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1 Abstract 1 

In the search for EEG markers of human consciousness, alpha power has long been considered a 2 

reliable marker which is fundamental for the assessment of unresponsive patients from all 3 

etiologies. However, recent evidence questioned the role of alpha power as a marker of 4 

consciousness and proposed the spectral exponent and spatial gradient as more robust and 5 

generalizable indexes. In this study, we analyzed a large-scale dataset of 260 unresponsive 6 

patients and investigated etiology-specific markers of level of consciousness, responsiveness and 7 

capacity to recover. We compare a set of candidate EEG makers: 1) absolute, relative and flattened 8 

alpha power; 2) spatial ratios; 3) the spectral exponent; and 4) signal complexity. Our results 9 

support the claim that alpha power is an etiology-specific marker, which has higher diagnostic value 10 

for anoxic patients. Meanwhile, the spectral slope showed diagnostic value for non-anoxic patients 11 

only. Changes in relative power and signal complexity were largely attributable to changes in the 12 

spectral slope. Grouping unresponsive patients from different etiologies together can confound or 13 

obscure the diagnostic value of different EEG markers of consciousness. Our study highlights the 14 

importance of analyzing different etiologies independently and emphasizes the need to develop 15 

clinical markers which better account for inter-individual and etiology-dependent differences. 16 

Keywords:  17 

Brain injury, complexity, consciousness, EEG, spectral exponent 18 
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2 Introduction 20 

For unresponsive brain-injured patients, the evaluation of level of consciousness and capacity to 21 

recover underpins the most crucial decisions about their treatment and continuation of care. The 22 

quest for neurophysiological markers of (un)consciousness plays a fundamental role in the 23 

development of clinical tools and the understanding of the neurophysiological process underlying 24 

consciousness.  25 

The loss of oscillatory power – mainly in the alpha frequency band – has often been described as 26 

the principal marker for detecting loss of consciousness (Chennu et al. 2014; Sitt et al. 2014; Naro 27 

et al. 2016; Piarulli et al. 2016). However, recent work by Colombo et al. (2023) raised strong 28 

concerns about the role of alpha power as a marker of consciousness. Instead of marking loss of 29 

consciousness, Colombo et al (2023) attributed loss of alpha power to the suppression of cortical 30 

activity, which is specific to severe postanoxic injury. As an alternative marker, Colombo et al (2023) 31 

proposed the use of 1) the spectral exponent and 2) the alpha posterior anterior ratio. In contrast 32 

to alpha power, both measures stratified levels of consciousness in non-anoxic patients and 33 

generalized well to pharmacological-induced unconsciousness (Colombo et al. 2023). 34 

Indeed, the electroencephalogram (EEG) spectral exponent (i.e., exponential decay of power over 35 

frequency) has gained increasing attention as a novel marker of consciousness (Colombo et al. 36 

2019; Lendner et al. 2020; Maschke, Duclos, Owen, et al. 2022; Colombo et al. 2023; Leroy et al. 37 

2023). Especially in the absence of oscillatory peaks – which is a common phenomenon in 38 

disorders of consciousness (DOC) – our group has previously demonstrated diagnostic power of 39 

the spectral exponent above and beyond oscillatory power (Maschke, Duclos, Owen, et al. 2022). 40 

Besides the spectral exponent, spatial exponents – especially the anteriorization of alpha power – 41 

have been widely described as a marker for loss of consciousness in general anesthesia (Purdon 42 

et al. 2013; Vijayan et al. 2013; Purdon et al. 2015; Scheinin et al. 2018), sleep (De Gennaro et al. 43 

2001) and DOC (Colombo et al. 2023).  44 
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Although Colombo et al.  (2023) concluded that alpha power ‘cannot be a general marker of 45 

consciousness’, previous large-scale studies showed high diagnostic value of alpha power for 46 

patients in a DOC (Sitt et al. 2014; Engemann et al. 2018). There are three possible explanations 47 

for these contradictory findings. First, previously used large-scale datasets of DOC (Sitt et al. 2014; 48 

Engemann et al. 2018) contained patients with different etiologies which were not analyzed 49 

separately. The co-occurrence of lower levels of consciousness and suppressed broadband power 50 

in anoxic patients could induce a spurious diagnostic effect of alpha power when grouped with non-51 

anoxic patients. The diagnostic effect of alpha power could therefore be driven by 52 

electrophysiological differences in etiologies, rather than etiology-independent levels of 53 

consciousness. Second, candidate markers of consciousness are widely validated against level of 54 

consciousness, as assessed using behavioral tools such as the CRS-R score (Kalmar and Giacino 55 

2005). However, solely using behavioral tools for patient stratification is insufficient to detect 56 

capacity for consciousness despite unresponsiveness and could yield markers of consciousness 57 

which are more sensitive to behavioral responsiveness than the actual level of – or capacity for 58 

consciousness. Thus, alpha power could be an index of level of behavioral responsiveness, as 59 

shown by Sitt et al. (2014) and Engemann et al. (2018), rather than a reliable marker of capacity of 60 

consciousness (Colombo et al. 2023). Third, whereas alpha power is often defined as the relative 61 

contribution of the alpha bandwidth to the broadband power (herein called relative alpha power), 62 

Colombo et al. (2023) estimated power as the absolute amount of power in a given range (i.e., 63 

absolute alpha power). While relative alpha power normalizes for suppression in broadband 64 

activity, absolute alpha power is highly influenced by the amount of broadband background activity. 65 

Thus, different observations in the role of alpha power for the assessment of levels of 66 

consciousness could be driven by the different behavior of relative and absolute alpha power and 67 

their interaction with broadband background activity. 68 
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In addition to spatial and spectral properties, the temporal architecture of EEG signal has gained 69 

increasing attention for the evaluation of consciousness. Specifically, reduced spontaneous and 70 

evoked signal complexity marks unconsciousness resulting from anesthesia (Bruhn et al. 2000; 71 

