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Abstract
The tissue diagnosis of adenocarcinoma and intraductal carcinoma of the prostate (IDC-P)
includes Gleason grading of tumor morphology on the hematoxylin and eosin (H&E) stain, and
immunohistochemistry (IHC) markers on the PIN-4 stain (CK5/6, P63, AMACR). In this work, we
create an automated system for producing both virtual H&E and PIN-4 IHC stains from
unstained prostate tissue using a high-throughput multispectral fluorescence microscope and
artificial intelligence & machine learning. We demonstrate that the virtual stainer models can
produce high-quality images suitable for diagnosis by genitourinary pathologists. Specifically, we
validate our system through extensive human review and computational analysis, using a
previously-validated Gleason scoring model, and an expert panel, on a large dataset of test
slides. This study extends our previous work on virtual staining from autofluorescence,
demonstrates the clinical utility of this technology for prostate cancer, and exemplifies a rigorous
standard of qualitative and quantitative evaluation for digital pathology.

Introduction

Prostate cancer is the second leading cause of cancer death for men.[44] As for many cancer
types, the tissue diagnosis and treatment planning require biopsies, histochemical stains, and
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pathologic evaluation. In recent years, there has been an enormous interest in the use of
Artificial Intelligence, and in particular deep neural networks, in human pathology and in
Prostate Cancer specifically. Much work focuses on the use of segmentation and classification
models to aid in the diagnosis of histopathology images, and establishes that DNNs can
near-match or augment human pathologist evaluation. [13, 16, 17, 18, 19] Another use of AI in
the pathology diagnostic pipeline is virtual staining.[1, 2, 3, 4, 6, 7] Virtual staining is the artificial
synthesis or prediction of a histochemically stained microscopy image from another image, such
as another tissue stain, or from autofluorescence of unstained tissue. Virtual staining is a digital
technique that can optimize image data generation and conserve tissue specimens. The
combination of virtual staining with deep learning diagnostic models when applied to prostate
cancer could improve diagnostic consistency and save time in the patient journey. [7] However,
given that virtually-stained images are created by generative AI, the technology requires
extensive evaluation to establish clinical validity.

In this work, we use a custom-built high-throughput multispectral fluorescence
microscope to scan a dataset of 799 slides (796 unique cases). Serial (or near serial) slides
separately underwent H&E and PIN-4 IHC staining, and we trained two deep learning models to
predict those stains from the autofluorescence of unstained prostate tissue. We then evaluate
the virtual stains using both a reader study with a panel of 12 genitourinary pathologists, and
specific computational metrics. See Supplementary Table 1 for dataset split breakdown.

Prostate Cancer

Gleason grading
The focus of many segmentation networks for prostate cancer is Gleason grading. The
International Society of Urological Pathology (ISUP) grade group (GG) system[10] is a 5-tier
prognostic classification based on the modified Gleason scores (GS) and is used in the 2022
World Health Organization classification of prostate tumors[12]. Briefly, GG1 is GS of 6, GG2 is
GS 3+4=7, GG3 is GS 4+3=7, GG4 is GS of 8, and GG5 is GS of 9 and 10. These qualitative
grades inform treatment planning and are representative of increasing disease severity.

IDC-P
Intraductal carcinoma of the prostate (IDC-P) is a recently defined entity associated with poor
prognosis even though it is not a part of Gleason grading.[34] IDC-P is characterized by
preservation of basal cells, and malignant epithelial cells in prostatic acinar ducts forming
cribriform or micropapillary patterns with nuclear atypia or non-focal comedonecrosis. The
reproducibility of IDC-P diagnosis including challenges in distinguishing between IDC-P and
high-grade prostatic intraepithelial neoplasia (PIN) are current areas of research.
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PIN-4 IHC
PIN-4 immunohistochemistry (IHC) is a 2-color stain that is widely used in conjunction with H&E
in the evaluation of prostate biopsies. In PIN-4 IHC, basal cells are labeled in brown by
expression of cytoplasmic CK5/6 and nuclear P63, whereas tumor cells are labeled in red by
expression of cytoplasmic AMACR.[35] In prostate cancer diagnosis, PIN-4 IHC in combination
with H&E may aid IDC-P detection by pathologists.

Fig 1. a) We present an automated workflow with virtual staining and AI scoring that mimics the steps of the current
pathology workflow. b) The Virtual Staining pipeline uses a custom multispectral microscope to image unstained
tissue samples. Our deep learning virtual stainer model takes AF images as input and returns stains images that are
trained to look like real chemically stained tissue samples. c) Our AI scoring models use BF images of chemically or
virtually stained tissues to generate the Gleason grade group.

Methods

Data generation

Biospecimens and histopathology
All tissue was purchased from an independent pathology lab, and approved for research use. In
this study, the grade group distribution of the prostate biopsies was 19% benign, 25% GG1,
19% GG2, 16% GG3, 9% GG4, 12% GG5; and 20% of all biopsies contained IDC-P. Reports of
natural grade group distributions are relatively unbalanced, with high grade groups (GG4, GG5)
and IDC-P-positive biopsies each representing <5%. Enriching for less abundant grade groups
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and IDC-P allows for more comprehensive evaluation across the spectrum of Gleason grades,
and sufficient powering of the IDC-P endpoint.

The H&E stain was performed using the Tissue-Tek Prisma Automated Slide Stainer (Sakura
Finetek). PIN-4 IHC was performed using the BOND RX autostainer and ChromoPlex 1 Dual
Detection reagents (Leica Biosystems) as follows. Tissue sections underwent deparaffinization
and rehydration, followed by antigen retrieval in Epitope Retrieval Solution 2 (pH 9).
Endogenous peroxidases were neutralized by Peroxide Block. Primary monoclonal antibodies
against CK5/6 (1:600; KRT5.6/2438), P63 (1:200; 4A4), and AMACR (1:400; AMACR/2748R)
were co-incubated at room temperature for 30 min. Secondary horseradish peroxidase
(HRP)-conjugated and alkaline phosphatase (AP)-conjugated antibodies were incubated at
room temperature for 8 min and 20 min, respectively. Visualization of targets involved
3,3'-diaminobenzidine (DAB) HRP chromogen for 10 min, DAB Enhancer for 5 min, and Fast
Red AP chromogen for 20 min. Tissue sections were counterstained with hematoxylin for 5 min.
Finally, stained tissue slides were brightfield imaged using the Aperio GT 450 (Leica
Biosystems).

