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ABSTRACT 37	

Total word count: 349 38	

Rationale: Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis 39	

(IPF) are debilitating diseases associated with divergent histopathological changes in the lungs. 40	

At present, due to cost and technical limitations, profiling cell types is not practical in large 41	

epidemiology cohorts (n>1000). Here, we used computational deconvolution to identify cell 42	

types in COPD and IPF lungs whose abundances and cell type-specific gene expression are 43	

associated with disease diagnosis and severity. 44	

Methods: We analyzed lung tissue RNA-seq data from 1026 subjects (COPD, n=465; IPF, 45	

n=213; control, n=348) from the Lung Tissue Research Consortium. We performed RNA-seq 46	

deconvolution, querying thirty-eight discrete cell-type varieties in the lungs. We tested whether 47	

deconvoluted cell-type abundance and cell type-specific gene expression were associated with 48	

disease severity. 49	

Results:  The abundance score of twenty cell types significantly differed between IPF and 50	

control lungs. In IPF subjects, eleven and nine cell types were significantly associated with 51	

forced vital capacity (FVC) and diffusing capacity for carbon monoxide (DLCO), respectively. 52	

Aberrant basaloid cells, a rare cells found in fibrotic lungs, were associated with worse FVC and 53	

DLCO in IPF subjects, indicating that this aberrant epithelial population increased with disease 54	

severity. Alveolar type 1 and vascular endothelial (VE) capillary A were decreased in COPD 55	

lungs compared to controls. An increase in macrophages and classical monocytes was associated 56	

with lower DLCO in IPF and COPD subjects. In both diseases, lower non-classical monocytes 57	

and VE capillary A cells were associated with increased disease severity. Alveolar type 2 cells 58	
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and alveolar macrophages had the highest number of genes with cell type-specific differential 59	

expression by disease severity in COPD and IPF. In IPF, genes implicated in the pathogenesis of 60	

IPF, such as matrix metallopeptidase 7, growth differentiation factor 15, and eph receptor B2, 61	

were associated with disease severity in a cell type-specific manner. 62	

Conclusion: Utilization of RNA-seq deconvolution enabled us to pinpoint cell types present in 63	

the lungs that are associated with the severity of COPD and IPF. This knowledge offers valuable 64	

insight into the alterations within tissues in more advanced illness, ultimately providing a better 65	

understanding of the underlying pathological processes that drive disease progression. 66	

Keywords 67	

Chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, RNA sequencing, 68	

computational deconvolution, lung function tests, cell type-specific gene expression. 69	
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ATI, alveolar type 1 pneumocytes; ATII, alveolar type 2 pneumocytes; COPD, chronic 71	
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fluorescence-activated cell sorting; FDR, false discovery rate; FEV1, forced expiratory volume 73	

in one second; FVC, forced vital capacity; IIPs, idiopathic interstitial pneumonias; ILC A, type A 74	

innate lymphoid cells; ILD, interstitial lung disease; IPF, idiopathic pulmonary fibrosis; IQR, 75	

interquartile range; LTRC, Lung Tissue Research Consortium; PPI, protein-protein interaction; 76	

RNA-seq, RNA sequencing; SMC, smooth muscle cells; SMC, smooth muscle cells; TGF-β, 77	

transforming growth factor beta; VE Capillary A, vascular endothelial - aerocyte capillary; VE 78	

Capillary B, vascular endothelial - general capillary; VE Venous, vascular endothelial venous 79	
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INTRODUCTION 83	

Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are 84	

debilitating chronic diseases of the lungs with progressive and complex pathobiology [1,2]. 85	

COPD is characterized by airflow limitation, chronic airway inflammation, and lung 86	

parenchymal destruction [1]. IPF is characterized by cellular proliferation, interstitial 87	

inflammation, and fibrosis [2]. COPD and IPF are both related to long-term inhalation of noxious 88	

agents (e.g. tobacco smoking) and manifest in older adults as accelerated lung aging [3]. As 89	

such, both diseases are associated with significant morbidity, mortality, and a high economic 90	

burden to our society [4,5]. Therefore, there is an urgent need for disease prevention and 91	

improved treatments. 92	

Genetics plays a role in predisposition to both diseases; eighty-two and nineteen loci have been 93	

associated with the risk of developing COPD or IPF, respectively [6,7]. COPD and IPF risk loci 94	

are enriched for pathways important in regulating cellular functions. For example, COPD risk 95	

loci are enriched for pathways regulating extracellular-matrix, cell-matrix adhesion, histone 96	

deacetylase binding, the Wnt-receptor signaling pathway, SMAD binding, and the MAPK 97	

cascade [6]. Similarly, IPF risk loci are enriched for pathways related to host defense, cell-cell 98	

adhesion, spindle assembly, transforming growth factor beta (TGF-β) signaling regulation, and 99	

telomere maintenance [8]. Furthermore, genetic factors are postulated to impact disease 100	