Zhang et al. 2001; Jordan et al. 2008; Sarasso et al. 2015; Schartner et al. 2015), sleep (Burioka 72 

et al. 2005; Mateos et al. 2018), epilepsy (Mateos et al. 2018) and in disorders of consciousness 73 

(Sarà and Pistoia 2010; Gosseries et al. 2011; Casali et al. 2013; Sitt et al. 2014; Stefan et al. 2018; 74 

Lei et al. 2022). However, it remains unclear whether EEG complexity is an independent marker of 75 

level of consciousness, or epiphenomenal to changes in the spectral exponent. Although many 76 

studies have demonstrated a strong correlation between spectral exponent and spontaneous 77 

(Medel et al. 2020; Alnes et al. 2021; Maschke, Duclos, Owen, et al. 2022) and evoked signal 78 

complexity (Colombo et al. 2019; Maschke et al. 2023), most studies of signal complexity do not 79 

concurrently analyze changes in the spectral exponent. 80 

In this study, we aim to shed light on the gap between those contradictory results by validating and 81 

contrasting the proposed markers of consciousness, specifically: 1) absolute alpha power; 2) 82 

relative alpha power; 3) the spectral exponent; and 4) the alpha posterior-anterior ratio (PAR); on 83 

a large-scale dataset of 260 patients in a DOC. Additionally, we calculate measures of complexity 84 

(i.e., Lempel-Ziv complexity), and assess their relationship to the four proposed markers of 85 

consciousness.  86 

We compare the proposed markers against their ability to index level of and capacity for 87 

consciousness (i.e., diagnostic and prognostic value). Following Colombo et al. (2023), we 88 

hypothesize etiology-dependent differences in the diagnostic feature performance: while alpha 89 

power is expected to index levels of consciousness in anoxic patients, the spectral exponent and 90 

spatial gradients are hypothesized to generalize to non-anoxic patients and patients with other 91 

etiologies. In addition, we hypothesize that loss of signal complexity in lower levels of 92 

consciousness is epiphenomenal to changes in the spectral exponent, rather than an actual change 93 
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of complexity. Alpha power is still widely used as a marker of level of consciousness in research, 94 

as well in clinical applications. This study has the potential to shed further light on the current debate 95 

about the identification and validation of neurophysiological markers of consciousness.  96 

3 Materials and methods 97 

3.1 Dataset  98 

We analyzed an existing dataset containing resting-state EEG recordings from 303 patients with a 99 

DOC. All data was recorded in the Pitié - Salpêtrière hospital, Paris France. Consent was provided 100 

by the patients’ legal representative according to the Declaration of Helsinki. This study was 101 

approved by the ethical committee of the Pitié - Salpêtrière hospital under the code ‘Recherche en 102 

soins courants’. EEG data was acquired using a 256 channel GSN-HydroCel-257 sensor net.  103 

3.2 Preprocessing  104 

Data preprocessing was performed using MNE-python software (Gramfort et al. 2013). All data was 105 

downsampled to 250 Hz and filtered between 1 and 45 Hz. Notch filters were applied at 50 and 100 106 

Hz. Electrodes which contained no signal or non-physiological artifacts were manually selected by 107 

a trained experimenter and removed from subsequent analysis. Due to spatial clustering of bad 108 

channels caused by small bandages or patches, removed channels were not interpolated. Data 109 

was average referenced and 62 non-brain channels were removed, yielding a maximum of 195 110 

remaining channels. Data was epoched in 1 second windows without overlap. Bad epochs were 111 

dropped based on a maximal acceptable peak-to-peak amplitude of 200 µV. A maximum of 5 112 

minutes preprocessed EEG was kept for subsequent analysis. From the initial 303 subjects, 33 113 

subjects were rejected from subsequent analysis due to poor data quality and less than 2 minutes 114 

of clean data. Ten patients were excluded from the etiology-based analysis due to the co-115 

occurrence of anoxic and non-anoxic brain injury (see Figure 1 for a graphic representation of 116 
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participant inclusion). The remaining 260 patients (156 male, 102 female, 2 unknown, mean age 117 

47.25 ± 17.25, 187 acute, 70 chronic) had an average of 185.84 ± 8.41 channels and 252.68 ± 118 

48.99 seconds of data. No difference was observed in the number of epochs or channels between 119 

different etiologies or diagnostic groups. 120 

 

 

Figure 1. Visual representation of patients included in the diagnostic and prognostic 
analysis in this study. CRSR: Coma Recovery Scale Revised, UWS: Unresponsive 
Wakefulness Syndrome, MCS: Minimally Conscious State, EMCS: Emergence, LIS: Locked in 
syndrome. 

 121 
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3.3 Patient Etiology  122 

This study aims to compare the diagnostic value of candidate markers of consciousness in different 123 

etiologies, especially anoxic and non-anoxic injuries. We therefore split the patients in three groups, 124 

according to their etiology. From the 260 patients included in this study, 87 patients suffered from 125 

an anoxic brain injury, 86 patients suffered a non-anoxic injury (n= 63 TBI and n=23 stroke). 86 126 

patients were unresponsive following a variety of other etiologies including encephalitis, 127 

encephalomyelitis, leukoencephalopathy, hypoglycemia, post-operative complications, 128 

intoxication, toxoplasmosis, meningioma, hyperthermia, malaria, undefined etiology, 129 

unconsciousness following COVID-19, Guillain Barré and septic chocs.  130 

3.4 Patient Diagnosis  131 

Patients’ level of consciousness was assessed on the day of recording by a trained experimenter 132 

using the CRS-R score (Kalmar and Giacino 2005). At the time of EEG data acquisition, 13 patients 133 

were in a coma, 129 patients were diagnosed with UWS, 70 patients were in MCS-, 31 patients 134 

were in MCS+, and 10 patients were in EMCS (see Table 1 for demographic information on each 135 

group). Four patients were unresponsive following from Guillain Barré and were therefore classified 136 

to be in a locked in syndrome. Three patients had no recorded diagnosis and were excluded from 137 

the diagnostic analysis. As we cannot exclude the presence of consciousness despite complete 138 

unresponsiveness, the 13 patients in a coma were excluded from the diagnostic analysis (see 139 

