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Abstract 

Lipoprotein (a) [LP(a)] is a risk factor for cardiovascular diseases and mainly regulated by the complex LPA gene. We 
investigated the types of variation in the LPA gene and their predictive performance on LP(a) concentration. We determined 
the Kringle IV-type 2 (KIV-2) copy number (CN) using the DRAGEN LPA Caller (DLC) and a read-depth based CN 
estimator in 8351 whole genome sequencing samples from the GENESIS-HD study. The pentanucleotide repeat in the 
promoter region was genotyped with GangSTR and ExpansionHunter. LP(a) concentration was available in 4861 population-
based subjects. Predictive performance on LP(a) concentration was investigated using random forests. The agreement of the 
KIV-2 CN between the two specialized callers was high (r=0.9966; 95% confidence interval [CI] 0.9965–0.9968). Allele-
specific KIV-2 CN could be determined in 47.0% of the subjects using the DLC. Lp(a) concentration can be better predicted 
from allele-specific KIV-2 CN than total KIV-2 CN. Two single nucleotide variants 4925G>A and rs41272114 further 
improved prediction. The genetically complex LPA gene can be analyzed with excellent agreement between different callers. 
The allele-specific KIV-2 CN is more important for predicting LP(a) concentration than the total KIV-2 CN. It would be 
important that the allele-specific KIV-2 CN is determinable in all subjects. 

Introduction 

High LP(a) levels are linked to increased cardiovascular disease (CVD) risk, such as myocardial infarction[1]. LP(a) is a 
lipoprotein consisting of a large apolipoprotein(a) molecule and a low-density-lipoprotein (LDL) particle [2]. LP(a) shows a 
broad range of concentrations, ranging from 0.1 mg/dL to more than 200 mg/dL [3,4]. LP(a) levels differ between 
populations of different geographic origin, and African populations show 2-3-fold higher LP(a) levels than European and 
Asian populations [4]. 

LP(a) levels are highly heritable, and the LPA gene explains up to 90% of its variation [3]. The main driver for the variability 
of LP(a) levels is the Kringle IV (KIV) structure, which consists of 10 subtypes. The subtype KIV-2 is 5.5 kilobases long, 
highly variable, and the number of KIV-2 repeats ranges from 1 to > 40 [4]. A high number of KIV-2 repeats is associated 
with low LP(a) protein levels, and more than 95% of sub-jects are heterozygous for the number of KIV-2 repeats [3]. It is 
important to note that LP(a) protein levels are primarily determined by the number KIV-2 repeats on the shorter allele [5]. 

The number of KIV-2 repeats has been traditionally measured by laborious wet-lab experiments, such as immunoblotting 
and pulsed-field gel electrophoresis (PFGE) [6,7]. Because of the strong linkage disequilibrium (LD) between the KIV-2 re-
peat and several single nucleotide variation (SNV) in the LPA gene, SNVs have been used as simple-to-use proxies for the 
KIV-2 repeat [4,8,9]. While this approach is accurate for European-like populations, it is diminishing for other populations, 
especially East Asian-like populations [9]. 

Recently, a specialized caller for the number of KIV-2 repeats, termed DRAGEN LPA Caller, was released, which allows 
determining the number of KIV-2 repeats from short-read whole-genome sequencing (WGS) data [10]. This caller estimates 
the total number of KIV-2 repeats. And depending on the genotypes at two SNVs at position 296 and 1264 within the KIV-2 
repeat unit, the caller may be able to determine the allele-specific KIV-2 repeat number [10]. A more general caller, termed 
read depth-based copy number estimator (CNE), to determine all multicopy genes was publicly released late 2023 [11]. CNE 
uses the read depth from short-read WGS to estimate the total copy number for the genes of interest. 



Several SNVs have been identified which statistically influence LP(a) levels by genome-wide association studies (GWAS) 
[6,12]. These SNVs are primarily located in the LPA gene. Some SNVs are located in the KIV-2 repeat, and because of its 
complex structure, a specialized caller is needed. This caller is able to determine if a subject either carries a variant among 
all KIV-2 repeats or all repeats do not contain the variant [7]. 