Autofluorescence imaging
The imaging system used for obtaining the AF images in this work was a custom-built
fluorescence microscope. Slides were loaded using an automated slide loader and scanned
using an automated stage. The system uses a low-resolution camera to acquire a widefield
image, identify tissue regions, and compute the scanning path. For high-resolution scanning,
multi-color excitation LEDs (from ultraviolet to red) were focused through the back of the slide to
provide uniform illumination over the microscope field of view. The sample was 2D-scanned to
cover the entire specimen. The resulting fluorescence from the sample was collected using a
microscope objective (20x, NA=0.8), spectrally split into multiple channels (from violet to near
infrared) using dichroic beam splitters, and imaged onto 2D sensors. The raw camera images
were combined into a single hyperspectral image after applying corrections including dark-frame
subtraction, glass fluorescence background subtraction, ghost image subtraction, flat-field
correction, and alignment corrections. The parallelized detection across emission wavelengths
combined with the high photon detection efficiency allow for a high signal-noise ratio to be
obtained with little photobleaching, and thus the scanning is non-destructive to the tissue.

Quality control
We applied multiple stages of quality checks to discard tissues and images to create a clean
dataset for training and evaluating the ML models. The first stage excluded slides with
insufficient tissue or suboptimal stain quality. The inspection also looked for tissue artifacts such
as folds, thick paraffin regions, debris, and contamination with fluorescent dyes. The second
stage on autofluorescence scans examined scan characteristics such as focus, intensity
uniformity and continuity across traverse boundaries, and tissue clipping. No clinical or
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identification labels were used in the filtering steps. All QC was based on prior experience in ML
for microscopy, and was done before any training of models.
After all the QC stages, we collected a total of 557 pairs of AF-BF images with H&E stains from
556 patients and 602 pairs of AF-BF images with PIN-4 stains from 549 patients.

Data splits
Data was split into three sets, in accordance with standard machine learning practice. TRAIN,
the training set, was used for the purpose of training the deep neural network. EVAL was used
to tune hyperparameters of the network, and for piloting downstream analysis. TEST is the set
that was reserved for final validation. All of the results reported in this paper are from TEST, and
they are the only analysis done on this set as of the writing of this manuscript. More details
about the splits can be found in Supplementary Materials.

Virtual Stainer Construction and Training
The virtual stainer model was a deep learning model inspired by the ‘pix2pix’ paired
image-to-image translation approach [7, 15] using a UNet and trained using both conditional
and unconditional GAN losses. In the sections that follow, we detail each component of the
training architecture, as shown in Figure 4.

Co-registration
The physical process of chemical staining and imaging produced changes in the configuration of
the tissue sample. Therefore the AF and BF images are not spatially aligned. We implemented a
co-registration process to align the AF and BF images, using an affine transform. This process
estimated the affine transform in 2 separate stages. 1) First it co-registered both images at low
magnification using their tissue masks. 2) It then iteratively refined the initial transform by
sampling several points from both images at higher magnifications. Relative shifts were
computed for each of the paired sampled points. These are then used to estimate a global affine
transform for that magnification. During the process of training, patches with low cross
correlation scores are discarded with some probability.

Input Normalization
We used all of the 20 channels from our hyperspectral microscope instrument. Next the
pair-aligned AF and BF stained gigapixel images were cut up into pairs of patches of size 128 x
128 pixels. Thus the input to the Virtual Stainer model was an AF image of shape 128 x 128 x
20 while the expected output is a BF image of shape 128 x 128 x 3. To account for local errors
in the coarse alignment between the AF and BF, we added a 16 pixel padding to each side of
the BF images to make them 160 x 160 pixel images. During training, we applied a shift
invariance loss (described below) to estimate the precise matching loss between the AF and the
padded BF images.
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Next, the AF images are normalized to range [0, 1] from range [0, uint16.max] and BF images
are normalized to [-1, 1] from range [0, 255].

Virtual Stain Generator
The core of the virtual stainer was a UNet neural network which takes a 128 x 128 x 20 patch of
AF image and returns the corresponding 128 x 128 x 3 patch of BF stained image (Figure X).
The UNet used 5 downsampling and 5 upsampling convolutional blocks. Each convolutional
block is composed of a convolution, batch normalization, dropout, followed by a convolution and
a batch normalization. In the downsampling blocks, each convolutional block was followed by a
downsampling 1 x 1 convolution with stride 2 to reduce the size of the featuremap while
doubling the number of channels. The dimension of the embedding created after the encoder
was 4 x 4 x 1024. In the upsampling blocks, each convolutional block was preceded by a
bilinear upsampling and channel mixing convolutional layer. The final output of the UNet was the
predicted virtual stain of dimensions 128 x 128 x 3, where the 3 channels correspond to RGB.

Shift-invariant regression loss
The generator network was optimized using a composite loss function that incorporated L1 and
L2 (MSE) losses on the pixel-wise difference between the generator output and the
corresponding ground truth BF images. To account for the inexact co-registration between the
AF and BF images, we implement an on-the-fly shift optimization to identify the best fit between
128 x 128 x 3 predicted images and 160 x 160 x 3 label images. Before calculating the
regression loss, we first calculated a moving cross-correlation between the predicted image and
label image and identify the location of highest correlation. Then the L1 and L2 loss were
calculated between the predicted image and 128 x 128 patch of the label image centered at the
point of highest correlation, and loss was back-propagated using this shift. This compensated
for small (<32 pixel) local deviations in the alignment between AF and BF images.

Rotational consistency loss
To make the output rotation invariant and prevent the model from learning an orientation bias,
we added a rotational consistency loss. This was implemented as the MSE loss between a
rotated virtual stain and the virtual stain produced from a rotated AF image. At each training
step, a random rotation, of either 90, 180 or 270 degrees, was applied to the pairs of virtual
stains and AF images and the resultant MSE loss was added to the total loss.

Unconditional adversarial loss
We trained an unconditional discriminator network that took the real chemically stained BF label
images (labeled 0) and virtually stained BF images predicted by the generator (labeled 1) as
input. The network is then trained to predict the label i.e. to differentiate between real and virtual
stains. The discriminator was trained using MSE between the discriminator’s predictions and the
label. This is the classic adversarial loss which increases as the generator gets better at making
realistic virtual stains and decreases as the discriminator gets better at differentiating between
real and virtual images. Therefore the minmax game between the generator and discriminator
forces the generator to produce highly realistic images in order to fool the discriminator. The
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discriminator neural network was made up of 4 convolutional blocks each consisting of 1 2D
convolutional layer, 1 ReLU layer, 1 batch normalization and 1 dropout layer.