Figure 1 for a graphic representation of participant inclusion).  140 

 141 

 142 

 143 
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Table 1:  Demographic information for diagnostic analysis 

 

 N Age 
 

Sex  CRSR  Etiology State 

  Mean  Std 
 

M F U  Mean Std  Anoxic TBI Stroke Other 

Coma 13 54.15 19.59 
 

8 5 0  2.23 1.25  4 1 1 7 

UWS 129 47.51 16.84 
 

81 47 1  4.77 1.40  59 29 4 37 

MCS- 70 44.17 16.07 
 

37 33 0  9.37 2.29  17 22 12 19 

MCS+ 31 50.87 18.61 
 

19 12 0  12.26 3.12  5 8 5 13 

EMCS 10 43.80 21.76 
 

6 4 0  17.60 3.92  0 3 1 6 

LIS 4 65.33 9.81 
 

2 1 1  1.5 2.12  0 0 0 4 
 

 

M: Male, F: Female, U: Unknown, TBI: Traumatic brain injury, Std: Standard deviation, CRSR: 
Coma Recovery Scale Revised, UWS: Unresponsive Wakefulness Syndrome, MCS: Minimally 
Conscious State, EMCS: Emergence, LIS: Locked in syndrome 
 

 144 

3.5 Patient Prognosis  145 

Each patient’s level of recovery was evaluated 6- and 12-months following injury using a pseudo 146 

CRS-R via phone call (Kalmar and Giacino 2005) (n= 245 at 6 months, n= 217 at 12 months) and 147 

the GOS-E (Jennett and Bond 1975) (n= 253 at 6 months, n= 213 at 12 months). From the initial 148 

260 patients, 57 patients died due to withdrawal of life supporting treatment. Due to the inability to 149 

assess those patients’ ‘natural’ progression post-injury and to avoid confounding factors such as 150 

patient’s and caregivers’ socioeconomic status, those patients were excluded from the prognostic 151 

analysis (see Figure 1). For 15 patients, the outcome measure was not available yielding 188 152 

patients with known functional outcome.  153 
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For the purpose of this study, functional outcome was defined as the maximal level of 154 

responsiveness reached within one year post injury (i.e., patients who regained responsiveness, 155 

but later deceased were labeled as ’recovered responsiveness’, as the reason of death might not 156 

be injury-related). As command following is the criteria separating MCS- from MCS+ (Kalmar and 157 

Giacino 2005), patients in an MCS+ and patients who regained consciousness were grouped into 158 

the prognostic category ’recovered responsiveness’ (i.e., Positive Outcome). Patients who did not 159 

regain responsiveness (i.e., remained in MCS-, UWS or Coma) and patients who died (not caused 160 

by withdrawal of life sustaining treatment) were grouped into the prognostic category named ‘did 161 

not recover responsiveness’ (i.e., Negative Outcome). Patients who were already in an MCS+ or 162 

EMCS at time of recording and did not improve over one year post injury were excluded from the 163 

prognostic analysis (n=4).  164 

Using the GOS-E score, a positive outcome corresponds to a score above 2, while a negative 165 

outcome corresponds to values of 1 and 2 (see supplementary Figure S1 for the comparison of 166 

prognosis using CRS-R and GOS-E score). For one patient, the outcome was assessed based on 167 

only one score, due to missing values in the second test (see supplementary Figure S1).  168 

A total of 184 patients were included in the prognostic analysis (see Figure 1), from which 91 169 

recovered responsiveness and 93 did not recover responsiveness (see Table 2 for prognostic 170 

information on each group, see supplementary Figure S2 for the prognostic groups split by original 171 

diagnosis, medical state and patient’s sex). No significant diagnostic and prognostic group-172 

difference was found in patient’s age and sex.  173 

 174 

 175 

 176 
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Table 2:  Demographic information for prognostic analysis, spitted by prognostic groups 

Outcome N Age 
 

Sex  Etiology 

  Mean  Std 
 

M F U  Anoxic TBI Stroke Other 

Positive 91 44.50 17.47 
 

53 38 0  18 31 11 31 

Negative 93 48.68 17.21 
 

58 35 0  35 22 9 27 

 

 

Positive: Patients who recovered responsiveness within one year post recording. Negative: 
Patients who did not recover responsiveness within one year post recording. M: Male, F: Female, 
U: Unknown, TBI: Traumatic brain injury, Std: Standard deviation  
 

 177 

3.6 Feature extraction 178 

3.6.1 Spectral features 179 
Spectral power. Power spectral density was calculated on each epoch and channel individually 180 

using the Welch method implementation from MNE python (Gramfort et al. 2013) with a 1 second 181 

windows and 50% overlap (fmin=1, fmax=45, n_fft=250, n_overlap=125). Frequency bands were 182 

defined as delta (1-4 Hz), theta (4-8Hz), alpha (8-13Hz), low beta (13-20Hz) and high beta (20-30 183 

Hz). Prior to power calculation, power spectral density was averaged over epochs, yielding one 184 

power spectrum per channel. The power analysis (i.e., absolute, relative and flat power) was 185 

performed on each channel individually and subsequently averaged over space. 186 

Absolute power in each frequency band was defined as log10 of the area under the PSD curve in 187 

the respective frequency band. Relative power was defined as the area under the PSD curve in the 188 

respective frequency band, divided by the area of the full spectrum (1-45 Hz). Relative power thus 189 

reflects a percentual contribution of a specific frequency range to the whole spectrum. In contrast 190 