susceptibility in a cell type-specific and context specific manner. Therefore, improved molecular 101	

characterization of cells in the diseased lungs may provide insight into understanding disease 102	

pathobiology, paving the path to new therapeutics. 103	

Investigating the molecular and cellular aspects of pathological lungs in the context of these 104	

diseases holds great promise for developing preventative and treatment strategies. In particular, 105	
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single-cell RNA sequencing (scRNA-seq) has been used in COPD and IPF patients to search for 106	

putative disease-causing cell types. For example, scRNA-seq analysis of IPF lungs has identified 107	

aberrant basaloid cells, a rare, disease-enriched cell type [9]. In COPD lungs, scRNA-seq has 108	

identified a high metallothionein-expressing macrophage subpopulation enriched in advanced 109	

COPD and altered bioenergetics and cellular stress tolerance in an alveolar type 2 pneumocyte 110	

(ATII) subpopulation [10]. A recent multi-omic single-cell analysis revealed a CD8+ T cell 111	

subpopulation (KLRG1+TEMRA cells) to be enriched in COPD lung tissue [11]. However, the 112	

number of subjects included in these prior studies was modest, limiting the generalization to a 113	

larger patient population. 114	

Due to the cost and technical limitations, performing scRNA-seq or tissue dissection experiments 115	

combined with fluorescence-activated cell sorting are yet to be practical in large epidemiology 116	

cohorts (n>1000). Moreover, the impact of tissue dissociation on gene expression in 117	

fluorescence-activated cell sorting (FACS) and scRNA-seq protocols remains poorly understood. 118	

Given that COPD and IPF are heterogeneous diseases, molecular studies encompassing a wide 119	

range of subjects with cell type-specific resolution are needed to unravel the complex interplay 120	

of cells in disease pathophysiology. To this end, large-scale clinical and genomic data in 121	

population cohorts may be leveraged to advance our search for cellular drivers of COPD and IPF 122	

pathogenesis. 123	

In the present study, we performed computational deconvolution with bulk lung homogenate 124	

RNA-seq data from 1,026 subjects in the Lung Tissue Research Consortium (LTRC). By 125	

leveraging the large-scale omics data, we tested the hypothesis that there are specific cell types 126	

whose abundance and cell type-specific gene expression are associated with disease severity in 127	

COPD and IPF subjects. 128	
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METHODS 129	

Study participants 130	

Research subjects undergoing clinically indicated thoracic surgery were recruited to participate 131	

in the LTRC, as previously described [12]. The participating centers’ Institutional Review 132	

Boards approved the study, and all subjects provided written informed consent. 133	

COPD subjects included in this analysis had forced expiratory volume in one second (FEV1) to 134	

forced vital capacity (FVC) ratio <0.70 and FEV1 % predicted <80%. Spirometric severity was 135	

characterized by Global Initiative for Chronic Obstructive Lung Disease spirometry grades 2-4. 136	

COPD subjects had either pathological emphysema and no alternative pathological diagnosis 137	

(interstitial lung disease (ILD), idiopathic interstitial pneumonias (IIPs), sarcoidosis, constrictive 138	

bronchiolitis, cellular hypersensitivity pneumonitis, diffuse alveolar damage, or eosinophilic 139	

granuloma). Any individual meeting the physiological diagnostic criteria for COPD but with a 140	

clinical diagnosis of IPF or sarcoidosis was excluded from the COPD group. 141	

IPF subjects had a clinical diagnosis of IPF based on the site’s multidisciplinary diagnostic 142	

process of all available data instituted at each participating institution. Control subjects had 143	

normal spirometry with no pathologic diagnosis of ILD/IIPs, sarcoidosis, constrictive 144	

bronchiolitis, cellular hypersensitivity pneumonitis, diffuse alveolar damage, or eosinophilic 145	

granuloma. 146	

Computational deconvolution 147	

Computational deconvolution was performed using CIBERSORTx (available at 148	

https://cibersortx.stanford.edu/) [13]. The docker image obtained from CIBERSORTx website 149	
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was used with the Podman container image management engine on the Channing Division of 150	

Network Medicine GPU computing cluster. This provided computational efficiency beyond what 151	

was available through the CIBERSORTx web interface. 152	

We used LTRC TOPMed Harmonized phenotype data set dated November 30, 2022 and freeze 1 153	

LTRC gene expression data set. Data are available on the NCBI database of Genotypes and 154	

Phenotypes (dbGaP), accession phs001662 (LTRC). LTRC RNA-seq data from TOPMed 155	

(https://topmed.nhlbi.nih.gov) are available through dbGaP. For the count matrix generation, 156	

isoform-level expression quantification was generated with Salmon (v1.3.0) pseudoalignment to 157	

GENCODE release 37 transcriptome and summarized to gene-level counts using tximeta 158	

(v1.8.5). For salmon alignment, seq_bias_correct and gc_bias_correct were set to TRUE. 159	