Conditional adversarial loss
In addition to the unconditional discriminator, we also trained a conditional discriminator which
took the concatenated AF and BF image pair as input. During training, the discriminator got two
sets of inputs - the first set of inputs used the AF images paired with the corresponding real
chemically stained BF images (labeled 0) while the second set used AF images with the
corresponding virtually stained BF images predicted by the generator (labeled 1). Again, the
discriminator was trained using least squares loss to predict this label (i.e. discriminate between
real and virtual BF images), this time, conditioned on the AF image. The discriminator neural
network was made up of 4 convolutional blocks each consisting of 1 2D convolutional layer, 1
ReLU layer, 1 batch normalization and 1 dropout layer.

Training
We conducted hyperparameter tuning on the evaluation dataset to identify the best
hyperparameters. The final set of hyperparameters had dropout at 0.1, batch normalization
momentum at 0.8. The convolutional kernel sizes were fixed at 3 x 3 for the generator
downsampling blocks, 2 x 2 for generator upsampling blocks, and 4 x 4 for the discriminator
blocks. The end-to-end model was trained for 150,000 steps.

Virtual Stainer Evaluation
The problem of quantitatively evaluating the quality of images produced by generative AI is
neither new nor solved [CITE]. However, over time, a variety of techniques and metrics have
developed, and it is clear that there is no one-case-fits-all solution. Evaluation metrics can be
quantitative or semi-quantitative, general or purpose-fit. We compare the images produced by
our Virtual Stainer to ground-truth real images using a variety of different metrics, chosen
specifically with the clinic in mind. For both stain types, there is both a human-evaluation and a
computational evaluation. See Discussion for further expounding on the virtues of these metrics.

● We compare the automated Gleason Grade given to the real and virtual H&E images, by
a purpose-built artificial neural net. The neural net is only trained on real images from a
different dataset. Therefore, if it gives the same grades to these virtual and real images,
they likely contain similar biological information.

● While a purpose-built artificial grading system like the above is the gold standard of
computational analysis for generative images, no such network exists for PIN-4 images.
Therefore, for PIN-4, we use a battery of interpretable custom-built computational
metrics.

● We compare human Gleason grading of real and virtual H&E images, using standard
ORH. (See MRMC)
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● We compare human IDC-P diagnosis of real and virtual PIN-4 images, using standard
ORH. IDC-P is the most widely accepted semiquantitative clinical measure of PIN-4
stains.

By treating real and virtual images as two different conditions, and demonstrating that diagnostic
outcomes from clinicians are non-inferior, we provide a strong validation for the clinical use of
these virtual images. To further understand and characterize the degree to which the images
contain the same information, we further validate using our battery of computational metrics.

Gleason Grading Model for H&E Evaluation

We utilize a machine learning model previously described in [19] to automatically perform
Gleason grading. The model was developed on real H&E images that were not included in the
datasets used in this study. Automated Gleason grading is performed in two stages: Gleason
pattern segmentation, and summarization into core-level grade. Because the training data for
the model did not involve the BxChip format, manual annotation was included to segment the
biopsy tissue that is used by the summarization algorithm and exclude the non-tissue BxChip
region. The output of the model includes benign, GG1, GG2, GG3, GG4-5. The model does not
distinguish between GG4 and GG5 due to the original training data groupings, and this grouping
is preserved so that the results are comparable to the original publication.

Computational Metrics for PIN-4 Evaluation
To evaluate the virtual PIN-4 model, we lack a clinically-relevant AI algorithm. So instead, we
used a series of computational metrics. In this case, and in the case of generative image AI in
general, it is a non-trivial problem to determine an appropriate metric for image comparison. [5,
36] No metric is perfect, and any metric which has been an optimization target, is suspect of
being overfit. Furthermore, if two images are not perfectly identical, how do we determine if the
difference is a problem with the image, or a problem with the metric? Finally, there is a degree of
natural stain variation in valid staining protocols, as well as potential tissue distortion between
staining processes. In [5], the authors discuss many of these issues as they compare virtual
staining techniques, and they evaluate how different generic-image comparison metrics stack up
against human raters. We include many of these metrics, but also posit that if Virtual Stainer is
to be a circumstantial substitute to classic chemical staining protocols, we need to have a sense
of how much it differs from real stains, with respect to relevant biological information, and
whether this amount of variance is expected within real stains.

We address this challenge in two ways: First, we use metrics that have some degree of
human interpretability, most importantly, Jaccard Distance [33] evaluated on
biologically-meaningful segmentations derived using classic color deconvolution, and
precision/recall of segmented targets. (See Supplementary Methods) Second, we compare our
metrics on a control: PIN-4 staining using serial sections of a prostate tissue microarray (TMAs).
In pathological clinical practice, judgements about a case are considered valid on serial
sections.[11] We posit that for the practical clinical setting, metrics of differences between serial
sections are within what could be considered normal variation. As such, we present metrics for
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differences between real and virtual prostate patches, and compare these to the same metrics
evaluated on serial PIN-4 TMA images. TMAs are good candidates for this use case, as they
are constructed to represent a fixed distribution of reference tissues and patients while
minimizing wasted tissue.

MRMC H&E and PIN-4 Evaluation
Gleason grading is a subjective interpretation with 30-50% interpathologist discordances.
However, grading by genitourinary pathologists is more reproducible than general pathologists
without subspecialist training. Grading by the majority-vote of clinicians has also been shown to
improve reproducibility. As such, to obtain rigorous reference diagnoses for validation, each
biopsy was read independently by 2 genitourinary pathologists, and a third to break the tie if the
first two disagree. This creates our ‘reference standard’.

The pathologists reviewed a total of 421 TEST cases, in random order with a washout period
between real and virtual staining modalities of at least 4 weeks. Each pair is made up of a real,
chemically stained BF image and virtually stained image predicted from the AF image of the
same tissue sample. Thus for each tissue sample, we obtained 2 sets of grades - one graded
on real stains and one scored on virtual stains. In addition to the grades, pathologists have also
provided feedback on whether the stain quality met their clinical review standards, almost all of
which did, for either condition. (See Supplementary Figures 3 and 4)

For Gleason grading, the subspecialists classified the biopsy as: non-tumor (Benign, ASAP,
HGPIN), non-Gleason gradable variant, or Grade Group (GG) 1, GG2, GG3, GG4, or GG5. For
intraductal carcinoma of the prostate (IDC-P), the subspecialists indicated whether IDC-P is
present on the slide or not, as evaluated from the PIN-4 stained image. As such, the AI and
pathologist Gleason Grading proficiency were evaluated against the reference diagnoses as a
6-class classification, while pathologist IDC-P detection was evaluated as a binary (2-class)
classification.

Diagnostic data on both real and virtual stains were collected via a multi-reader, multi-case
(MRMC) study design (Figure 2). A total of 12 general pathologist readers provided GG and
IDC-P classifications as described in the ‘reference standard’.

