both 

RoB and applicability, except the analysis domain that only assesses RoB. We graded the overall 

RoB and applicability as ‘low’ if all domains were rated as a low, ‘high concern’ if at least one 

of the domains was regarded as high, and ‘unclear’ if there was insufficient information. The 

inconsistent grades were solved by discuss and consensus between two reviewers. 

 

Data synthesis 

Findings  of reviews were described following the guideline of Synthesis without meta-analysis 

(SWiM).20 The model performance  included C-statistics, sensitivity, specificity, and accuracy 

which were described by study phases and RoB groups.   
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Results 

Study search 

A total of 12,626 records were identified, of which 40 studies met the eligibility criteria, and 

reasons for ineligibility are described in Figure 1. We obtained a high level of agreement 

between reviewers (97.6%).   

  

Dataset and methodology 

Supplemental Table 2 summarizes the characteristics of the 40 studies included. A total of 

2,340,341 patients were included from the 40 studies, with 26,929 stroke events. However, 

several studies used the same public dataset, e.g., the Kaggle data.21-27 The median number of 

included risk features was 14 (range: 6 - 2007), with a median follow-up time of three years. 

Most studies were based on model derivation phases, and only a single study performed both 

derivation and external validation phases. Most studies included participants from all age ranges, 

while four studies focused only on the elderly (age 65 or older) and a single study on younger 

participants (age 25-45 years). In terms of risk participants with underlying disease, two, three, 

one, and two studies included only carotid stenosis, atrial fibrillation, hypertension, and recurrent 

stroke, respectively. In terms of dataset sources, 16 and 16 studies were single-center and 

multicenter sources, and eight studies used data from Kaggle public ML datasets 

(https://www.kaggle.com/datasets) and University of California, Irvine (UCI) 

(https://archive.ics.uci.edu/ml/index.php). The largest dataset was from the National Health 

Insurance Research Database (NHIRD), Taiwan,28-30 which was electronic medical claimed data. 

Of the 40 studies included, the study designs were retrospective cohorts (N=24), prospective 
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cohorts (N=4), case-controls (N=9, and nested-case-controls (N=3). All features used for 

developing models were structural data.  

 

Regarding the missing data, 27 of the 40 studies did not either clearly report the extent of 

missing data nor how the missing values were dealt. Among the 13 studies that considered the 

missing data, seven used deletion, and three used mean imputation, whereas the rest studies used 

various methods of imputation. Less than half of the included studies had reported participant 

characteristics, see Supplemental Table 2. 

 

Risk of Bias 

Details of the studies’ participants and designs for evaluating PROBAST domains are provided 

in Supplemental Table 3. Many studies fell in unclear RoBs for the analysis domain due to 

multiple criteria relating to this domain including described how the model was developed and 

validated, how the performance was measured, or how missing values were reported and handle, 

etcetera. Regarding the missing data issues, the most common method identified included 

deleting or using mean imputation given most studies did not clearly state how the missing data 

were treated. Therefore, 19 and 18 studies were of ‘low concern’ in the participant and analysis 

RoB domains, respectively, while nine studies were of ‘low concern’ for overall judgment of 

both RoB and applicability, see Figure 2. Inappropriate or missing follow-up timing made some 

studies fall into the high or unclear outcome RoB domain, while poor assessment and evaluation 

degraded some studies in predictor RoB domain.  We also considered the relaxed criteria of low-

RoB, if studies had no more than a single ‘unsure’ overall RoB applicability concern, and 16 

studies fell within this category.  
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Additionally, concerning the PROBAST evaluation, ten, ten, and twenty studies were 

categorized as low, unsure, and high overall judgment for RoB, respectively. There were twenty-

four, five, and eleven studies in the low, unsure, and high RoB categories for applicability, see 

Figure 2 and Supplemental Table 4. Details of RoB stratified by model are provided in ML 

algorithms subsection below. 

 

 

Feature selection and feature engineering 

Various methods were applied for feature selection, see Supplemental Table 5. Hence, the most 

common structural features used were age, gender, hypertension, diabetes mellitus, smoking, 

alcohol consumption, history of CVD, body mass index (BMI), and blood sugar. Four studies 

used forward/backward eliminations,31-34 six studies used principal component analysis 

(PCA),23,24,35-38 four studies used information gain,28,38-40 and three studies used the Chi-Square 

test to select the relevant risk factors or features27,41,42; and the rest used various methods, e.g., 

correlation, least absolute shrinkage and selection operator (LASSO), specific algorithm, and 

medical knowledge from standard guidelines, etcetera. 