Deconvolution was performed on the entire LTRC dataset that passed RNAseq QC (n=1,555), 160	

irrespective of whether the subject was included in our final analysis. Batch effects (library 161	

preparation batch) were removed using Combat_seq in the sva R package, and the matrix was 162	

cpm normalized after batch effect removal. Genes that had cpm >1 in at least 20% of the LTRC 163	

dataset and had assigned HUGO Gene Nomenclature Committee symbols were used in the 164	

deconvolution. 165	

In total, 23,097 genes were included in the deconvolution after the batch effect removal and 166	

filtering steps. A custom signature matrix from a reference scRNA-seq was generated using 167	

CIBERSORTx. The signature matrix is a specialized expression matrix of cell type-specific 168	

“barcode” genes which provides a reference atlas of known cellular signatures for the 169	

deconvolution procedure. For this process, the CIBERSORTx algorithm used scRNA-seq data 170	

on 31,943 lung cells from 44 ever-smokers: six control, seventeen COPD, and twenty-one IPF 171	

subjects)[9,10]. Of the 23,097 genes in the LTRC dataset, 19,655 were also in the scRNA-seq 172	
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dataset (42,406 features across 161,067 cells in the qc’ed dataset); these genes were used to train 173	

the CIBERSORTx algorithm. The CIBERSORTx signature matrix we generated is attached as a 174	

supplementary file. Thirty-eight discrete cell varieties were queried in the deconvolution; cells 175	

were labeled as per Adams et al (Supplemental Table E1) [9]. We chose to use this dataset for 176	

two main reasons: 1.) the dataset included a wide range of control, COPD, and IPF subjects. 2.) 177	

the dataset included disease-specific cell types such as aberrant basaloid cells. Moreover, the cell 178	

annotations for the scRNA-seq were shown to be consistent with automated annotation drawn 179	

from multiple cell type definition databases such as the Human Primary Cell Atlas and Blue 180	

ENCODE databases, as previously reported [9]. 181	

For the imputation of cell fraction, we used CIBERSORTx in fraction mode with single-cell 182	

mode set to TRUE and rmbatchSmode set to FALSE; i.e., batch correction and quantile 183	

normalization by the CIBERSORTx algorithm were disabled. Proportions were calculated for 184	

each sample with all the cell types proportions added up to 1. For deriving abundance scores for 185	

cell types, the computation was performed on the CIBERSORTx web interface as this specific 186	

function is disabled by the algorithm provided by the authors inside the docker image. 187	

CIBERSORTx estimates the relative fraction of each cell type included in the signature matrix, 188	

such that the sum of all fractions is equal to 1 for a given bulk RNA-seq sample. Therefore, the 189	

number of cell types included in the signature matrix may impact the relative fraction of each 190	

cell type. To overcome this issue, we used CIBERSORTx absolute mode where the absolute 191	

abundance score was estimated by the median expression level of all genes in the signature 192	

matrix (matrix generated using the reference scRNA-seq matrix) divided by the median 193	

expression level of all genes in the sample mixture (LTRC gene expression) [14,15]. This 194	

approach allows relative abundance comparisons across samples and cell types. 195	
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Cell type-specific gene expression matrices were generated using CIBERSORTx high-resolution 196	

mode using the docker image and used in the subsequent analyses. 197	

Cell type-specific differential gene expression analysis 198	

We performed differential gene expression analysis in cell type-specific gene expression 199	

matrices to find out which genes, even after removing the cellular abundance effects, were 200	

differentially expressed between case and controls. Using cell type-specific gene expression 201	

matrices (gene-by-sample matrices for each cell type) generated from CIBERSORTx, we 202	

performed differential gene expression analysis using limma [16]. Cell type-specific differential 203	

gene expression was log2-transformed, and we included only the genes with varying levels in our 204	

analysis (a built-in function of CIBERSORTx). We tested the association between cell type-205	

specific gene expression and disease severity separately in the COPD and IPF groups. In COPD 206	

subjects, disease severity was measured by lung function tests including forced expiratory 207	

volume in 1 second (FEV1) and diffusing capacity of the lungs for carbon monoxide as a percent 208	

predicted (DLCO %). In IPF subjects, disease severity was measured by forced vital capacity 209	

(FVC) and DLCO %. Linear models were adjusted for age, sex, height, ever smoking, and 210	

lifetime smoking intensity (in pack-years). Multiple testing correction was performed by the 211	

Benjamini-Hochberg procedure. Significance was determined at a false discovery rate (FDR) of 212	

5%. 213	

Functional enrichment analysis 214	

We performed functional enrichment analysis using the STRING database version 12.0 215	