The Obuchowski-Rockette-Hillis procedure, which is a standard approach for MRMC studies[32]
and accounts for the variance across both readers and cases, was used for non-inferiority (and
superiority) testing [30, 31, 32]. We used a non-inferiority margin of 0.1, which is strict for this
field [31]. Non-inferiority testing is the accepted standard in pathology for determining if a
diagnostic manipulation is clinically valid.
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Figure 2. Schematic of proposed multi-reader multi-case study with washout. Proposed
methodology for evaluation of both H&E Gleason Grade and PIN-4 IDC reviews by expert
pathologists.

Results

Multispectral Microscopy
We built a multispectral fluorescence microscope to probe the near-ultraviolet through the
near-infrared portion of the excitation-emission space of the unstained tissue (see Methods
section for technical details). To reduce photobleaching and minimize scan time, the microscope
uses a parallelized detection scheme to collect 8 wavelength bands simultaneously. The 20
collected excitation-emission combinations provide sufficient spectral resolution to distinguish
known autofluorescence features such as collagen, elastin, NADH, flavins, lipopigments, and
porphyrins [27]. To illustrate the typical level of spectral variation observed between different
types of features, Fig. 3a shows fluorescence spectra, averaged across a single tissue section,
computed using the four H&E and PIN-4 stain colors as masks (using real-stained, adjacent
sections). Another way to illustrate the spectral information content is to perform linear
projections across the spectral axis of the multispectral image. Fig. 3b shows a set of projection
vectors used for this purpose, derived from a combination of Canonical Correlation Analysis and
Non-Negative Matrix Factorization. Fig. 3e shows a uniform projection (a simple average across
all spectral channels) while Figs. 3f-h show spectral projections that enhance stroma and
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secretory material; more localized extracellular matrix features; and punctate, longer-wavelength
fluorescence features often associated with prostatic epithelium. The corresponding H&E and
PIN-4 stained regions are shown in Figs. 3c-d. While this simple projection procedure
demonstrates the richness of autofluorescence data, it also suggests that a spectral weighting
alone cannot recover a sufficiently clean signal to replace staining techniques. A model that can
reproduce modern stain methods must incorporate more complex, nonlinear spectral weighting
schemes and/or morphological features of the tissue as well.

Fig. 3 (a) Normalized fluorescence spectra averaged across a whole slide using unmixed, co-aligned and thresholded
H&E and PIN-4 images as weights. (b) Weights used to generate the linear spectral projections in e-h. (c)
Co-aligned H&E-stained image from the same slide as shown in e-h. (d) Co-aligned PIN-4 from an adjacent section.
(e-h) Linear spectral projections of the multispectral fluorescence image using (e) a uniform projection, and
projections highlighting (f) eosin features, (g) a subset of extracellular matrix features, and (h) punctate features
associated with epithelial regions. [Screenshot taken from slide. Unnormalized spectra could be shown as an
alternative. Plots and images generated from Colab notebook]

Virtual Stainer
The virtual stainer model is an image-to-image translation model that takes an autofluorescence
image as input and predicts its corresponding virtually stained image. This model is trained
using the real chemically stained image as the target output, with a combination of regression
and adversarial training objectives (Fig 3, see Methods: Virtual Staining for more details).
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Fig 4. Virtual stainer training pipeline. The virtual stainer is a neural network with a Unet architecture. It takes patches
of AF images of size 128x128 and returns 2 images - 1 H&E and 1 PIN-4 BF image. We use chemically stained BF
images aligned to the AF images to train the virtual stainer using four different training losses. More details on the
architecture and training objectives can be found in the Methods section.

Fig. 5 Comparing real and virtual stains at 20X magnification shows that virtual stains accurately capture the
morphological attributes of real stains. Here we show examples of chemically stained patches which show benign
tissue, malignant tissue, or IDC-P and their corresponding virtual stain.
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The virtual stain models were evaluated using three independent approaches: (1) automated
Gleason grading of H&E images, (2) computational comparison of PIN-4 images, and (3) human
expert reader studies using Gleason grading and IDC-P assessment.

Automated Gleason grading on H&E images

To further demonstrate the VS model’s utility, we evaluate its compatibility with an automatic
Gleason grading algorithm [19]. The virtual H&E images were given as an input to the
unmodified automatic Gleason grading algorithm that was developed using real H&E images.
The algorithm is also applied to the real H&E counterparts of the virtual images. The
concordance of the algorithm’s output on real and virtual images is very good, where the
quadratic-weighted kappa is 0.902 (95% CI: 0.880, 0.922), and the accuracy is 0.862 (95% CI:
0.847, 0.877). Figure 5a(left) shows the confusion matrix between the output of the algorithm
applied to virtual and real H&E images. These numbers are exceedingly high, even for
agreement between human raters. Compare to [43]’s human quadratic-kappa of 0.7, or 0.8 with
AI-assistance. The high degree of agreement between the automated Gleason grading
algorithm output on virtual and real images demonstrates the similarity of the real and virtual
images with respect to grading-relevant signals. These results are displayed in Table 1.

While the high agreement is encouraging, the algorithm could be suffering from the same error
mode both on real and virtual H&E slides, leading to a high concordance. Our trust in the result
in Table 1 is therefore bounded by our trust in the algorithm on these slides. While the algorithm
is validated in [19], we further demonstrate the performance of the virtually stained H&E by
studying the automatic gleason grading model in comparison to human pathologists on this
particular set of slides. Ten general pathologists and three genitourinary (GU) specialists were
asked to grade one core per slide. The consensus between the GU specialists was taken as the
gold standard. We performed Obuchowski-Rockette-Hillis analysis [32] to evaluate the quality of
the virtual H&E automatic gleason grading output with a non-inferiority margin of 0.1, which is
strict for this field [31]. We found that the output of automatic algorithm is non-inferior to the
pathologists (p <0.001). Figure 5b(right) compares the concordance of the model and
pathologists with the GU specialists. Our model’s concordance is comparable to the
pathologists.