 

 

12 

 

to absolute alpha power, which is affected by global power suppression, relative contribution of 191 

alpha power to the power spectrum corrects for differences in broadband power and captures 192 

differences in the shape of the power-spectral density, rather than the absolute height of a specific 193 

band. Flattened power was calculated using the ‘fitting oscillations and one over f’ 194 

fooof._spectrum_flat function (Donoghue et al. 2020). This function subtracts the aperiodic 195 

component from the power spectrum, leaving only the oscillatory peaks. Flattened power was 196 

defined as the are under the flattened power spectral density in the respective frequency band.  197 

Posterior-Anterior Ratio. Posterior-Anterior ratio (PAR) was defined as the geometric mean of all 198 

posterior values of absolute power (i.e., area under the PSD curve without log) divided by the 199 

geometric mean of anterior values, following Colombo et al. (2023). While anterior-dominated 200 

activity results in a PAR between 0 and 1, with 0 being total anteriorization, values above 1 indicate 201 

posterior-dominant activity. The posterior-anterior regions were split along the line of Cz, electrodes 202 

on the midline were not included in the analysis (see supplementary Figure S3). The Python 203 

function for the calculation of the posterior-anterior ratio is available at 204 

https://github.com/BIAPT/Markers. 205 

Aperiodic signal components. The aperiodic signal components (i.e., spectral exponent and 206 

offset) were calculated using the fixed mode of the ‘fitting oscillations and one over f’ algorithm 207 

(Donoghue et al. 2020). To avoid overfitting and detection of spurious oscillation, hyperparameters 208 

for the peak detection were used as recommended by Gerster et al. (2022) (min_peak_height=0.1, 209 

max_n_peaks=3, peak_width_limits=(2, 5.0)). Aperiodic components were calculated on the power 210 

spectrum of each channel individually and averaged subsequently over space. 211 

Complexity. Signal complexity was calculated using Lempel-Ziv complexity (Lempel and Ziv 212 

1976). EEG signal was epoched in 10 second non-overlapping windows and was discretized using 213 

the signal mean as a threshold. Signal complexity was calculated for every channel and epoch 214 

https://github.com/BIAPT/Markers
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individually and averaged over epochs subsequently. To account for possible influence of the 215 

signals’ spectral properties, LZC was estimated using two different methods for normalization: 1) 216 

shuffle normalization and 2) phase normalization.  217 

In shuffle normalized LZC, the complexity of the binarized EEG timeseries was normalized using 218 

the mean after randomly shuffling the previously obtained binary series 100 times. While complexity 219 

of 0 indicate a repetitive and easily compressible signal, complex signals which not easily 220 

compressible approach complexity values of 1. 221 

For the phase normalized LZC, each signals’ complexity was normalized using the mean 222 

complexity of surrogate signals. Phase-randomization has previously been used as a tool to 223 

decorrelate changes in complexity from pure spectral signal changes (Schartner et al. 2017; Toker 224 

et al. 2022). The surrogate signal was obtained by randomizing the phase of the original time series 225 

while maintaining most of its spectral properties. 100 surrogate signals were obtained for every 226 

epoch and channel individually. Complexity values above 1 indicate a higher signal complexity, 227 

relative to other signals with comparable spectral properties. Values below one indicates a relatively 228 

lower signal complexity. Our custom python code for the calculation of shuffle- and phase-229 

normalized LZC is available at https://github.com/BIAPT/Markers.  230 

3.7 Diagnostic and prognostic analysis 231 

To assess each features’ ability to index levels of consciousness we used five different approaches, 232 

summarized in Figure 2: 1) the correlation with patients’ diagnosed level of consciousness (UWS, 233 

MCS-, MCS+, EMCS); 2) the correlation with patient’s total CRS-R score; 3) the distinction between 234 

patients in a UWS and patients with higher levels of consciousness (MCS-, MCS+ and EMCS); 4) 235 

the distinction between unresponsive patients (UWS and MCS-) and patients with some level of 236 

responsiveness (MCS + and EMCS); and 5) the distinction patients according to their outcome (see 237 

https://github.com/BIAPT/Markers
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Figure 2). To account for the possible influence of etiology, all analyses were performed first on the 238 

totality of patients and then in subgroups according to patient’s etiology (i.e., anoxic, non-anoxic 239 

and other injuries).  240 

In the above-described analysis, patients with different diagnoses were grouped together as ‘higher 241 

levels of consciousness’ (i.e., MCS-, MCS+ and EMCS) or ‘some level of responsiveness (i.e., 242 

MCS+ and EMCS). Although this approach provides a larger contrast, it also introduces a variety 243 

of confounding factors, as patients do not differ solely in their level of consciousness. Within the 244 

category of MCS alone, patients may range from completely unconsciousness despite residual 245 

cortical activity and overt behavior to self-conscious individuals who lack the executive capacity to 246 

respond (Naccache 2018). To maximally reduce confounding factors, we additionally investigate 247 

the minimal contrast between adjacent diagnostic groups (i.e., UWS to MCS-, UWS to all MCS, 248 

MCS- to MCS+).  249 
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Figure 2: Overview of analysis used to assess the value of candidate features for the 
assessment of level of (analysis 1-4) and capacity for consciousness (analysis 5). CRSR: Coma 
Recovery Scale Revised, UWS: Unresponsive Wakefulness Syndrome, MCS: Minimally 
Conscious State, EMCS: Emergence 

3.8 Statistical analysis 250 

Correlation with the patient’s level of consciousness and total CRS-R score was performed using 251 

a partial Spearman rank partial correlation (Spearman’s Rho), implemented by the pingouin 252 

package (Vallat 2018). Features such as the spectral exponent (Voytek et al. 2015) and alpha PAR 253 