(https://string-db.org) [17]. The reason for using STRING was to use a complementary method 216	

based on publicly available dataset to explore the functional consequences of differentially 217	
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expressed genes. Alongside the protein-protein interaction, we also report gene set enrichment 218	

results performed using cell type-specific gene expression data which is part of the STRING 219	

interactive online platform. 220	

Using the STRING interactive online platform, we queried active interaction sources and 221	

obtained confidence value in functional protein-protein interactions for protein network 222	

construction. We excluded any protein-protein interaction source that was based on text mining 223	

to reduce false positive signals. Active interaction sources include experiments, databases, co-224	

expression, neighborhood, gene fusion, and co-occurrence. The list of genes used in the 225	

functional enrichment analysis are included in the Supplemental Table E2 and E3. 226	

RESULTS 227	

Subjects 228	

465 subjects met the case criteria for COPD, 213 subjects met the case criteria for IPF, and 348 229	

subjects met the control criteria. Demographic and clinical characteristics of the 1,026 subjects 230	

included in our analysis are shown in Table 1. Notably, IPF subjects were predominantly male 231	

(70%). The cohort included 90% of self-identified white subjects. COPD subjects were 232	

predominantly smokers (95.2% have ever smoked) and IPF and control subjects were 65.3% and 233	

67.8% ever smokers, respectively. 234	

Cellular composition differences among COPD, IPF, and controls 235	

Of the thirty-eight cell types queried in the deconvolution, twenty-seven cell types were detected 236	

in at least 10% of samples. Of these, there were nineteen cell types whose median proportion was 237	

greater than 1% in any one of the groups, as shown in Figure 1. 238	
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We compared the cell abundance score between COPD, IPF, and control subjects, adjusting for 239	

age, sex, height, ever smoking, and smoking pack-years. Figure 1 summarizes cell types whose 240	

abundance scores were significantly different (FDR<0.05) between COPD and control subjects 241	

and between IPF and control subjects, respectively. VE Capillary A and ATI were lower in 242	

COPD tissue compared to controls. Nine cell types were decreased and eleven were increased in 243	

IPF compared to controls. 244	

Associations between cell-type abundance and disease severity in COPD and IPF lungs 245	

Next, we identified cell types whose abundance scores in COPD and IPF lungs were associated 246	

with disease severity measured by FEV1 (COPD), FVC (IPF), and DLCO (COPD and IPF). In 247	

COPD subjects, there were two and six cell types that were significantly associated with FEV1 248	

and DLCO, respectively (Table 2). In IPF subjects, there were eleven and nine cell types that 249	

were significantly associated with FVC and DLCO, respectively (Table 2). Decreases in the 250	

abundances of type A capillary vascular endothelial cells and non-classical monocytes were 251	

associated with worse disease severity in both COPD and IPF subjects. In IPF, aberrant basaloid 252	

cells showed the strongest association with both FVC and DLCO. In fact, we performed 253	

additional analysis testing the association between cell abundance score and GAP index [18], a 254	

mortality predictive score based on gender (G), age (A), and physiological measures (P; FVC, 255	

and DLCO) in IPF, and found that aberrant basaloid cells had one of the strongest associations 256	

with the index (Supplemental Table E4). 257	
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Associations between cell type-specific gene expression and disease severity in COPD and 258	

IPF lungs 259	

We estimated cell type-specific gene expression for cell types whose median proportion was 260	

greater than 1%: ATII, Alveolar Macrophage, SMC, Fibroblast, ATI, Myofibroblast, VE 261	

Capillary B, B Plasma, VE Capillary A, ILC A, VE Venous, Pericyte, and T Cytotoxic. Table 3 262	

summarizes the number of differentially expressed genes in COPD and IPF. Overall, there were 263	

more differentially expressed genes (FDR<0.05) in IPF lungs than in COPD lungs. ATII cells 264	

and alveolar macrophages were two cell types with the greatest number of genes with cell type-265	

specific differential gene expression associated with disease severity in both diseases. Aberrant 266	

basaloid cells, despite being estimated to represent only 1.3 % (IQR: 0-3.5 %) of cell proportion 267	

in IPF subjects, had the second largest number of cell type-specific genes whose expression was 268	

positively associated with IPF severity. 269	

Next, we tested the association between cell type-specific gene expression and disease severity in 270	

COPD and IPF subjects. We included all cell types whose median proportion was greater than 271	

1% in each disease group. In COPD subjects, cell types tested were Alveolar Macrophage, ATI, 272	

ATII, B Plasma, Fibroblast, ILC A, Myofibroblast, Pericyte, SMC, T Cytotoxic, VE Capillary A, 273	

VE Capillary B, and VE Venous. In IPF subjects, cell types tested included Aberrant Basaloid, 274	

Alveolar Macrophage, ATI, ATII, B Plasma, Fibroblast, ILC A, Myofibroblast, Pericyte, SMC, 275	

T Cytotoxic, VE Capillary B, and VE Venous. Figure 2 (and Figure E2) shows the number of 276	

genes with cell type-specific expression associated with lung function measures in COPD and 277	