Metric Virtual vs. Real PIN-4 Slides

Quadratic-Weighted Kappa 0.902 (0.880, 0.922)

Accuracy 0.862 (0.847, 0.877)

Table 1: Concordance of automatic grading by [19] between Virtual and Real PIN-4 images. The
95% confidence interval for this concordance is given in parentheses, and was obtained by
bootstrapping over slides. These values exceed expected human performance substantially
[43]; a quadratic-kappa of 0.8 is considered very good.
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Computational analysis of PIN-4 images
We evaluate the Virtual PIN-4 model using a series of computational metrics described in the
methods section of this paper. For every one of the metrics, we divided the TEST dataset into
patches of uniform size, and compared the real PIN-4 stained patches with the exact
Virtually-stained patches to which they correspond. We can see the results of these
comparisons in the first column of Table 2. As a basis for comparison, in the second column, we
also show metrics for a dataset consisting of serially sectioned TMA slides representing a fixed
distribution of PIN-4 stained samples, and where serial sections are considered the smallest unit
of slide variation for practical purposes. An example image of these serial TMAs is shown in
Supplementary Figure 2. Metrics for TMAs are bootstrapped over TMA sections to provide 95%
confidence intervals. Therefore, we consider it useful to see how the difference between real
and virtual patches compares to differences between aligned serial TMAs. Patch sizes and
magnifications were chosen to match between the two cases. Metrics which are significant are
marked with a *.

As can be seen in the table, every metric aside from Nuclear Recall is significantly better
for the Virtual vs. Real patches. This is discussed in the discussion section.

Metric Virtual vs. Real PIN-4
Patches

Real PIN-4 TMA, Serial
Sections

AMACR Jaccard Distance* 0.27 0.18 (0.15, 0.19)

Nuclear Precision* 0.93 0.87 (0.82, 0.88)

Nuclear Recall* 0.76 0.87 (0.84, 0.88)

Basal Cell Precision* 0.39 0.17 (0.10. 0.23)

Basal Cell Recall* 0.4 0.16 (0.08, 0.17)

Average L1 Distance (RGB
values)

13.7 11.3

Table 2: Computational Metrics comparing Virtual and Real PIN-4 images. In the first column we can see
our battery of comparison metrics applied between real and virtual PIN-4 patches. This is compared to the
second column, where we can see the metric between serial PIN-4 TMA sections.

Expert reader studies using Gleason grading and IDC-P assessment
We next performed a comparison study to assess the quality of virtual H&E and PIN-4 stains by
measuring the difference in Gleason grading and IDC-P assessment, done by pathologists
blindly reviewing either chemically stained or virtually stained images.

First, we have defined the ‘reference standard’ Gleason grades and IDC-P statuses, by having 6
senior genitourinary pathologists with 15-30 years of experience reviewing both real and virtual
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H&E and PIN-4 images. A Gleason grade and IDC-P status for each image was provided by 2
genitourinary pathologists asynchronously, and a third to break the tie if the first two disagreed.

We then performed a multi-reader, multi-case (MRMC) comparison study with 12 general
pathologists, as described in the Methods section.

We observed a high agreement between the Gleason grades on real and virtual stains, with the
difference in quadratically-weighted kappa values as measured against the ground truth of
-0.0016 (95% CI of -0.0193, 0.0161; Table 3, Figure 6). The difference in the kappa value is well
above than the study margin of -0.1, suggesting a strong non-inferiority of real versus virtual
H&E stains (P-value of 8.4 x 10^-9).

Similarly, we observed a high agreement between real and virtual IDC-P status assignments,
with the difference in quadratically-weighted kappa values as measured against the ground truth
of -0.0925 (95% CI of -0.1382, -0.0469;Table 3, Figure 7).The estimated kappa value between
real and virtual is high,, suggesting clinical utility of our virtual PIN-4 stain; however, the
non-inferiority result is not statistically significant (p=0.37), and either bigger test set size or
further improving the virtual PIN-4 stain will be needed for a more confident claim. That
statistical significance could not be achieved with such an exhaustive test set size is reflective of
the noisiness of pathologist IDC judgements. The overall performance of pathologists was fairly
high (kappa values of 0.69 and 0.60 for real and virtual reads, respectively), but with 3 notable
outliers with differences in real kappa values below 0.65 (Figure 7). While the results measure
real-world performance of pathologists, this observation suggests that further calibration and
training of pathologists for the IDC-P status assignment task could further improve the real vs
virtual stain assessment performance.

𝛥𝝹 95% CI Non-inferiority
p-value

H&E Real vs. Virtual
- Gleason Grade

-0.0016 ( -0.0193, 0.0161) 8.4*10^-9

PIN-4 Real vs.
Virtual - IDC-P
Status

-0.0925 (-0.1382, -0.0469) 0.37
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Figure 6. We can visualize human pathologist ratings for both the real and virtually-stained
cases. In A, we see the full set of 12 raters’ judgements about each case. Each row represents
a rater, and each column represents a case, in the same order for both real and virtual
conditions. Cases (columns) are divided into each of the 6 subfigures on the basis of their
ground truth diagnosis by senior raters. Each case rating is color coded. Grey is No Tumor,
Green is Gleason Grade 1, Yellow is GG2, Orange is GG3, Red is GG4, and Purple is GG5.
This allows us to observe that raters have consistent patterns of diagnosis between the two
conditions even when they differ in opinion from each other. In B, we summarize the same data
we see in A with a confusion matrix. Each cell represents the fraction of cases given a grade in
the Real condition that have been graded as each different grade in the Virtual condition.
Grades are the median of all 12 raters. Values on the diagonal have been given the same grade
in each condition. We can see that this is the case for the vast majority of cases, and not a
single case has a disagreement of more than two severity levels. This demonstrates an overall
very high level of rater agreement, whether a rater is viewing a case as a real or virtual stain.
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We also visualize human rater differences for the real and virtual cases for the PIN-4 stain IDC
judgment. In this case, rather than a scale, like Gleason Grade, Intraductal Carcinoma is a
simple +/- binary judgment.

Figure 7. As in Figure 6, in Figure 7 we can see the results of human ratings on real and virtual
images. A displays the entire dataset of reviews. Each row represents a rater, and each column
represents a case, in the same order for both real and virtual conditions. Cases (columns) are
divided into each of the 6 subfigures on the basis of their ground truth diagnosis by senior
raters. IDC+ ratings are blue, whereas IDC- ratings are grey. B shows a summary of A as
confusion matrices. We can see that median rater agreement for the virtual vs real conditions is
similar to rater agreement between median rater and GU expert evaluation. Furthermore, rater
agreement on virtual stains is similar to GU expert evaluation on real stains. In all cases, false
negatives are substantially more likely than false positives.

Discussion
In this study, we introduce a Virtual Stainer model that can produce both H&E and PIN-4 IHC
stains from autofluorescence of unstained prostate tissue, following our work in [7]. This model
is based on a custom autofluorescence imaging platform designed for very high slide throughput
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and photon efficiency, which enabled us to build the largest-ever (as known to the authors at
time of publication) training set for virtual staining based on multispectral autofluorescence.