It was suggested that a pentanucleotide repeat (PNR) in the promotor region up-stream of the LPA gene alters LP(a) levels 
[4,13,14]. Specifically, the PNR alleles with 10 or 11 repeats are associated with a small number of KIV-2 repeats, but 
counterintuitively express very low LP(a) concentrations [13]. However, it has been demonstrated that the association 
between a high number of KIV-2 repeats and low LP(a) levels is mediated by a SNV located in the KIV-2 repeat [15]. 
Therefore, adding this SNV to a model predicting LP(a) concentrations should abolish the association with the PNR. 

The aim of the study was to investigate all types of genetic variation in the LPA gene and their association with LP(a) levels. 
To this end, we used the 8351 WGS from the GENEtic SequencIng Study Hamburg-Davos (GENESIS-HD) study. In 4861 
of these subjects LP(a) protein level measurements were available. We compared both callers, DRAGEN LPA Caller and 
CNE, to determine the number of KIV-2 repeats against each other on their agreement in determining the total number of 
KIV-2 re-peats. Furthermore, we compared both PNR callers ExpansionHunter and GangSTR and their agreement in 
determining the number of PNRs. We developed a random forest model to predict LP(a) levels from all types of genetic 
variation and demonstrate the importance of the number of allele-specific KIV-2 repeats. We also show that the PNR is not 
predictive for LP(a) measurements, if SNV 4925G>A, located in the KIV-2 repeat, is included. 

Methods 

Cohort 

The GENESIS-HD study is a collaborative effort. It was planned to sequence 9000 individuals in total, of which 
approximately 8000 were to come from the German population-based Hamburg City Health Study (HCHS); for a description 
of the HCHS design, see [16]. An additional set of approximately 1000 subjects were to be selected from patient-based 
clinical cohorts with distinct cardiovascular characteristics. The clinical cohorts included subjects with myocardial infarction 
at young age among others; for details see Betschart et al. (unpublished). In this study, only LP(a) levels measured in 4861 
individuals from HCHS were used. 

The local ethics committee of the Landesärztekammer Hamburg (State of Hamburg Chamber of Medical Practitioners, 
PV5131) had no objections against the conduct of the study. The Data Protection Commissioner of the University Medical 
Center of the University Hamburg-Eppendorf and the Data Protection Commissioner of the Free and Hanseatic City of 
Hamburg approved the study. The study is registered at ClinicalTrial.gov (NCT03934957). 

Measurement of LP(a) 

LP(a) was centrally measured in thawed serum samples previously stored at -80° degrees Celsius with the molar-based Tina-
quant® Gen 2 Lipoprotein (a) assay on a COBAS INTEGRA® 400 plus analyzer (Roche Diagnostics, Rotkreuz, 
Switzerland) at the University Medical Center Hamburg-Eppendorf. Concentrations were reported in nmol/L with a limit of 
detection (LOD) of 7 nmol/L. The assays inter coefficient of variation (CV) was 5,86%, the inter CV was 3,76%. 

Sequencing 

Core elements of the sequencing protocol for the GENESIS-HD study are as follows: After arrival of the DNA samples from 
the University Medical Center Eppendorf (UKE) in Hamburg at the University Medical Center Zurich (USZ), DNA 
concentration was measured with PicoGreen, followed by an automated DNA normalization with Hamilton Robotics. The 
library was constructed according to Illumina TruSeq DNA PCR Free Library Prep protocol HT (Illumina Inc., San Diego, 
CA, USA) for whole genome sequencing. Briefly, the protocol steps were: 1) fragmentation of 1 μg genomic DNA to 350 bp 
inserts by Covaris LE220-plus, 2) cleanup of fragmented DNA, 3) re-pair ends, 4) removal of large and small DNA 
fragments, 5) 3’-end adenylation, and 6) adapter ligation. The resulting library was quantified and quality-assessed with the 
iSeq100 (Illumina). Samples were normalized according to the quantification values, and 54 samples were pooled for 
sequencing on an Illumina NovaSeq 6000 sequencer. Samples were sequenced twice on S4 flow cells with 300 cycles (2 × 
150 reads) with an estimated coverage of 15 × each, following Illumina protocols. The aimed sequencing depth was that ≥ 
95% of all samples had a coverage of ≥ 30 x.  