 

ML algorithms 

The seven most frequent models used were (i) Neural network (NN) in 24 studies (10 studies 

were low RoB) (ii) Support vector machine (SVM) in 20 studies (8 studies were low RoB), (iii) 

Decision tree (DT) in 12 studies (7 studies were RoB) (iv), Regression in 11 studies (7 studies 

were low RoB), (v) Random Forest (RF) in 10 studies (8 studies were low RoB), (vi) Naïve 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.28.24305014doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.28.24305014
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

13

Bayes in 9 studies (3 studies were low RoB), and (vii) Boosting in 6 studies (5 studies were low 

RoB). Considering only for the best outcome, or the preferred model if there was no comparison, 

15 studies used NNs, nine used SVM, six studies used only regression, and two studies each used 

RF, DT, and Boosting. NN architecture is usually comprised of 1-3 hidden layers with varying of 

the number of neurons. 

 

Evaluation methods 

Most studies use standard data splitting for evaluation. Nineteen studies split the data into train-

test or train-validation-test sets with ratios of 60:40 to 90:10. A total of 14 studies used 5- or 10-

folds cross-validation, two used leave-one-out cross-validation, and the remaining did not report. 

In terms of evaluation metrics, most studies used common evaluation metrics for risk prediction 

model, with C-statistics or area under ROC curve, sensitivity, specificity, and accuracy; while 

fewer reported precision, F-score. 21,22,26,27,32,34,36,39,41,42 

 

A summary of the evaluation metrics is described in Supplemental Table 5. The boosting 

algorithm provided the best overall median C-statistic of 0.92 (IQR: 0.90-0.95), followed by 

SVM [median C-statistic= 0.85 (IQR: 0.74-0.94)] and NN [median C-statistic= 0.78 (IQR: 0.75-

0.91)]. In low-RoB studies, the boosting algorithm remained the best performing with a median 

C-statistic of 0.90 (IQR: 0.88-0.92), followed by NN with a median C-statistic of 0.80 (IQR: 

0.77-0.92).  

 

Concerning sensitivity, RF and Boosting both performed well in all studies with median values 

of 0.89 (IQR: 0.88-0.92) and 0.89 (IQR: 0.89-0.92), respectively, with both ML models 
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performing well in the low RoB group, with corresponding median values of 0.89 (IQR: 0.88-

0.92) and 0.89 (IQR: 0.87-0.90). For specificity, the SVM and logistic regression models 

performed best in all studies with median values of 0.82 (IQR: 0.75-0.98) and 0.79 (IQR: 0.70-

0.89), respectively. The SVM and NN models performed best in the low RoB group with median 

values of 0.75 (IQR: 0.74-0.79) and 0.75 (IQR: 0.33-0.80). One study provided model calibrating 

with Hosmer-Lemeshow test.39 Summarized model performances are in Figure 3. 

 

The key features vary between studies and the dataset. Most common key features are age, 

gender, smoking, heart disease, hypertension, BMI, diabetes mellitus, blood sugar, and work 

type. Details are provided in Supplemental Table 6. 

 

Discussion 

A systematic review was performed to evaluate ML performance for stroke risk prediction 

modeling. NN, SVM, and decision tree are the three most common ML models, while logistic 

regression was used both in ML and conventional statistical models. The number of features 

ranged from 6 to 2007, while the most common data splitting is train-test splitting and 10 folds 

cross-validation, with one study external validating the model. 

 

Comparing ML algorithms was complicated due to the heterogeneity of datasets, with different 

features and methodologies used. Despite the SWiM method can provide a direction for data 

synthesis,20 it still lacks a strong numerical procedure as a pulling method in a meta-analysis. 

Nevertheless, this systematic review gave some insights into the ML stroke risk prediction model. 

Our review found promising results of the ML algorithm performances compare with the gold 
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standard conventional models, such as FSRP (AUC=0.653) and revised FSRP (AUC=0.716). 

Among ML algorithms, it was found that the boosting and NN algorithms performed best in 

terms of discriminative performance C-statistics. In a CVD meta-analysis, Krittanawong et al.,43 

reported that SVM, boosting algorithm, and convolution neural network had the highest pooled 

C-statistic for stroke prediction. At the same time, this analysis yielded a close result between 

boosting and SVM in general studies. NNs, like most MLs, are versatile insofar as they can 

capture non-linear associations and are more robust than a standard statistical model to the 

effects of multicollinearity between included parameters, meaning the weighting of individual 

parameters is of less importance coupled with some loss of explainability.44 The gradient 

boosting tree model is also considered robust to the features correlated since the model grows a 

small tree that works greedily so that the redundant features are not selected. NNs are 

comparable to boosting, when there is sufficient data with good fine-tuning of the 

hyperparameters. The discriminatory C-statistics offers measures of model sensitivity and 

specificity, with the former particularly important. A false positive (patients that did not have a 

stroke, but were predicted by the model as having a stroke) is preferred to a false negative 

(patients did have a stroke, but were classified as not having a stroke by the ML model). When 

compared between studies, it was also necessary consider this issue. The sensitivity and 

specificity trade-off depend on the cut-off value, so it is reasonable to look at the C-statistics first. 