As new virtual staining results enter the literature[1-6], it becomes increasingly important
to establish standards of evaluation. Generative image networks are well known to “hallucinate”
outputs [42], and in a clinical use setting, models must be verified to produce diagnostic
variance comparable to typical histochemical stains. In addition, we evaluate the model using a
series of computational approaches, as well as a human pathologist reader study. To our
knowledge, this is the most extensive evaluation using subspecialty pathologists of any virtual
stainer model to date, and we hope that it will provide a blueprint for rigorous validation of future
virtual stain technologies. We demonstrate that our H&E virtual stainer model is non-inferior to
real stains as an input to Gleason grading. This suggests that Virtual Staining could substitute
for real stains in that use case.

We further demonstrate the clinical utility of our virtual stainer by creating and evaluating
a model that predicts PIN-4 IHC. In a deployed setting, both H&E and PIN-4 stains could be
generated from the same AF image of a single tissue section. Because the AF scan is
non-destructive, the tissue could then be used for other purposes. We evaluate our virtual stain
according to IDC-P status. While the results are clearly comparable, we do not prove
non-inferiority (in contrast to Gleason grading), in part due to the known lower reproducibility of
pathologist judgment for IDC-P, which is a more clinically challenging entity.

To quantitatively evaluate how our virtual stains differ from real stains, we use
computational metrics. Notably, these are stain and tissue-specific measures for evaluating our
virtual stains. While one-size-fits-all image perceptual metrics like the Frechet Inception
Distance (FID) exist [41], they are difficult to interpret. We advocate gaining more specific
understanding of the ways in which Virtual Stains fail by applying domain-specific biomedical
knowledge to the evaluation process. We have computational metrics of two forms: First, a
domain-specific performance-validated DNN. We consider this to be an excellent standard for
evaluation of generated images. The DNN produces Gleason grades, which is the clinically
relevant output of the prostate H&E stain. In addition, while DNNs are notorious for out-of-set
generalization issues [42], no such issues are encountered in the comparison of virtual versus
real stains, despite the DNN not being trained on any virtual slides. This suggests that virtual
stains are not out-of-distribution, while simultaneously demonstrating the fidelity of
clinically-relevant information. The degree of agreement between virtual and real for this DNN
exceed common kappa values of agreement between human pathologists substantially. For
PIN-4 IHC, no such model for a clinically-relevant standard exists. Instead, we implement
classical image segmentation techniques. We compare virtual versus real images to a control of
serial tissue microarray sections, and find that for all domain-specific metrics, Virtual Stains are
closer to their real counterparts than serial sections are to one another. Given that serial
sections are functionally equivalent for the purpose of diagnostic use, we consider serial-section
control experiments to be an excellent standard of quantitative analysis that we hope will be
adopted more in future digital pathology validations.

In summary, we demonstrate both the feasibility of AF-based virtual stains of H&E and
PIN-4 IHC for Prostate Cancer, as well as extensive qualitative and quantitative evaluation to
exemplify a standard of rigor and clinical utility for digital pathology and virtual-staining
technology research.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2024. ; https://doi.org/10.1101/2024.03.27.24304447doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.27.24304447
http://creativecommons.org/licenses/by-nc-nd/4.0/


Authors’ Contributions
P.F.W., A.H., D.F.S, L.R., J.R., P.C. contributed to study conception and design. P.F.W. led
histopathology and image data generation, and pathologist annotation data workflows. C.S.,
M.G. led the development and calibration of the multispectral microscope and autofluorescence
data collection. C.M., Y.W., J.P., K.N., P-H.C.C., T.J., E.W. wrote code for the data infrastructure,
network architecture and training and testing pipelines of virtual stainer and scoring models.
C.M., Y.W., J.P., T.J., and E.W. performed computational analysis of models. P.F.W. advised and
reviewed model iterations and analyses.

Data Availability

Data from patient samples cannot be shared under the restrictions placed by Verily’s contractual
agreements with the tissue source.

Code Availability
The pix2pix architecture is open sourced at and is available with tutorials at
https://www.tensorflow.org/tutorials/generative/pix2pix. Releasing a trained binary or working
code of our internal tooling, infrastructure and hardware is not feasible. However, we have
described the neural network infrastructure in sufficient detail in Section : Materials and Methods
to allow independent replication. All the algorithmic components of our work are all built on open
source repositories: Python 3.6 packages Numpy, Scipy, OpenCV, Pandas, Seaborn and
Matlplotlib were used for feature extraction, preprocessing, training and evaluation, statistical
analysis and plotting. Tensorflow 2.0 with Keras was used to build, train and test the neural
network models.

Acknowledgements
The authors thank Leica Biosystems and Verily for supporting this collaborative work. We thank
members of the translational pathology team for tissue processing, quality checking, staining,
and imaging: Robert Findlater, Vanessa Velez, Julia Sigman, Hardik Patel, Tzu-Chien Wang. We
thank members of program management and operations teams: Susan Kram, Nina Lottsfeldt,
Janelle Chang-Clark, Fraser Tan, Robert Nagel, Allen Chai, and Craig Mermel. We thank
members of Verily LIMS and lab engineering teams. We thank Dr. Trissia Brown and Dr. Isabelle
Flament-Auvigne for giving us feedback on the quality of our virtual images. We thank Fabien
Beckers for program leadership, Dr. Sudha Rao for pathology expertise, and Melissa Miao for
partnership development.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2024. ; https://doi.org/10.1101/2024.03.27.24304447doi: medRxiv preprint 

https://www.tensorflow.org/tutorials/generative/pix2pix
https://doi.org/10.1101/2024.03.27.24304447
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ethics and Funding
Verily Life Sciences, LLC reports 3 pending patents on Virtual Staining and 1 on an AI-assisted
Prostate Cancer Process.
P.F.W., C.M., Y.W., J.P., C.S., M.G., A.H., K.N., P-H.C.C., T.J., E.W., D.F.S, P.C. are current or
former employees of Alphabet Inc. (Verily and Google) and performed work for this study during
their tenure at Alphabet. They also report equity ownership in Alphabet at the time of work.
L.R., J.R. are current or former employees of Danaher Corporation (Leica Biosystems) and
performed work for this study during their tenure at Danaher.

References

1. Li, Xinyang, Guoxun Zhang, Hui Qiao, Feng Bao, Yue Deng, Jiamin Wu, Yangfan He, et
al. 2021. “Unsupervised Content-Preserving Transformation for Optical Microscopy.”
Light, Science & Applications 10 (1): 44.

2. Rivenson, Yair, Hongda Wang, Zhensong Wei, Kevin de Haan, Yibo Zhang, Yichen Wu,
Harun Günaydın, et al. 2019. “Virtual Histological Staining of Unlabelled
Tissue-Autofluorescence Images via Deep Learning.” Nature Biomedical Engineering 3
(6): 466–77.