Pre-processing, quality control and multi-sample calling of WGS data 

Pre-processing and quality control (QC) of WGS data has been described else-where Betschart et al. (unpublished). In brief, 
QC was continuously performed during the conduct of the study, and approximately 600 samples were monthly processed on 
the used single NovaSeq 6000 sequencer. During normal operation, data were transferred in batches of approximately 250 
subjects, and QC reports were generated for these batches. For pre-processing, we used DRAGEN version 3.8.4 on all 
samples for mapping and alignment and for single sample variant calling, using the hg38 human reference genome. Pre-



processing was done without adapter trimming, and read length was 151bp. During QC, PC coefficients were estimated 
using PCs provided by the 1000Genomes project phase 3 data [17]. The first two estimated PCs were used to define a 
genetically similar European-like population; for details, see Betschart et al. (unpublished). For the multi-sample calling 
(also termed joint-calling), the iterative gVCF genotyper has been used. 

Measurement of number of KIV-2 repeats 

The total number of KIV-2 repeats was determined with two approaches, the CNE [11] and the DRAGEN LPA Caller [10]. 

Read depth-based copy number estimator (CNE) 

The CNE software divides the genome into non-overlapping bins with a size of 100bp to estimate GC content and read depth 
for every sample. Read depth was estimated with mosdepth version 0.3.6 [18]. Because CNE produces relative copy 
numbers, the output was multiplied by six to account for the number of KIV-2 copies within the hg38. 

DRAGEN LPA Caller 

The Illumina DRAGEN LPA Caller is available with DRAGEN version 4.2 [10]. Specifically, we used the DRAGEN 
version 4.2.0-673-g9e903543. This caller counts reads which fall within the KIV-2 repeat. A total of 3000 additional regions, 
each with a length of 2000 bases are used for normalization. The read counts for all regions are normalized by their length 
and by GC-content. The number of KIV-2 repeats is derived from the normalized KIV-2 coverage multiplied by six to 
account for the number of KIV-2 copies within the reference genome. 

To determine the allele-specific number of KIV-2 repeats, the DRAGEN LPA Call-er measures the proportion of reads at two 
SNVs in linkage disequilibrium (LD) at positions 296 and 1264, which occur in every KIV-2 repeat. The DRAGEN LPA 
Caller re-ports the number of KIV-2 repeats for both the reference and the alternative allele. The shorter allele is termed KIV-
2 short, and the longer allele is named KIV-2 long. We only used the number of KIV-2 repeats determined by the DRAGEN 
LPA Caller in association analysis because of its ability to determine the number of allele-specific KIV-2 re-peats. 

Analysis of the pentanucleotide repeat (PNR) 

The number of repeats of the PNR were determined with GangSTR version 2.5.0 [19] and ExpansionHunter version 5.0.0 
[20], both with default parameters. The ge-nomic location of the PNR is chr6:160665585-160665629 in hg38. Oketch et al. 
[21] demonstrated good agreement between these two short tandem repeat callers and showed fewer Mendelian inheritance 
errors of GangSTR in the analysis of Genome in a Bottle trios [22]. The resulting variant calling files (VCFs) were parsed 
for the REPCN field with bcftools query version 1.18 [23]. If a subject was heterozygous for the number of PNRs, the lower 
number (shorter allele) was assigned to the variable Allele 1, and the higher number was assigned to Allele 2 [15]. The 
polyserial correlation be-tween the number of PNR and the carrier status of KIV-2 SNV 4925G>A was estimated using the 
polyserial function from the polycor R package. 