IPF subjects. We also provide a list of all cell type-specific gene expression associations with 278	

disease severity in IPF and COPD (Supplemental Table E5 and 6). Figure 2 also shows the 279	

number of genes with cell that overlap between the two different measures of disease severity. 280	
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Supplemental Tables E7 and E8 summarize the number of significant cell type-specific gene 281	

expressions associated with disease severity in COPD and IPF, respectively. Of note, besides the 282	

ATII cells, which were the most abundant cell types in the samples estimated using RNA-seq 283	

deconvolution, alveolar macrophages in COPD and aberrant basaloid cells had the highest 284	

number of genes associated with disease severity in both COPD and IPF. Hence, we chose these 285	

two cell types to perform functional enrichment analyses and highlight their upregulated 286	

function. 287	

Functional enrichment analysis of genes associated with COPD severity in alveolar 288	

macrophages 289	

We performed functional enrichment analysis using the list of genes whose expression levels in 290	

alveolar macrophages were positively associated with COPD severity as measured by FEV1 and 291	

DLCO. We queried all matched proteins encoded by the 77 genes identified in this cell type-292	

specific differential gene expression analysis. In the protein-protein interaction (PPI) network 293	

analysis in the STRING database, we found significant functional enrichment with 144 edges 294	

(expected number of edges 60; PPI enrichment p-value <1x10-16). Figure 3 shows the PPI 295	

network for proteins encoded by the alveolar macrophage gene expression that is positively 296	

associated with COPD severity. The result of the functional enrichment analysis is included in 297	

the online Supplement Table E8. The most significantly enriched term was from the Reactome 298	

database for Eukaryotic Translation Elongation (Reactome term HSA-156842: FDR = 1.25 x 10-299	

11). 300	
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Functional enrichment analysis of genes associated with IPF severity in aberrant basaloid 301	

cells 302	

We performed functional enrichment analysis using the list of genes whose expression levels in 303	

aberrant basaloid cells were positively associated with IPF severity as measured by FVC and 304	

DLCO. We queried all matched proteins encoded by the 185 genes identified in the cell type-305	

specific differential gene expression analysis. We found significant functional enrichment with 306	

123 edges (expected number of edges 53; PPI enrichment p-value = 2.22x10-16). Figure 4 shows 307	

the PPI network for proteins encoded by the aberrant basaloid genes positively associated with 308	

IPF severity. The result of the functional enrichment analysis is included in the Online 309	

Supplement Table E9. Formation of the cornified envelope (STRING Cluster ID CL34114; FDR 310	

= 5.85 x 10-14) was indicated as the top most significant functional enrichment term. 311	

DISCUSSION 312	

We report the results of a computational tissue profiling analysis of bulk lung RNA-seq data 313	

from 1,026 subjects in the LTRC. We report the cellular composition and cell type-specific gene 314	

expression in lung tissue associated with disease severity in COPD and IPF subjects, extending 315	

the single-cell experiment discoveries from a modest sample size (<100 subjects) to a large 316	

population cohort (>1000 subjects). We trained a well-established and widely implemented 317	

computational RNA-seq deconvolution algorithm, CIBERSORTx [13,19,20], using publicly 318	

available scRNA-seq data from control, COPD, and IPF subjects [9]. 319	

We found that IPF lung tissues showed the most divergence from control lungs in cellular 320	

composition, with eighteen cell types whose abundance score was different from the controls, 321	

adjusting for covariates. Our results showed in a large IPF sample the association of aberrant 322	
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basaloid cells and their expression with IPF and IPF severity; the association with IPF severity 323	

has not been previously reported. We also found that abundances of eight cell types—324	

ncMonocyte, Aberrant Basaloid, Macrophage, cMonocyte, T Cytotoxic, ATII, Alveolar 325	

Macrophage, and VE Capillary A—were associated with disease severity in the IPF subjects. 326	

Structural cells such ATII, aberrant basaloid cells, myofibroblasts, and fibroblasts were among 327	

the cell types with the most number of genes associated with IPF severity. Notably, we found 328	

that aberrant basaloid cells were enriched in IPF lungs, and that the abundance of this disease-329	

enriched cell type increased as the disease severity increased. It is notable that aberrant basaloid 330	

proportions remained below 1% in COPD. 331	

In aberrant basaloid cells, expression levels of matrix metallopeptidase 7 (MMP7), growth 332	

differentiation factor 15 (GDF15), and eph receptor B2 (EPHB2), were negatively associated 333	

with FVC or DLCO. In other words, the expression of these genes increased in more severe 334	

disease. These genes and the protein they encode have been implicated in the pathogenesis of 335	

IPF [21–24]. Our data supports the notion that GDF15 may be circulating biomarker reflective of 336	

aberrant basaloid cells in the airway epithelium [23]. We also found that EPHB2 level in 337	

myofibroblasts was positively associated with IPF severity, extending the previous scRNA-seq 338	

finding that demonstrated increase level of EPHB2 in IPF subjects compared to controls [9]. 339	