(Chiang et al. 2011) are variable over lifespan. To account for interactions between candidate 254 

measures and patient age, all correlations were performed using age as a covariate. A feature’s 255 

ability to differentiate patients, according to analysis 3-5 was assessed using a Mann-Whitney-U-256 

test. We corrected for multiple comparisons using the group-wise Holm correction (i.e., correction 257 

was performed for all seven metrics of interest within one etiology). In the first analysis, spearman 258 

correlation was applied for the relative rank of patient diagnosis (0: UWS, 1: MCS-, 2: MCS+ and 259 

3: EMCS). In the second analysis, we performed the Spearman rank test using patients’ total CRS-260 

R score.  261 

4 Results 262 

We first report the effect of grouping different etiologies of unresponsive patients on the candidate 263 

EEG markers. Subsequently, we contrast the diagnostic value of alpha power between its various 264 

instantiations (i.e., absolute, relative and flattened alpha power). We then compare the diagnostic 265 

value of spatial and spectral gradients (i.e., alpha PAR and the spectral exponent). Finally, we 266 

explore the influence of spectral properties on signal complexity. A summary of results from all five 267 

conducted analysis is presented in Figure 3, the corresponding statistical tables can be found in 268 

the supplementary material (see supplementary Table S1-S5). 269 
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Figure 3: Overview of all analysis results first presented for all etiologies, then split into groups 
based on patient etiology. Green squares represent significant effects. Yellow squares indicate 
effects which lost significance after correcting for multiple comparison. All statistical tables can 
be found in the supplementary Tables S1-S5. 
PAR: Posterior anterior ratio, LZC Lempel-Ziv Complexity.  

 270 
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4.1 Grouping unresponsive patients from different etiologies can induce spurious 271 

correlations or obscure existing markers of diagnosis. 272 

Figure 3 illustrates a discrepancy between effects observed on the whole-group level and 273 

diagnostic value of candidate EEG markers on individual etiologies. We present two examples of 274 

diagnostic effects which were observed on the whole group of unresponsive patients but did not 275 

generalize to individual subgroups.  276 

When analyzing patients from all etiologies grouped together, absolute alpha power significantly 277 

correlated with patient’s level of consciousness (r(238) = 0.31, p < 0.001) (analysis 1). However, 278 

after splitting patients according to their etiology, the correlation between the levels of 279 

consciousness and absolute alpha power remained only for anoxic patients (r(79) = 0.38, p < 0.01) 280 

(analysis 1). For non-anoxic patients, the relation between absolute alpha power and levels of 281 

consciousness strongly weakened and lost significance after p-value correction. No significant 282 

correlation was found for patients with other etiologies. A post-hoc analysis confirmed that anoxic 283 

patients in this dataset were characterized by a significantly lower CRS-R score (U = 2235, 284 

p<0.001) and broadband power (U = 2291, p<0.001), compared to non-anoxic patients. The lower 285 

broadband power resulted also in significantly reduced absolute alpha power (U = 2491, p<0.001) 286 

in anoxic patients. Our results demonstrate that lower CRS-R score and reduced broadband power 287 

in anoxic patients can induce a spurious group-level diagnostic value of an EEG marker for patients 288 

in a DOC, which might vanish when considering etiologies individually.  289 

An even stronger effect was observed for alpha PAR, which had diagnostic value solely on a whole-290 

group level (i.e., analysis 1-3). Similar to alpha power, a post-hoc analysis confirmed that anoxic 291 

patients were characterized by a significantly more posterior-dominant alpha activity (i.e., lower 292 

alpha PAR) (U = 2285, p<0.001), compared to non-anoxic patients. When performing the analysis 293 

on individual etiologies independently, the diagnostic effects vanished for all groups. Beyond 294 
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inducing spurious correlations, grouping all unresponsive subjects together also overshadowed 295 

existing etiology-specific diagnostic markers. When analyzing all etiologies together, the spectral 296 

exponent did not have any diagnostic value (analysis 1-3). However, splitting subjects by etiology 297 

revealed a strong link between the spectral exponent and non-anoxic patients’ CRS-R score (r(82) 298 

= 0.33, p<0.05) (analysis 2). In line with our previous findings (Maschke, Duclos, Owen, et al. 2022), 299 

a flatter spectral exponent was indicative for higher levels of consciousness. 300 

As recommended by Colombo et al. (2023), patients were split in anoxic and non-anoxic (i.e., stroke 301 

and TBI) patients. The correlation with patient’s level of consciousness was reproduced across 302 

patients who suffered a traumatic brain injury and stroke patients. Results are provided in the 303 

supplementary material (see supplementary Figure S4, see Discussion). 304 

4.2 Alpha power has a higher diagnostic importance for anoxic compared to non-anoxic 305 

patients  306 

When splitting the patients according to their etiology into anoxic (n = 81), non-anoxic (n = 84) and 307 

patients with other etiologies (n = 79), absolute alpha power maintained strongest diagnostic value 308 

for anoxic patients. Absolute alpha power correlated to the level of consciousness of anoxic patients 309 

(r(79) = 0.38, p<0.01) (analysis 1) and significantly distinguished UWS patients from patients with 310 

higher levels of consciousness (U = 321, p < 0.01) (analysis 3) (see Figure 4 and 5). In line with 311 

previous research (Colombo et al. 2023) higher levels of alpha power indicated higher levels of 312 

consciousness for anoxic patients. In addition, absolute alpha power significantly differentiated 313 

anoxic patients in a UWS from MCS- (U = 233, p < 0.01) and patients in a UWS from all MCS 314 

patients (U = 321, p < 0.001). 315 

For non-anoxic patients, the correlation between absolute alpha power and patient’s level of 316 

consciousness (analysis 1) lost significance after p-value correction. However, a significant 317 
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correlation remained between absolute alpha power and non-anoxic patients’ CRS-R score (r(82) 318 