Analysis of the KIV-2 single nucleotide variations (SNVs) 

SNVs within the KIV-2 repeat were genotyped with the pipeline termed exome vntr nf [7]. The pipeline takes aligned reads 
as input (BAM file) and extract the reads that fall within the LPA genomic region, i.e., chr6:160530484-160665259 in hg38. 
These reads are then converted to a FASTQ file and realigned to a single KIV-2 repeat. In the last step, the variants are called 
with mutserve, a specialized caller originally developed for mitochondrial variant calling [24]. This caller only provides 
information on carrier status, which is defined as either carrier or non-carrier. 

Statistical analysis 

Descriptive statistics 

Descriptive characteristics of important variable are provided with median and quartiles. For dichotomous variables, 
absolute and relative frequencies are given. Agreement between the two KIV-2 callers was determined using Pearson 
correlation, a scatterplot, and a Bland-Altman plot. Agreement between the two PNR callers was determined using Pearson 
correlation and dotplot. 

Genome-wide association study (GWAS) 

GWAS for the LP(a) concentration was performed with REGENIE version 3.2.5.3 [25]. A minor allele frequency (MAF) 
threshold of 0.005 and a Hardy-Weinberg equilibrium (HWE) threshold of 10-9 were used for filtering diallelic SNVs. 
Subjects showing a kinship coefficient of 3rd cousins or closer (≥ 0.044; [26]) were partitioned to create an unrelated subset 
with the highest number of unrelated subjects using the pcairPartition function from the GENESIS R package version 2.28.0 
[27].  



For association analyses, LP(a) measurements were log-transformed. An additive genetic model was used, and adjustments 
were done for age, sex and the first five principal components (PCs). The genome-wide significance threshold was set to 5 × 
10-8. Genotypes of all statistically significant SNVs without missing values were extracted with the R package SeqVarTools 
version 1.40.0 [28]. 

Predictive model for LP(a) levels using random forests 

Because of the high LD between the different genetic markers in the LPA gene, i.e., high multicollinearity, we used random 
forests by employing the ranger R package [29] to investigate the importance of multiple genetic markers on LP(a) levels.  

In the first step, we estimated two random forests. Random forest 1 (RF1) included all genetic variation plus the allele-
specific number KIV-2 repeats. Random forest 2 (RF2) included all genetic variation plus the total number of KIV-2 repeats. 
The genetic variation consisted in all SNVs from the GWAS, all SNVs from the specialized SNVs caller in the KIV-2 repeat 
and the number of PNRs estimated by GangSTR. To estimate the variables with large contribution to the predictive 
performance, we estimated the conditional predictive impact (CPI) using the CPI R package. We used default values for the 
CPI function [30]. The CPI tests for conditional independence and measures the variable importance. Specifically, the CPI of 
a variable provides the information how much the predictive performance deteriorates if the variable was replaced by a non-
informative variable. CPIs, their CIs and test statistics were estimated from 10-fold cross-validation (CV). Variables with a 
CPI p-value < 0.05 were kept. 

For all random forests, we tuned the following hyperparameters using 10-fold nested CV: minimal node size (min.node.size), 
percentage of included variables in each splitting step (mtry.ratio), and tree depth (max.depth). Default values were used for 
other parameters. Hyperparameter tuning was done with the mlr3 R package (version 0.17.2) [31]. The hyperparameters of 
the best performing model, i.e., the one with the lowest root mean square error (RMSE), was then used in the CPI 
calculations. 

The direct comparison of the predictive performance between the number of allele-specific KIV-2 repeats and the total 
number KIV-2 repeats was done with the following model: 

1. Full model: inclusion of all available genetic variation plus 
a. the total number of KIV-2 repeats 
b. the allele-specific number of KIV-2 repeats 

2. KIV-2 RF1: inclusion of genetic variation with CPI p < 0.05 from RF1 plus 
a. the total number of KIV-2 repeats 
b. the allele-specific number of KIV-2 repeats 

3. KIV-2 RF2: inclusion of genetic variation with CPI p < 0.05 from RF2 plus 
a. the total number of KIV-2 repeats 
b. the allele-specific number of KIV-2 repeats 

Since the random forests for the total number of KIV-2 repeats and the allele-specific number of KIV-2 repeats are estimated 
from the same CV data, they are directly comparable. Our hypotheses were: 