The functional enrichment analysis showed that the formation of the cornified envelope and 340	

keratinization were functionally enriched in aberrant basaloid cells with increasing severity of 341	

IPF. The cornified cell envelope is a highly insoluble and extremely tough structure that forms 342	

under the epithelium to help the epithelium defend against reactive oxygen species [25]. This 343	

may result from and/or be a contributing factor to the tissue fibrosis in IPF; however, alteration 344	

in this cellular function has not been implicated in IPF previously. Therefore, this result will 345	
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require further validation at the protein level. In addition to these functions, the protein 346	

interaction network analysis also highlighted the increased expression of matrix metalloproteases 347	

such as MMP7, MMP10, and MMP1, along with their functionally associated genes such as 348	

lipopolysaccharide binding protein (LBP), lipocalin 2 (LCN2), and transcobalamin1 (TCN1), in 349	

aberrant basaloid cells with increased disease severity. These results suggest that increased 350	

abundance of aberrant basaloid cells and their gene expression of cellular processes involved in 351	

aberrant barrier formation and extracellular matrix modification is associated with IPF severity. 352	

We also showed that cellular composition is different between COPD and controls and that there 353	

were several cell types whose abundance was associated with COPD severity. There was a 354	

significant decrease in alveolar type 1 cells and capillary type A vascular endothelial cells in 355	

COPD lungs compared to controls. Capillary type A vascular endothelial cells were also 356	

negatively associated with increasing disease severity as measured by FEV1 and DLCO. This 357	

observation provides additional evidence linking endothelial injury to COPD and extends earlier 358	

findings that identified injury to pulmonary vessels in lung tissue from COPD patients [26]. 359	

Beyond the pulmonary vasculature, the abundance of macrophage, ncMonocyte, and cMonocyte 360	

were associated with DLCO, but only ncMonocytes abundance was significantly associated with 361	

FEV1. 362	

Monocytes and macrophages play an important role in pulmonary host defenses through their 363	

phagocytic activities and regulation of innate and adaptive immunity. The circulating monocyte 364	

pool and macrophages in tissue are composed of multiple subsets, each with a specialized 365	

function. Animal models and human ex vivo experiments have demonstrated the dysregulated 366	

functions of macrophage populations in COPD lungs [27]. Extensive molecular characterizations 367	

of immune cells in COPD, particularly the lung macrophage populations, have been conducted 368	
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using flow cytometry and other low-throughput molecular techniques [28–30]. However, due to 369	

the practicality of needing fresh samples and the experimental cost, tissue and immune profiling 370	

studies have been limited in terms of sample sizes (typically <100 subjects) and the small 371	

number of molecular targets. Recently, scRNA-seq studies with more molecular targets have 372	

been conducted and highlighted immunological dysregulation of monocytes and macrophages in 373	

COPD [9,10,31,32]. However, the number of COPD donors was small in these studies, and there 374	

was limited information on the disease phenotypes, which limited the ability to test for 375	

associations with disease severity, clinical outcomes, and pathological changes. Our 376	

computational tissue profiling in a large-scale cohort builds on this important body of work and 377	

extends the findings from scRNA-seq to an epidemiological cohort. 378	

Given the important role alveolar macrophages play in COPD pathogenesis, we focused on this 379	

cell type for functional enrichment analysis, which highlighted that increased disease severity 380	

was associated with increased mRNA encoding for proteins involved in translation and energy 381	

metabolism. This finding agrees with previous studies that macrophage metabolic function is 382	

associated with COPD and supports the notion that metabolomic reprogramming of lung 383	

macrophages is important in the pathogenesis of COPD [33,34]. We provide the list of cell type-384	

specific genes associated with COPD and IPF severity (Supplemental Table E5 and E6) for the 385	

community to explore using the cell type-specific functional enrichment using tools such as 386	

STRING database (https://string-db.org/) for other cell types. 387	

There are some limitations of our study. First, RNA-seq based deconvolution methods are more 388	

suited for analysis of highly abundant cell types (cell types with frequency >1%) [13,19]. It is 389	

also influenced by the size of the cell type-specific transcriptome. This makes rare cell types with 390	

small transcriptomes challenging to study using the deconvolution approach. To overcome this 391	

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 24, 2024. ; https://doi.org/10.1101/2024.03.26.24304775doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.26.24304775


issue, future studies may combine RNA-seq deconvolution with results based on other omics 392	