= 0.31, p < 0.05) (analysis 2). In addition, absolute alpha power differentiated non-anoxic patients 319 

according to their level of responsiveness (U = 320, p < 0.05) (analysis 4). There was no significant 320 

difference in absolute alpha power between non-anoxic patients in a UWS and MCS- or UWS and 321 

MCS. However, compared to patients in an MCS- absolute alpha power was significantly increased 322 

for non-anoxic patients in a MCS+ (U = 131, p < 0.05). No diagnostic effects were present for 323 

patients with other etiologies. Alpha power had no prognostic value for any of the etiology groups.  324 

Compared to absolute alpha power, relative alpha power clearly showed the strongest diagnostic 325 

value for non-anoxic patients, with significant effects in analysis 1 to 4. Relative alpha power was 326 

significantly correlated with non-anoxic patient’s level of consciousness (r(82) = 0.39, p<0.01) 327 

(analysis 1) and CRS-R score (r(82) = 0.44, p < 0.001) (analysis 2) (see Figure 4 and 5). In addition, 328 

relative alpha power distinguished non-anoxic UWS patients from patients with higher levels of 329 

consciousness (U = 522, p < 0.05) (analysis 3) and stratified patients according to their level of 330 

responsiveness (U = 269, p < 0.01) (analysis 4). In line with this, relative alpha power significantly 331 

differentiated non-anoxic patients in a UWS from MCS (U = 500, p<0.01) and patients in a MCS- 332 

from MCS+ (U = 128, p<0.05). In the group of anoxic subjects, all diagnostic effects from analysis 333 

1-4 lost significance after p-value correction. Only the minimal contrast comparison between UWS 334 

and MCS- (U = 267, p < 0.05) and UWS and all MCS (U = 396, p<0.01) showed significance (see 335 

Figure 5). A visualization of spatial distribution of absolute and relative alpha power in UWS and 336 

MCS is provided in the supplementary material (see supplementary Figure S5). 337 

Flattening alpha power disentangled the effect of alpha oscillation from the background activity or 338 

spectral exponent of the power spectral density. After removing the background activity from alpha 339 

power (herein called ‘flattened alpha power’), this feature exhibited diagnostic value only in anoxic 340 

patients. Flattened alpha power correlated with anoxic patients’ level of consciousness (r(79) = 341 

0.31, p < 0.05) (analysis 1) and was able to significantly differentiate patients in a UWS from 342 
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patients with higher levels of consciousness (U = 363, p < 0.05) (analysis 3) (see Figure 5). In 343 

addition, flattened alpha power significantly distinguished anoxic patients in an UWS from MCS- 344 

(U=231, p<0.01) and UWS from all MCS (U=363, p<0.01) (see Figure 5). No diagnostic effect was 345 

found for non-anoxic patients and patients with other etiologies.  346 

In summary, absolute alpha power had diagnostic value for both anoxic and non-anoxic subjects. 347 

While anoxic patients showed effects in the differentiation of levels of consciousness, the effect in 348 

non-anoxic patients was more expressed in differentiating responsiveness.  Meanwhile, relative 349 

alpha power showed diagnostic effects only for non-anoxic patients. Separating alpha power from 350 

the spectral exponent limited the diagnostic value to anoxic patients. In a post-hoc analysis we 351 

looked at the relative power in all frequency bands. In line with previous research (Sitt et al. 2014; 352 

Engemann et al. 2018) we showed that patient’s diagnosis correlated negatively with relative delta 353 

power and positively with all relative power bands above 8 Hz (see supplementary Figure S6). This 354 

indicates that diagnostic value of relative power in non-anoxic patients is largely attributable to the 355 

spectral exponent, rather than the alpha peak. Our results confirm the hypothesis that alpha power 356 

has higher diagnostic value for anoxic patients, compared to non-anoxic patients. 357 

 358 
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 360 
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Figure 4. Spectrograms for different etiologies and diagnostic and prognostic groups.   

Power spectral density and of anoxic (left) and non-anoxic (middle) and (right) patients who were 
unresponsive due to other etiologies. Solid lines represent the mean of the (A) diagnostic and 
(B) prognostic groups. Shaded areas are the one-sided standard deviation above the mean. 
UWS: Unresponsive Wakefulness Syndrome, MCS: Minimally Conscious State, EMCS: 
Emergence, LIS: Locked in syndrome. Coma patients were not included in the diagnostic 
analysis and are presented for purpose of visualization only (see Methods) 

 365 

4.3 The EEG spectral exponent has more diagnostic value than the spatial gradient. 366 

When analyzing patients from all etiologies grouped together, the alpha PAR showed high 367 

diagnostic value, being significantly correlated with patient’s level of consciousness (r(238) = 0.19, 368 

p < 0.05) (analysis 1) and CRS-R score (r(238) = 0.19, p < 0.05) (analysis 2). In addition, alpha 369 
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PAR significantly differentiated patients in a UWS from patients with higher levels of consciousness 370 

(U = 5404, p < 0.01) (analysis 3). In line with Colombo et al (2023), lower CRS-R scores aligned 371 

with stronger alpha anteriorization. However, after splitting patients according to their etiology, all 372 

effects vanished for all patient groups (see Figure 5). 373 

In contrast to the spatial gradient, the spectral exponent did not show diagnostic value on a whole-374 

group level. However, the spectral exponent significantly correlated with non-anoxic patients’ CRS-375 