• Hypothesis 1: The full model shows the highest predictive performance 
• Hypothesis 2: RF1 is sparser than RF2 
• Hypothesis 3: Model KIV-2 RF1 b performs better than KIV-2 RF1 a 
• Hypothesis 4: Model KIV-2 RF2 b performs better than KIV-2 RF2 a 
• Hypothesis 5: Full models a and b show similar performance, because proxy SNVs from the LPA gene should 

compensate for the additional information for the allele-specific number of KIV-2 repeats 

The global significance level was set to 0.05. To adjust for multiple testing, hypotheses were tested hierarchically, starting 
with hypothesis 1. For hypothesis 2, no formal statistical test was performed. For all models, we forced sex and age to be 
available for splitting in all trees and all splitting steps using the ranger option always.split.variable [29]. If the final model 
does not contain age or sex, the coefficient of determination (R2) obtained from this model can be interpreted as locus-
specific heritability. R2 was estimated for all models. 

Software and hardware 

The statistical analysis was performed with R version 4.3.2 [32] on our on-premises HPC equipped with 4 computing nodes. 
Each node is equipped with 2 AMD EPYC 7742 CPUs and a total of 2TB of RAM. The entire R workflow was run with 
targets version 1.3.2 [33]. Plots were generated with ggplot2 version 3.4.4 [34]. The code for the analyses is provided as a 
supplement. 

Results 

Study characteristics 



Characteristics of GENESIS-HD subjects with available LP(a) measurements are displayed in Table 1. Figure 1 shows the 
LP(a) concentration per binned total number of KIV-2 repeats of GENESIS-HD subjects with available LP(a) measurements. 
LP(a) concentration per binned number KIV-2 repeats on the short and long allele are provided in Figures S1 and S2, 
respectively. 

Table 1. Characteristics of GENESIS-HD subjects with available LP(a) measurements. Continuous characteristics are provided as median 
and interquartile range (IQR), dichotomous variables as number of subjects and percentage. 

Demographics N = 4861 

Age [years] 63 (56, 70) 
Sex [male] 2425 (49.9%) 
LP(a) [nmol/L] 16.7 (7.50, 59.0) 
Total number of KIV-2 repeats 39.0 (34.1, 43.9) 
Number of KIV-2 repeats long allele 22.7 (20.0, 25.0) 
Number of KIV-2 repeats short allele 16.6 (13.4, 19.9) 
Allele-specific number of KIV-2 repeats available 2274 (47.0%) 
4925G>A carrier 1124 (23.1%) 
rs41272114 carrier 283 (5.8%) 

 

Figure 1. Scatterplot for LP(a) and total number of KIV-2 repeats (n = 4861). KIV-2 CNs were binned so that there are at 
least 30 samples in each bin. Horizontal jittering was added to prevent overlapping between points. 

Agreement between specialized variant callers 

Figure 2 displays the scatterplot for the total number of KIV-2 repeats estimated by the DRAGEN LPA Caller and the CNE. 
The correlation was 0.9966 (CI 0.9965-0.9968). Figure S3 shows the corresponding Bland-Altman plot. 

Both GangSTR and ExpansionHunter successfully estimated the genotypes of the PNR in the promoter region of the LPA 
gene on all 8351 subjects. The Pearson correlation between the callers was 0.9938 (CI 0.9936-0.9941) for allele 1 and 
slightly higher for allele 2 (r = 0.9961, CI 0.9960-0.9963). Figure S4 shows the dotplot for the number of subjects per 
genotype. In agreement with [1], we observed a high LD between the number of PNR and 4925G>A with a polyserial 
correlation of 0.991. 

Agreement of allele-specific number of KIV-2 repeats with results from 1000 Genomes Project 

We compared the number of KIV-2 repeats of the GENESIS-HD dataset with the 1000 Genomes dataset (1KGP) analysed 
by Behera et al. [2]. In 3925 out of the 8351 subjects (47.0%), the DRAGEN LPA Caller determined the allele-specific 



number of KIV-2 repeats. Excellent agreement between the GENESIS-HD dataset and the European ancestral population 
(633 samples) could be observed (Figure 3) 

 

 

Figure 2. Scatterplot for total number of KIV-2 repeats estimated by the DRAGEN LPA Caller and read depth based CN 
estimator (CNE) (n = 8351). 