(e.g., DNA methylation-based deconvolution). Also, careful enrichment of a cell type by FACS 393	

sorting may be required to study rarer cell populations. Second, bulk tissue analysis is limited in 394	

spatial resolution. This limits the understanding of the spatial distribution and interaction of cells 395	

in the diseased lungs. Nevertheless, our study informs which cell types may be the better 396	

candidates to be the focus of future spatial transcriptomic investigations. Finally, the study was 397	

limited to a population of predominantly white subjects with access to U.S. academic medical 398	

centers. This may limit the generalizability and calls for future efforts to include subjects from 399	

multi-ethnic and multi-national backgrounds. 400	

CONCLUSION 401	

In conclusion, we present here the cellular composition changes and cell type-specific gene 402	

expression associated with disease severity in COPD and IPF lungs. We document the cell types 403	

whose estimated abundance is associated with the severity of disease in COPD or IPF. We 404	

highlight two cell types—alveolar macrophages in COPD and aberrant basaloid cells in IPF—405	

whose cell type-specific gene expressions were associated with clinical measures of disease 406	

severity. We also highlight the cell type-specific functional enrichment pointing to the altered 407	

cellular functions associated with disease severity. Using computational deconvolution, this 408	

study extends single-cell experimental discoveries from a modest sample size to a large 409	

population cohort and contributes to our understanding of tissue heterogeneity in COPD and IPF 410	

pathobiology. This knowledge offers insight into the alterations within lung tissue in advanced 411	

illness, providing a better understanding of the underlying pathological processes that drive 412	

disease progression. 413	
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TABLES 463	

Table 1: LTRC subject demographics and lung function tests 464	

 Control COPD IPF 
n 348 465 213 
Age (mean (SD)) 61.51 (12.53) 63.35 (9.18) 63.55 (8.37) 
Sex = Female sex (%) 211 (60.6) 210 (45.2) 64 (30.0) 
Race (%)    
White 314 (90.2) 423 (91.0) 191 (89.7) 
Asian 0 ( 0.0) 0 ( 0.0) 4 ( 1.9) 
Black 22 ( 6.3) 29 ( 6.2) 8 ( 3.8) 
Hispanic 10 ( 2.9) 9 ( 1.9) 4 ( 1.9) 
Other race 2 ( 0.6) 4 ( 0.9) 6 ( 2.8) 
BMI (mean (SD)) 28.95 (5.97) 26.30 (5.22) 29.80 (5.44) 
Ever Smoking (%) 215 (67.8) 415 (95.2) 128 (65.3) 
Pack years of smoking (mean (SD)) 20.12 (27.32) 47.16 (31.73) 18.84 (24.18) 
FEV1/FVC (mean (SD)) 0.77 (0.06) 0.45 (0.15) 0.83 (0.07) 
FEV1 pp (mean (SD)) 95.87 (12.61) 41.72 (20.27) 65.91 (19.06) 
FVC pp (mean (SD)) 96.09 (12.69) 68.36 (18.50) 60.28 (17.75) 
DLCO % (mean (SD)) 73.22 (15.44) 42.92 (18.87) 38.04 (19.59) 

Abbreviations: COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary 465	

fibrosis; SD, standard deviation; BMI, body mass index; FEV1, forced expiratory volume in 1s; 466	

FVC, forced vital capacity; DLCO, diffusing capacity of the lungs for carbon monoxide as a 467	

percent predicted. 468	
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Table 2: Cell-type transcriptome abundance score associated with disease severity in COPD and 470	
IPF. 471	

Disease Outcome Cell type Beta 95% CI Adjusted p value 
COPD FEV1 VE Capillary A 0.11 0.06,0.16 0.001 
COPD FEV1 ncMonocyte 0.09 0.03,0.14 0.02 
COPD DLCO ATI 4.79 2.99,6.59 <0.001 
COPD DLCO Macrophage -4.75 -7.02,-2.49 <0.001 
COPD DLCO ncMonocyte 3.71 1.94,5.49 <0.001 
COPD DLCO VE Capillary A 3.69 1.95,5.44 <0.001 
COPD DLCO cMonocyte -3.16 -5.47,-0.86 0.031 
COPD DLCO ILC A 2.72 0.93,4.51 0.016 
IPF FVC ncMonocyte 0.31 0.21,0.4 <0.001 
IPF FVC Aberrant Basaloid -0.24 -0.34,-0.14 <0.001 
IPF FVC Macrophage -0.20 -0.31,-0.1 0.001 
IPF FVC cMonocyte -0.19 -0.29,-0.09 0.001 
IPF FVC T Cytotoxic 0.19 0.09,0.29 0.002 
IPF FVC ATII 0.16 0.06,0.27 0.007 
IPF FVC VE Venous -0.16 -0.27,-0.06 0.012 
IPF FVC Alveolar Macrophage 0.15 0.05,0.25 0.016 
IPF FVC VE Capillary A 0.15 0.05,0.26 0.016 
IPF FVC T -0.14 -0.24,-0.03 0.029 
IPF FVC pDC -0.12 -0.23,-0.02 0.046 
IPF DLCO Aberrant Basaloid -6.42 -9.25,-3.58 <0.001 
IPF DLCO Alveolar Macrophage 6.08 3.19,8.97 0.001 
IPF DLCO ATII 5.65 2.8,8.51 0.001 
IPF DLCO T Cytotoxic 5.07 2.04,8.1 0.006 
IPF DLCO VE Capillary A 5.06 2.1,8.03 0.006 
IPF DLCO ncMonocyte 4.79 1.89,7.69 0.006 
IPF DLCO Macrophage -4.64 -7.64,-1.65 0.01 
IPF DLCO cMonocyte -4.34 -7.53,-1.15 0.023 
IPF DLCO T Regulatory 3.92 1.06,6.77 0.023 