The higher the discriminatory power of C-statistics, the lower the sensitivity and specificity 

trade-off. In this review, RF is another ML algorithm that achieved good sensitivity. RF 

generates a ‘forest’ of decision trees with a random subset of features. However, overall 

performance was diminished by low specificity or reported high false-positive findings. 
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There is a concern regarding the black-box nature of ML approaches, given the lack of 

understanding around the variables combined within the model. These findings indicate that the 

best-performing models (e.g., NN, SVM, RF, Boosting) were the models whose results cannot be 

explained easily. In contrast, regression analysis is considered a transparent parametric modeling 

approach, but with poorer performance. Further research is ongoing to explain ML and AI 

approaches better and improves model transparency. Lipton45 discussed the “understanding” and 

“interpretability” in many aspects as they might have paramount differences for the user 

concerning which part they try to understand. While Montavon46 focused on post-hoc 

interpretability and gave definitions of “interpretation” and “explanation”; Interpretation is 

mapping to human concepts which are able to understand, such as text or image’s pixels input 

are interpretable, but abstract features such as word embedding are not. On top of interpretation, 

an explanation is a relevance score given to each interpretable feature, such as a heatmap or 

features’ weight. Regarding this concept, a decision tree classifier is more explainable due to the 

solid scores given in hierarchical order, while NNs might need a heatmap which varies between 

individual data. In a clinical setting, physicians and patients need an explainable model, so they 

can focus on giving a certain treatment and make modifications to lifestyles to lower the risk of 

the disease. The standard risk prediction model, such as FSRP has a scoring of each feature, 

which is highly and directly explainable and still widely used. Two studies compared the ML 

model with FSRP, and the ML model gave a better performance in exchange for the loss of 

explainability. 39,47 However, recent research on model interpretation such as LIME, 48 SHAP, 49 

or developing transparent models such as InterpretML, 50 or AIX360 51 might help clarify and 

make the models more explainable. We still haven’t noticed many papers recognizing the 

importance of explainability in the ML risk prediction model. 
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Heterogeneity of data used for model development is one of the major cause of diverse results. 

Different data have different sets of features which resulted in different performance. For 

example, many studies used  public datasets such as Kaggle, resulting in more weight inputting 

on their available features in overall key features pooling. We strongly encourage more external 

validation research to overcome this heterogeneity problem. On the other hand, most of the 

studies included cross-sectional data, which lacked time to event evaluation afforded by 

longitudinal data. Time to the event is important given the significance of age as a major risk 

factor. Age and length of follow-up period represent important timing features, especially for 

individuals attending regular health check-ups, particularly at a young age or early-stage disease 

onset. The inclusion of such information would likely improve model performance. Only 

fourteen studies were found that reported the follow-up time, see Supplemental Table 2. Chen-

Ying et al., 28 use timestamp of features for temporal representation, i.e., 6-month or 1-year value. 

Although the time can be integrated into the model, feature correlation and multicollinearity will 

occur. Feature selection and choice of ML algorithm can help combat a correlation problem as 

we described above, but again, explainability might be lost. Moreover, the influence of many risk 

factors varies over time, and consideration of such changes within dynamic ML modeling would 

offer a more accurate reflection of real-world data related to individual-level stroke risk. It 

should be encouraged with modeling approaches, where sufficient data is available. Longitudinal 

data modeling using a specific model such as Linear Mixed Model or Recurrent Neural Network 

(RNN) could be beneficial.  
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Many of the studies included also had imbalanced datasets, which reflected the real-world 

situation that only minor patients develop stroke in the dataset. It might be hard for the model to 

learn an effective function to predict stroke regarding this issue. Ten studies used up or down-

sampling techniques, 21,23,24,26,27,29,30,37,52,53 such as a synthetic minority over-sampling technique 

(SMOTE) to balance or smooth the data, 54 while others did not. Care is required when 

evaluating highly unbalanced data. The C-statistic and model accuracy may reflect a false level 

of competency if the positive class is a common class, but this is less likely in some clinical 

events. A better metric for future consideration would include the precision-recall (PR) curve in 

low incidence diseases,55 such as stroke, since the PR curve considers both positive in terms of 

recall and negative classes in terms of false-positive while varying its threshold. In other words, 

the PR curve switches from false-positive rate (FPR) in the ROC curve to precision, which is a 

different view since low FPR often means a better model, but low recall means a worse model. 