 

Figure 3. Violin and boxplots of number of KIV-2 repeats for GENESIS-HD samples and EUR-like samples (EUR) from 
1000 Genomes project phase 3 (1KGP) [3] (n = 633). For the total number of KIV-2 repeats, 8351 subjects were included. 
For the number of KIV-2 repeats on the short and long allele, 3925 subjects were included. 

Genome-wide association study for LP(a) concentration 



Filtering and quality control (QC) left us with a total of 10.3 million (10,334,912) diallelic SNVs in 4803 unrelated subjects. 
The only genome-wide significant region for LP(a) concentration was the LPA gene (Figure S5). A total of 855 SNVs were 
found to be statistically significant in the LPA gene (hg38: chr6:160531482- 160664275) with a padding of 500kb (Table 
S1). The lead SNV was rs56393506 (MAF: 0.16; per-allele change in LP(a) concentration: 1.065 [95% CI 0.997-1.132]; 
p=1.74 × 10-211; for locus zoom plot, see Figure S6). The scaled genomic inflation factor was 0.995. 

Genetic variants selected by conditional predictive impact (CPI) 

Four and six variables were selected by conditional predictive impact for the allele-specific KIV-2 random forest model RF1 
and the total KIV-2 random forest model RF2, respectively (Table 2). In both models, the number of KIV-2 repeats had the 
highest conditional predictive impact. In the allele-specific KIV-2 model, the shorter allele had a stronger effect on LP(a) 
levels than the longer allele. Two SNVs 4925G>A and rs41272114 had a significant conditional predictive impact in both 
models, and the contingency table is provided in Table 3. 

Table 2. Variables selected by conditional predictive impact (CPI) for both random forest models RF1 and RF2. CPIs, their 
95% confidence intervals (95% CI) and corresponding p-values are displayed. CPIs and 95% CIs were multiplied by 103. 

 RF1 (allele-specific) RF2 (total) 
Variable CPI 95% CI p-value CPI 95% CI p-value 

Short KIV-2 97.7 77.8–117.7 5.5 × 10-16 – – – 
Long KIV-2 22.6 14.3–30.9 3.8 × 10-6 – – – 
Total KIV-2 – – – 58.9 43.6–70.1 1.2 × 10-10 
4925G>A 9.9 4.3–15.5 1.8 × 10-3 8.7 2.0–15.3 1.6 × 10-2 

rs41272114 3.6 1.0–6.3 1.3 × 10-2 4.4 0.6–8.1 2.7 × 10-2 
rs9347465 – – – 9.6 × 10-4 1.2 × 10-6–1.9 × 10-3 4.9 × 10-2 
rs2489959 – – – 8.6 × 10-4 5.6 × 10-6–1.7 × 10-3 4.9 × 10-2 
rs2457567 – – – 8.4 × 10-4 3.2 × 10-5–1.6 × 10-3 4.4 × 10-2 

 

Table 3. Contingency table for SNV 4925G>A carrier status and rs41272114. 

 rs41272114  
4925G>A CC CT TT Total 
GG 3490 (71.8%) 244 (5.0%) 3 (0.1%) 3737 (76.9%)
GA/AA 1088 (22.4%) 36 (0.7%) 0 1124 (23.1%) 
Total 4578 (94.2%) 280 (5.8%) 3 (0.1%) 4861 (100%) 

 

Non-carries of both SNVs (4925GG and rs41272114CC; n=3488), had a median LP(a) concentration of 20.3 nmol/L (7.3, 
83.0). Subjects carrying at least one A allele at SNV 4925 and genotype CC at rs41272114 (n=1088) showed a lower LP(a) 
concentration of 15.0 nmol/L (9.7-29.3). The lowest median LP(a) concentration of 4.8 nmol/L (2.9-15.8) was observed in 
subjects carrying variant alleles at rs41272114, but not carrying an A allele at SNV 4925 (n=247). Individuals carrying 
variations at both SNVs (n=36) had an LP(a) concentration of 8.4 nmol/L (6.3-12.7). It should be noted that the number of 
double carriers is low. The LP(a) concentration of the genotype combination and short and total number of KIV-2 repeats is 
displayed in Figure 4. 