3. Bai, Bijie, Xilin Yang, Yuzhu Li, Yijie Zhang, Nir Pillar, and Aydogan Ozcan. 2022. “Deep
Learning-Enabled Virtual Histological Staining of Biological Samples.” arXiv
[physics.med-Ph]. arXiv. http://arxiv.org/abs/2211.06822.

4. Haan, Kevin de, Yijie Zhang, Jonathan E. Zuckerman, Tairan Liu, Anthony E. Sisk,
Miguel F. P. Diaz, Kuang-Yu Jen, et al. 2021. “Deep Learning-Based Transformation of
H&E Stained Tissues into Special Stains.” Nature Communications 12 (1): 4884.

5. Zingman, Igor, Sergio Frayle, Ivan Tankoyeu, Sergey Sukhanov, and Fabian Heinemann.
2023. “A Comparative Evaluation of Image-to-Image Translation Methods for Stain
Transfer in Histopathology,” April. https://openreview.net/forum?id=leVAXRDthXI.

6. Bayramoglu, Neslihan, Mika Kaakinen, Lauri Eklund, and Janne Heikkilä. 2017.
“Towards Virtual H&E Staining of Hyperspectral Lung Histology Images Using
Conditional Generative Adversarial Networks.” In 2017 IEEE International Conference on
Computer Vision Workshops (ICCVW), 64–71.

7. McNeil, Carson, Pok Fai Wong, Niranjan Sridhar, Yang Wang, Charles Santori,
Cheng-Hsun Wu, Andrew Homyk, et al. 2023. “An End-to-End Platform for Digital
Pathology Using Hyperspectral Autofluorescence Microscopy and Deep Learning Based
Virtual Histology.” Modern Pathology: An Official Journal of the United States and
Canadian Academy of Pathology, Inc, November, 100377.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2024. ; https://doi.org/10.1101/2024.03.27.24304447doi: medRxiv preprint 

https://openreview.net/forum?id=leVAXRDthXI
https://doi.org/10.1101/2024.03.27.24304447
http://creativecommons.org/licenses/by-nc-nd/4.0/


8. Zhou C, Cohen DW, Wang Y, et al. Integrated optical coherence tomography and
microscopy for ex vivo multiscale evaluation of human breast tissues. Cancer Res.
2010;70(24):10071-10079. doi:10.1158/0008-5472.CAN-10-2968

9. Tao YK, Shen D, Sheikine Y, et al. Assessment of breast pathologies using nonlinear
microscopy. Proc Natl Acad Sci U S A. 2014;111(43):15304-15309.
doi:10.1073/pnas.1416955111

10. Epstein, Jonathan I., Lars Egevad, Mahul B. Amin, Brett Delahunt, John R. Srigley, Peter
A. Humphrey, and Grading Committee. 2016. “The 2014 International Society of
Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic
Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System.” The
American Journal of Surgical Pathology 40 (2): 244–52.

11. Mohler, James L., Emmanuel S. Antonarakis, Andrew J. Armstrong, Anthony V. D’Amico,
Brian J. Davis, Tanya Dorff, James A. Eastham, et al. 2019. “Prostate Cancer, Version
2.2019, NCCN Clinical Practice Guidelines in Oncology.” Journal of the National
Comprehensive Cancer Network: JNCCN 17 (5): 479–505.

12. Netto, George J., Mahul B. Amin, Eva M. Compérat, Anthony J. Gill, Arndt Hartmann,
Holger Moch, Santosh Menon, et al. 2023. “Prostate Adenocarcinoma Grade Group 1:
Rationale for Retaining a Cancer Label in the 2022 World Health Organization
Classification.” European Urology 83 (4): 301–3.

13. Steiner DF, Nagpal K, Sayres R, et al. Evaluation of the Use of Combined Artificial
Intelligence and Pathologist Assessment to Review and Grade Prostate Biopsies
[published correction appears in JAMA Netw Open. 2020 Dec 1;3(12):e2033114]. JAMA
Netw Open. 2020;3(11):e2023267. Published 2020 Nov 2.
doi:10.1001/jamanetworkopen.2020.23267

14. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with
convolutions. Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition. 2015; 1-9.
doi:https://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298594.

15. Isola P, Zhu JY, Zhou T, Efros AA. Image-to-Image Translation with Conditional
Adversarial Networks. Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition. 2015;5967-5976.
doi:https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.632

16. Heinemann F, Birk G, Stierstorfer B. Deep learning enables pathologist-like scoring of
NASH models. Sci Rep. 2019;9(1):18454. Published 2019 Dec 5.
doi:10.1038/s41598-019-54904-6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2024. ; https://doi.org/10.1101/2024.03.27.24304447doi: medRxiv preprint 

https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.632
https://doi.org/10.1101/2024.03.27.24304447
http://creativecommons.org/licenses/by-nc-nd/4.0/


17. Arvaniti, Eirini, Kim S. Fricker, Michael Moret, Niels Rupp, Thomas Hermanns, Christian
Fankhauser, Norbert Wey, Peter J. Wild, Jan H. Rüschoff, and Manfred Claassen. 2018.
“Automated Gleason Grading of Prostate Cancer Tissue Microarrays via Deep
Learning.” Scientific Reports 8 (1): 12054.

18. Bulten, Wouter, Hans Pinckaers, Hester van Boven, Robert Vink, Thomas de Bel, Bram
van Ginneken, Jeroen van der Laak, Christina Hulsbergen-van de Kaa, and Geert
Litjens. 2020. “Automated Deep-Learning System for Gleason Grading of Prostate
Cancer Using Biopsies: A Diagnostic Study.” The Lancet Oncology 21 (2): 233–41.

19. Nagpal, Kunal, Davis Foote, Fraser Tan, Yun Liu, Po-Hsuan Cameron Chen, David F.
Steiner, Naren Manoj, et al. 2020. “Development and Validation of a Deep Learning
Algorithm for Gleason Grading of Prostate Cancer From Biopsy Specimens.” JAMA
Oncology 6 (9): 1372–80.