R score (r(82)=0.33, p<0.05) (analysis 2). In line with previous research (Maschke, Duclos, Owen, 376 

et al. 2022), a flatter exponent indicated a higher level of consciousness (see Figure 4 and 5). The 377 

correlation between the spectral exponent and non-anoxic patients’ level of consciousness as well 378 

as its ability to distinguish responsive from unresponsive patients lost significance after p-value 379 

correction (see Figure 3 and 5).  380 

In addition, it is interesting to note the potential prognostic value of the spectral exponent for anoxic 381 

patients. Even though this difference did not remain significant after p-value correction, patients 382 

with an unfavorable outcome were characterized by a significantly flatter spectral exponent 383 

compared to patients with a favorable outcome (U = 175, p uncorrected < 0.01, p corrected = 0.06). 384 

In addition, a post-hoc analysis revealed a positive correlation with anoxic patients’ maximal GOS-385 

E score (r(51) = -0.30, p uncorrected < 0.05). Despite a strong correlation between the EEG spectral 386 

exponent and offset (r(259)  = -0.81, p<0.001), the spectral exponent showed consistently higher 387 

diagnostic value than the offset. 388 

4.4 Changes in signal complexity can be largely attributed to changes in the spectral 389 

exponent. 390 

In line with previous research pointing out the strong relationship between the spectral exponent 391 

and Lempel-Ziv Complexity (Medel et al. 2020), the spectral exponent showed a high correlation 392 
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with the shuffle-normalized LZC (r(259) = 0.93, p<0.001). Normalizing the signal with the phase 393 

shuffled surrogates reduced this relationship (r(269) = 0.52, p<0.001), yielding measures of 394 

complexity which were more independent of spectral properties. 395 

Similar to the results from the spectral exponent, shuffle-normalized LZC did correlate with non-396 

anoxic patients’ diagnosed level of consciousness (r(82) = 0.34, p<0.05) (analysis 1) and CRS-R 397 

score (r(82) = 0.39, p < 0.01) (analysis 2). It further significantly differentiated non-anoxic patients 398 

according to their responsiveness (U = 296, p < 0.05) (analysis 4). Correcting the Lempel-Ziv 399 

complexity for phase differences weakened all previously significant diagnostic value for non-400 

anoxic patients. Thereby, all diagnostic effects of phase-shuffled LZC lost significance after p-value 401 

correction. Likewise, correcting the correlation between shuffle-normalized LZC and patients’ level 402 

of consciousness and CRS-R score by the spectral exponent (i.e., using partial correlation) made 403 

the diagnostic effect vanish.  404 

Taken together, whereas shuffle-normalized LZC reproduced similar effects as seen in the spectral 405 

exponent (see Figure 5), phase-normalization (i.e., reducing the influence of spectral properties on 406 

the complexity) reduced the effects or eliminated the observed diagnostic value. However, shuffle-407 

normalized LZC exhibited a generally stronger diagnostic effect compared to the spectral slope 408 

(analysis 1-4). Our results indicate that the diagnostic effect of LZC can be largely, but not 409 

exclusively, attributed to spectral changes – specifically changes in the spectral exponent – with 410 

flatter exponents indicating higher levels of complexity.  411 

4.5 None of the candidate markers generalized to patients with other etiologies. 412 

None of the investigated markers had diagnostic or prognostic value that generalized to patients 413 

who were unresponsive due to other injuries (see Discussion). 414 
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Figure 5. Correlation between spectral properties and patients’ levels of consciousness.  

Correlation between patients’ diagnosis, and all candidate EEG features. Spearman rank 
correlation value and degrees of freedom are indicated for each correlation. Each dot 
corresponds to an individual patient. Corrected significance values are indicated above, with * 
indicating p< 0.05, ** being p < 0.01, *** being p< 0.001 and n.s. indicating no significance. All 
non-significant correlations are shaded with grey background. A background with grey and white 
lines indicates loss of significance after p-value correction. A post-hoc test was performed to 
assess the minimal contrast between diagnostic groups. P-values are indicated above the bars 
to differentiate UWS from MCS-, MCS- from MCS+ (first row) and UWS from all MCS (second 
row). Coma patients were not included in the diagnostic analysis and are presented for purpose 
of visualization only (see Methods). UWS: Unresponsive Wakefulness Syndrome, MCS: 
Minimally Conscious State, EMCS: Emergence, LIS: Locked in syndrome, PAR: Posterior 
anterior ratio, LZC Lempel-Ziv Complexity.  

 415 

5 Discussion 416 

In this study, we investigated the diagnostic and prognostic value of three classes of EEG features, 417 

namely: 1) spectral power; 2) spectral and spatial gradients; and 3) signal complexity; for the 418 

assessment of unresponsive patients. Our results indicate that the diagnostic value of absolute and 419 

flat alpha power is most strongly expressed in anoxic patients, contributing to growing evidence 420 

that alpha power indexes the level of cortical suppression rather than level of consciousness. In 421 

contrast, changes in relative power had strong diagnostic effects for non-anoxic patients but were 422 

largely attributable to changes in the spectral exponent. The EEG spectral exponent had diagnostic 423 

value for non-anoxic patients only. Although the diagnostic value of signal complexity was largely 424 

attributable to spectral changes, some diagnostic value remained after correcting for spectral 425 

changes. Diagnostic value of signal complexity was largely, but not fully attributable to spectral 426 

changes, indicating a need to identify of measures of complexity which are more independent of 427 

spectral signal properties. None of the candidate measures generalized to patients with other 428 

etiologies.  429 

 430 
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Etiology is a strong confounding factor in EEG markers of consciousness. 431 

Grouping unresponsive patients from different etiologies together can both induce spurious 432 

correlations and obscure existing etiology-based markers of diagnosis. When analyzing all 433 

unresponsive patients together, many of the candidate features including absolute alpha power, 434 

the alpha PAR and signal complexity showed diagnostic value for unresponsive patients. However, 435 

splitting patients into groups based on patients’ etiology eliminated the diagnostic value of these 436 

markers for individual etiologies. Compared to non-anoxic patients, anoxic patients are often 437 

characterized by an overall lower CRS-R score and reduced broadband activity (Estraneo et al. 438 