Only three subjects were homozygous TT at rs41272114; these tree subjects did not harbour an A allele at SNV 4925. These 
subjects had LP(a) concentrations of 2.2, 2.3, and 3.0 nmol/L. 

The three SNVs from model RF2 rs9347465, rs2489959, and rs2457567 were neither found in the GWAS catalogue nor by a 
Medline search. As expected, the PNR did not have a significantly conditional predictive impact. 

Comparison of predictive performances for LP(a) concentrations 

Mean and standard deviation (SD) of the difference in R2 between allele-specific number and total number of KIV-2 repeats 
are displayed in Table 4. Specifically, we estimated the difference in R2 between the allele-specific number and total number 
of KIV-2 repeats. The full model showed the highest predictive performance for both the total number of KIV-2 repeats 
(R2=0.6855, CI 0.6109-0.7601) and the allele-specific number of KIV-2 repeats for the total number of KIV-2 repeats 
(R2=0.6953, CI 0.6414-0.7492). The performance of the full model was significantly better than that of RF1 and RF2 (both p 
< 0.001; Table S2). This confirms hypothesis 1. For model RF1, four variables were selected, compared to six variables for 
model RF2. RF1 was thus sparser than RF2, which confirms hypothesis 2.  

Model RF1 b showed a significantly better predictive performance than model RF1 a (p=0.0126), which confirms hypothesis 
3. Similarly, model RF2 b outperformed model RF2 a (p=0.0496), which confirms hypothesis 4. Finally, no statistically 
significant difference was observed between the total and allele-specific KIV-2 repeat models in the full model (p=0.4620), 
which is in agreement with hypothesis 5. 



  

Figure 4. LP(a) concentration by number of KIV-2 repeats for all single nucleotide variation combinations of 4925G>A and 
rs41272114 carriers of the T allele. Upper panels: number of KIV-2 repeats of the short allele. Lower panels: total number of 
KIV-2 repeats. 

 

Table 4. Coefficient of determination (R2) and 95% confidence interval (CI) of different random forest (RF) models for 
LP(a) 
concentratio
ns. 

 

 

 

 

 

Full model: All available genetic variation; RF1: inclusion of genetic variation with conditional predictive impact (CPI) p < 
0.05 from allele-specific model, when allele-specific numbers of KIV-2 repeats were available; RF2: inclusion of genetic 
variation with CPI p < 0.05 from total model, when total number of KIV-2 repeats was available. 

Discussion 

In this study, we performed a comprehensive analysis of the genetic variation within the LPA gene by using data from whole 
genome short-read sequencing. Key to these analyses was the availability of specialized callers to estimate the number of 
KIV-2 repeats. There was excellent agreement between the DRAGEN LPA Caller and the CNE, which were both publicly 
released in 2023. The accuracy of the DRAGEN LPA Caller was previously confirmed by long-read sequencing [2], and the 
present analysis indirectly confirms the validity of the CNE caller for the LPA gene. 

A weakness of both callers is the estimation of the number of allele-specific KIV-2 repeats. This information is important, 
because the number of allele-specific KIV-2 repeats leads to better predictive performance for LP(a) concentration. Of note, 
the CNE is able to estimate the total number of KIV-2 repeats only. In contrast, the DRAGEN LPA Caller is able to estimate 
the number of allele-specific KIV-2 repeats, depending on the genotypes of two SNVs within the KIV-2 region. In this study, 
the DRAGEN LPA caller provided the number of allele-specific KIV-2 repeats in 47% of all subjects, which were of 

Model KIV-2 R2 CI Difference CI of difference p-value 
Full Total 0.6855 0.6109-0.7601 

0.0098 -0.0163-0.0359 0.4620 
 Allele-specific 0.6953 0.6414-0.7492 
RF1 Total 0.4290 0.3086-0.5494 

0.0540 0.0116-0.0965 0.0126 
 Allele-specific 0.4830 0.3806-0.5855 
RF2 Total 0.4788 0.3978-0.5599 

0.0413 0.0000-0.0826 0.0496 
 Allele-specific 0.5201 0.4054-0.6350 



European ancestry. This percentage varies between subjects of different ancestry groups. For example, in AMR-like subjects, 
the percentage was the lowest with 38%, and highest in AFR-like individuals with 52% [2]. 