Statistical comparison was tested using linear regression adjusting for age, sex, height, ever 472	

smoking and total pack-year. Beta was estimated using absolute value of outcome measures and 473	

are estimated per one standard deviation change in CIBERSORTx absolute abundance score. 474	

Pre-bronchodilator FEV1 and DLCO percent predicted were used. Abbreviations: COPD, chronic 475	
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obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; CI, confidence interval; 476	

FEV1, forced expiratory volume in 1s; FVC, forced vital capacity; DLCO, diffusing capacity of 477	

the lungs for carbon monoxide as a percent predicted; VE Capillary A, vascular endothelial - 478	

aerocyte capillary; ncMonocyte, non-classical monocytes; cMonocyte, classical monocytes; ATI, 479	

alveolar epithelial type 1 cells; ILC A, type A innate lymphoid cells; ATII, alveolar epithelial 480	

type 2 cells; VE Venous, vascular endothelial venous cells; pDC, plasmacytoid dendritic cells. 481	
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Table 3: Cell type-specific differential gene expression in COPD and IPF lungs compared to 483	
control lungs 484	

Cell type 

Total 
genes in 
analysis 

Number of 
upregulated 

genes in 
COPD 

Number of 
downregulated 

genes in COPD 

Number of 
upregulated 

genes in IPF 

Number of 
downregulated 

genes in IPF 
ATII 10964 272 2088 3886 2967 
Alveolar 
Macrophage 

5614 228 772 1847 1275 

SMC 4265 40 183 1922 604 
Fibroblast 3500 89 254 1268 658 
ATI 3362 252 108 819 578 
Myofibroblast 3099 120 399 1225 612 
VE Capillary 
B 

2446 54 338 412 943 

B Plasma 2325 116 50 1039 460 
VE Capillary 
A 

2063 73 284 404 669 

ILC A 2049 8 1 332 240 
VE Venous 1310 33 114 230 374 
Pericyte 1210 26 56 326 275 
T Cytotoxic 1139 7 2 192 81 

Associations were tested using limma [16] on variable genes only. Signficant association were 485	

adjusted to FDR 5%. Abbreviations: COPD, chronic obstructive pulmonary disease; IPF, 486	

idiopathic pulmonary fibrosis; ATII, alveolar epithelial type 2 cells; SMC, smooth muscle cells; 487	

ATI, alveolar epithelial type 1 cells; VE Capillary B, vascular endothelial - general capillary; VE 488	

Capillary A, vascular endothelial - aerocyte capillary; ILC A, type A innate lymphoid cells; VE 489	

Venous, vascular endothelial venous cells. 490	
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Figure 1. Boxplots showing cell type abundance score for each cell type split by disease status. 
Results are shown only for cell types detected in at least 10% of samples and whoe median 
proportion was greater than 1%. Statistical comparison was tested using linear regression 
adjusting for age, sex, ever smoking and total pack-year. * and †  denote significant difference 
between COPD vs control and IPF vs control, respectively. Abbreviations: COPD, chronic 
obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; ATI, alveolar epithelial type 1 
cells; ATII, alveolar epithelial type 2 cells; cDC, classical dendritic cells; ILC, innate lymphoid 
cells; pDC, plasmacytoid dendritic cells; ncMonocyte, non-classical monocytesSMC; smooth 
muscle cells; VE Capillary A, vascular endothelial - aerocyte capillary; VE Capillary B, vascular 
endothelial - general capillary; VE Venous, venous vascular endothelial. 
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Figure 2. Venn diagrams showing the five cell types with the most cell type-specific gene 
expression levels associated with disease severity in COPD and IPF lungs. Genes associated with 
DLCO, FEV1, and FVC are colored blue, pink, and green, respectively. Cell-types with a higher 
number of gene expressions associated with disease severity are ordered left to right. 
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Figure 3. Protein-protein interaction network for the proteins encoded by genes in alveolar 
macrophages positively associated with COPD severity. Edges represent protein-protein 
associations based on association confidence score calculated using STRING database (version 
12.0). The edge line thickness indicates the strength of data support. Disconnected nodes in the 
network were hidden for illustrative purpose. 
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Figure 4. Protein-protein interaction network for proteins encoded by genes in aberrant basaloid 
cells that were positively associated with IPF severity. Edges represent protein-protein 
associations based on association confidence score calculated using STRING database (version 
12.0). The edge line thickness indicates the strength of data support. Disconnected nodes in the 
network were hidden for illustrative purpose. 
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