20. Chacko JV, Eliceiri KW. NAD(P)H fluorescence lifetime measurements in fixed biological
tissues. Methods Appl Fluoresc. 2019;7(4):044005. Published 2019 Oct 10.
doi:10.1088/2050-6120/ab47e5

21. Akalin A, Mu X, Kon MA, et al. Classification of malignant and benign tumors of the lung
by infrared spectral histopathology (SHP) [published correction appears in Lab Invest.
2015 Jun;95(6):697. Bird, Benjamin and Miljković, Miloš [Added]]. Lab Invest.
2015;95(4):406-421. doi:10.1038/labinvest.2015.1

22. Orringer DA, Pandian B, Niknafs YS, et al. Rapid intraoperative histology of unprocessed
surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat
Biomed Eng. 2017;1:0027. doi:10.1038/s41551-016-0027

23. Ji M, Orringer DA, Freudiger CW, et al. Rapid, label-free detection of brain tumors with
stimulated Raman scattering microscopy. Sci Transl Med. 2013;5(201):201ra119.
doi:10.1126/scitranslmed.3005954

24. Tu H, Liu Y, Turchinovich D, et al. Stain-free histopathology by programmable
supercontinuum pulses. Nat Photonics. 2016;10(8):534-540.
doi:10.1038/nphoton.2016.94

25. Deal J, Harris B, Martin W, et al. Demystifying autofluorescence with excitation-scanning
hyperspectral imaging. Proc SPIE Int Soc Opt Eng. 2018;10497:1049715.
doi:10.1117/12.2290818

26. Xu Z, Reilley M, Li R, Xu M. Mapping absolute tissue endogenous fluorophore
concentrations with chemometric wide-field fluorescence microscopy. J Biomed Opt.
2017;22(6):66009. doi:10.1117/1.JBO.22.6.066009

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2024. ; https://doi.org/10.1101/2024.03.27.24304447doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.27.24304447
http://creativecommons.org/licenses/by-nc-nd/4.0/


27. Croce AC, Bottiroli G. Autofluorescence spectroscopy and imaging: a tool for biomedical
research and diagnosis. Eur J Histochem. 2014;58(4):2461. Published 2014 Dec 12.
doi:10.4081/ejh.2014.2461

28. Bai B, Yang X, Li Y, Zhang Y, Pillar N, Ozcan A. Deep learning-enabled virtual
histological staining of biological samples. Light Sci Appl. 2023;12(1):57. Published 2023
Mar 3. doi:10.1038/s41377-023-01104-7

29. Bautista PA, Abe T, Yamaguchi M, Yagi Y, Ohyama N. Digital staining for multispectral
images of pathological tissue specimens based on combined classification of spectral
transmittance. Comput Med Imaging Graph. 2005;29(8):649-657.
doi:10.1016/j.compmedimag.2005.09.003

30. Christensen, Erik. 2007. “Methodology of Superiority vs. Equivalence Trials and
Non-Inferiority Trials.” Journal of Hepatology 46 (5): 947–54.

31. CHMP. 2005. “GUIDELINE ON THE CHOICE OF THE NON-INFERIORITY MARGIN.”
EMEA/CPMP/EWP/2158/99. European Medicines Agency.
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-choice-non-inferi
ority-margin_en.pdf.

32. Chakraborty, D. P. (2017). Observer Performance Methods for Diagnostic Imaging:
Foundations, Modeling, and Applications with R-Based Examples. United Kingdom: CRC
Press.

33. Taha, Abdel Aziz, and Allan Hanbury. 2015. “Metrics for Evaluating 3D Medical Image
Segmentation: Analysis, Selection, and Tool.” BMC Medical Imaging 15 (August): 29.

34. Magers, Martin, Lakshmi Priya Kunju, and Angela Wu. 2015. “Intraductal Carcinoma of
the Prostate: Morphologic Features, Differential Diagnoses, Significance, and Reporting
Practices.” Archives of Pathology & Laboratory Medicine 139 (10): 1234–41.

35.Molinié, V., Fromont, G., Sibony, M. et al. Diagnostic utility of a
p63/α-methyl-CoA-racemase (p504s) cocktail in atypical foci in the prostate.Mod
Pathol 17, 1180–1190 (2004). https://doi.org/10.1038/modpathol.3800197

36.Borji, Ali. 2019. “Pros and Cons of GAN Evaluation Measures.” Computer Vision
and Image Understanding: CVIU 179 (February): 41–65.

37.Nie, Yao, Christian Roessler, Emilia Andersson, and Oliver Grimm. 2018. “Color
Deconvolution Method with DAB Scatter Correction for Bright Field Image

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2024. ; https://doi.org/10.1101/2024.03.27.24304447doi: medRxiv preprint 

https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-choice-non-inferiority-margin_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-choice-non-inferiority-margin_en.pdf
https://doi.org/10.1038/modpathol.3800197
https://doi.org/10.1101/2024.03.27.24304447
http://creativecommons.org/licenses/by-nc-nd/4.0/


Analysis.” InMedical Imaging 2018: Digital Pathology, 10581:158–64. SPIE.

38.Swinehart, D. F. 1962. “The Beer-Lambert Law.” Journal of Chemical Education 39
(7): 333.

39.Kim, Hyunsoo, and Haesun Park. 2008. “Nonnegative Matrix Factorization Based
on Alternating Nonnegativity Constrained Least Squares and Active Set Method.”
SIAM Journal on Matrix Analysis and Applications 30 (2): 713–30.

40. Otsu, Nobuyuki. 1979. “A Threshold Selection Method from Gray-Level Histograms.” IEEE
Transactions on Systems, Man, and Cybernetics 9 (1): 62–66.

41. Heusel, Martin, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. 2017. “GANs Trained by a Two Time-Scale Update Rule Converge to a Local
Nash Equilibrium.” arXiv [cs.LG]. arXiv.
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe658713
69074926d-Paper.pdf.

42. Rice, Leslie, Eric Wong, and Zico Kolter. 13--18 Jul 2020. “Overfitting in Adversarially
Robust Deep Learning.” Edited by Hal Daumé Iii and Aarti Singh, Proceedings of Machine
Learning Research, 119: 8093–8104.

43. Bulten, Wouter, Maschenka Balkenhol, Jean-Joël Awoumou Belinga, Américo Brilhante,
Aslı Çakır, Lars Egevad, Martin Eklund, et al. 2021. “Artificial Intelligence Assistance
Significantly Improves Gleason Grading of Prostate Biopsies by Pathologists.”Modern
Pathology: An Official Journal of the United States and Canadian Academy of Pathology,
Inc 34 (3): 660–71.

44. Wang, Le, Bin Lu, Mengjie He, Youqing Wang, Zongping Wang, and Lingbin Du. 2022.
“Prostate Cancer Incidence and Mortality: Global Status and Temporal Trends in 89
Countries From 2000 to 2019.” Frontiers in Public Health 10 (February): 811044.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2024. ; https://doi.org/10.1101/2024.03.27.24304447doi: medRxiv preprint 

https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://doi.org/10.1101/2024.03.27.24304447
http://creativecommons.org/licenses/by-nc-nd/4.0/