There was a high agreement between the two callers ExpansionHunter and GangSTR for estimating the number of PNRs. 
However, the genetic information of the PNR is not important for predicting LP(a) concentrations because almost all of the 
genetic information of the multiallelic PNR is captured by the dichotomous SNV 4925G>A, located within the KIV-2 repeat 
(correlation = 0.997). This is in agreement with previously published results [1]. 

The results of our GWAS confirmed previous reports that variants associated with LP(a) concentrations are primarily located 
in the LPA gene region [4]. We identified 855 significant SNVs surrounding the LPA gene. The lead SNV rs56393506 has 
been previously reported as being associated with increased LP(a) concentration [5]. 

Predicting LP(a) concentrations based on genetic variation is challenging because of high LD in the LPA gene. This high 
multicollinearity between genetic variation invalidates classical regression models, such as linear regression or quantile 
regression. In contrast, some of the machine learning methods, such as random forests, are able to adequately deal with a 
high LD. The random forest models revealed that only a small number of genetic variation had a significant impact on the 
predictions of the LP(a) concentrations. The full model incorporating all genetic variation from the LPA gene had a 
substantially higher predictive performance of LP(a) concentrations, when compared to models which covered the most 
important genetic markers (RF1 and RF2). Indeed, the locus-specific heritability (R) of the full model was 0.83 (CI 0.82–
0.84), while it was only 0.68 (CI 0.65–0.70) and 0.71 (CI 0.69–0.72) for RF1 and RF2, respectively. The locus-specific 
heritability of the full model was thus in the same magnitude as that of other studies [6, 7]. 

In line with the literature [6, 7], the number of KIV-2 repeats had the highest conditional predictive impact, with the number 
of allele-specific KIV-2 repeats being more predictive than the total number of KIV-2 repeats. The two most important SNVs 
for predicting LP(a) concentrations were 4925G>A and rs41272114, which confirms other work [6]. SNV 4925G>A is 
located on a splice site within the KIV-2 repeat and leads to a decrease in LP(a) concentration [7-9]. rs41272114 is also 
located on a splice site, and T alleles at this SNV result in null alleles [4, 6, 8]. Such null alleles lead to extremely low LP(a) 
concentrations, which we also observed in this study. Three subjects were homozygous TT at rs41272114. The highest LP(a) 
concentration is these individuals was 3.0 nmol/L, which is in the bottom five percent of the LP(a) concentration levels 
among all subjects. 

A limitation of our study is that analysis were based on a specific assay to measure the LP(a) concentration. Specifically, we 
used the Roche assay, which reports the molar LP(a) concentration (nmol/L). Various studies have reported differences 
between LP(a) assays [10, 11]. Furthermore, we restricted our study to EUR-like subjects only. Future research should 
investigate the predictive performance of all genetic variation within the LPA gene in different ancestry groups. 

The use of long-read sequencing would have enabled us to not only determine the allele-specific number of KIV-2 repeats, 
but also the genetic variation within the KIV-2 region. However, even long-read technologies show non-unique alignments in 
the KIV-2 region [2]. The longer the reads, the lower the fraction of non-unique alignments. Furthermore, time and cost for 
such an endeavour in thousands of subjects are currently beyond reach. 

In the future, it would be of great importance to determine the number of allele-specific KIV-2 repeats in all subjects, across 
all different genetic ancestry groups. Furthermore, determining not only the carrier-status of SNVs within the KIV-2 repeats 
but also the genotype could lead to better understanding of the complex LPA gene. 
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