Since an imbalanced dataset tends to have a low FPR by its nature, using a ROC curve might 

provide an overoptimistic view of the model. 

 

Like many systematic reviews, the quality of studies included was of concern. Many of those 

considered had high RoBs, with only 16 out of 40 studies within our research considered in the 

low-RoB group. Also, many studies failed to report any participant characteristics (Supplemental 

Table 3), with only 17 out of 40 providing information, though many only provided partial 

reporting. A further cause for concern from publicly available data is the lack of or limited 

information available regarding data collection, especially if unpublished. For instance, a high 

proportion of missing data for some variables, such as smoking status in the Kaggle dataset, 

where 30% was missing. In this instance, the lack of explanatory data obscures the mechanism of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.28.24305014doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.28.24305014
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

19

missingness and determination of whether this may be due to randomness or otherwise,56, 

especially where current smokers may be reluctant to answer, in contrast to missingness due to 

random events. Modeling under such circumstances and a lack of knowledge surrounding data 

attributes would likely lead to limited sensitivity and specificity. A large, transparent, and open 

public real-world dataset is needed to tackle this problem. 

 

Feature selection and feature engineering form the center of ML modeling, although they 

contrast insofar as the former tends to reduce, while the latter tends to multiply. Feature 

engineering is an approach widely used in ML prediction which aims to change the angle of how 

the model looks at the data. Feature selection is an essential tool to limit issues associated with 

multicollinearity, especially with highly correlated risk features. That type of model can also 

prove influential, with NN less affected by multicollinearity, with regression modeling more 

vulnerable. Details of feature selection are presented in Supplemental Table 5. For instance, Li et 

al.,57 used various feature selection methods and ML algorithms to construct a two-year risk 

prediction model for ischemic stroke and other thromboembolism events in atrial fibrillation 

patients achieving a higher C-statistic (0.71-0.74) than the standard Framingham or CHA2DS2-

VASc models (0.66-0.69) using the standard cox/logistic regression model. PCA is another 

popular approach with one of the included studies comparing a priori and a posteriori 

MedDietScore using PCA-derived food groupings through ML models, which generated 

comparable C-statistics for both approaches, although multiple logistic regression was only 

slightly improved.35 
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Even if NNs address the issue of multicollinearity, they are still limited by the lack of 

transparency or the rationale for feature inclusion, which is especially important in healthcare 

settings. Using the causal feature to avoid or limit potential confounders is preferential. Although 

more studies using NNs may offer improved clarity or explainability compared to the past, we 

were unaware of any that met the inclusion criteria for our systematic review. Sometimes, the 

predictive performance is prioritized by policymakers, with the most robust model accuracy 

preferred over feature explainability. Nevertheless, for health promotion or individual treatments, 

both clinical transparency and accuracy are still preferred to provide patient clarity concerning 

modifiable behaviors. 

 

Model validation is crucial for developing risk prediction models to combat the overfitting 

problems, yet we found only a single study that had undertaken external validation and several 

studies that provided internal calibration. Data sharing should be encouraged to facilitate 

independent external model validation to test generalizability. More studies are expected in 

specific disease classes with higher stroke risk, such as atrial fibrillation, carotid stenosis, or 

transient ischemic attack. Furthermore, the novel biomarker, e.g., N-Terminal Pro-B-Type 

Natriuretic Peptide,58 C-reactive protein,59 could be considered in future studies where available 

as it is considered a standard recommendation for CVD screening. Real clinical adaptation in 

stroke prediction using ML models is still lacking since it is still not yet in the standard practice 

guideline. A randomized controlled trial, a web or mobile application, a large high quality, and 

diverse study as well as recognizing of technology in the medical community would help the 

physician to adapt the technology to use and conduct more studies in real clinical settings. 
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Our findings should be scrutinized in light of several limitations. Firstly, the RoB in ML studies 

was high, especially concerning the participants' domain. Many studies used public datasets with 

insufficient information on data collection or participant characteristics. Additionally, only eight 

out of 40 studies reported the accuracy in the analysis domain, which could mislead 

inexperienced readers, particularly for imbalanced datasets. 

 

Conclusion 

This systematic review found that the boosting and NN algorithms can help develop robust 

stroke risk prediction models. Notwithstanding, both models lose some clarity through a lack of 

explainability of the features included as a tradeoff, which is an important healthcare issue in 

research and application. Nevertheless, research on this issue is growing, and we expect to see 

improved transparency and more robust modeling in the future. Data quality and quantity and the 

research methodological approaches are essential issues to generate more accurate risk prediction 

modeling, particularly in real-world clinical settings.   
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