2016; Snider et al. 2022; Colombo et al. 2023). Analyzing anoxic and non-anoxic patients together 439 

can therefore induce a spurious correlation driven solely by differences between etiologies, rather 440 

than level of consciousness. We confirm our hypothesis that putative EEG markers of 441 

consciousness have etiology-dependent differences in their association with patient diagnosis and 442 

recommend considering etiologies independently when searching for markers of level of and 443 

capacity for consciousness.  444 

Alpha power has higher diagnostic value for anoxic patients.  445 

Absolute alpha power was related to diagnosis in anoxic and non-anoxic patients. Absolute alpha 446 

power was more associated with levels of consciousness in anoxic patients and separated non-447 

anoxic patients only on their level of responsiveness. In contrast, relative alpha power had high 448 

diagnostic value for non-anoxic, but not for anoxic patients. However, correcting alpha power for 449 

the background activity (i.e., subtracting the aperiodic component from the power spectral density) 450 

limited the diagnostic association to anoxic patients only. Thus, non-anoxic patients’ diagnostic 451 

value of relative alpha power and relative power in other frequency bands (see supplementary 452 

material Figure S6) was largely attributable to changes in the spectral exponent. We therefore 453 

confirm our hypothesis that alpha power has higher diagnostic value for anoxic patients and 454 
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highlight the importance of considering the spectral exponent in power analyses. Our results 455 

support findings by Colombo et al (2023), who attributed loss of alpha power to global suppression 456 

of cortical activity in anoxic patients, rather than level of consciousness. 457 

Previous studies (Sitt et al. 2014; Engemann et al. 2018; O’Donnell et al. 2021) demonstrated the 458 

diagnostic value of relative alpha power. The authors of Colombo et al. (2023) speculated that 459 

those findings could be attributed to the overrepresentation of anoxic patients and the use of 460 

neurobehavioral tools for patient stratification. However, the use of relative alpha power in those 461 

papers avoids a bias originated by the broadband power suppression of anoxic patients. Instead, 462 

our results indicate that the previously identified diagnostic and prognostic value of relative alpha 463 

power –specifically for non-anoxic patients– (Sitt et al. 2014; Engemann et al. 2018; O’Donnell et 464 

al. 2021) could be partially attributed to changes in the spectral exponent of their EEG. 465 

The EEG spectral exponent has diagnostic value for non-anoxic patients.  466 

Even though the EEG spectral exponent has been historically neglected, mounting evidence 467 

attributes changes in the spectral exponent as an index of altered states of consciousness 468 

(Colombo et al. 2019; Lendner et al. 2020; Colombo et al. 2023). In addition, our group previously 469 

demonstrated that patients in a DOC are often characterized by a total absence of oscillatory peaks 470 

(Maschke, Duclos, Owen, et al. 2022). In the current study, we validate the previously shown 471 

diagnostic value of the aperiodic component for non-anoxic patients (Maschke, Duclos, Owen, et 472 

al. 2022; Colombo et al. 2023). As demonstrated previously (Maschke, Duclos, Owen, et al. 2022; 473 

Colombo et al. 2023), higher levels of consciousness were indexed by a flatter spectral exponent. 474 

In line with previous results (Colombo et al. 2023), the spectral exponent had no diagnostic value 475 

for anoxic patients. None of the tested measures generalized to patients who did not suffer brain 476 

injury. In summary, the spectral exponent has diagnostic value for non-anoxic patients but does 477 

not generalize to anoxic subjects and patients with other etiologies.  478 
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Alpha posterior-anterior ratio was not related to diagnosed level of consciousness. 479 

In contrast to the spectral exponent, spatial gradients (i.e. the alpha PAR) showed only little 480 

diagnostic value for non-anoxic patients. The positive correlation between the alpha PAR and non-481 

anoxic patient’s total CRS-R score lost significance after p-value correction. Colombo et al. (2023) 482 

showed that alpha PAR had a stronger capacity to stratify levels of consciousness, compared to 483 

alpha power. In their study, alpha PAR indexed levels of consciousness in non-anoxic patients and 484 

the reference dataset of anesthetic-induced unconsciousness. In our study, we were not able to 485 

replicate the diagnostic value of alpha PAR. We discuss two possible explanations for the 486 

contradicting results.  487 

First, the study by Colombo et al. (2023) quantified patients’ level of consciousness using a neuro-488 

behavioral assessment, combining the CRS-R score (Giacino et al. 2004) (i.e., a behavioral 489 

assessment) with the perturbational complexity index (Casali et al. 2013) (i.e., a neurological 490 

assessment). While this allowed them to identify unresponsive patients with higher levels of 491 

consciousness, our study relied on behavioral assessment only. The reliance on behavioral proxies 492 

of consciousness likely underestimated levels of consciousness in our patients, leading to inability 493 

to detect diagnostic effect in alpha PAR. However, while the above argument concerns the 494 

evaluation of diagnostic value in all features (see Limitations), the inability to replicate results 495 

presented by Colombo et al. (2023) only concerned the alpha PAR. We thus consider a second 496 

explanation for the contradicting findings.  497 

Alpha power is sensitive to demographic characteristics such as age and sex (Jaušovec and 498 

Jaušovec 2010; Chiang et al. 2011; Cave and Barry 2021). More specifically, woman have higher 499 

broadband power and stronger alpha activity – particularly in parietal and occipital regions 500 

(Jaušovec and Jaušovec 2010; Cave and Barry 2021). In addition, the alpha peak has a strong 501 

relation to age, moving towards more frontal regions across the lifespan (Chiang et al. 2011). 502 
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Indeed, a post-hoc analysis on our data confirmed a significant correlation between age and the 503 

alpha PAR (r(181) = -0.30, p<0.001), with higher age indicating more anterior-dominant alpha. This 504 

relation remained significant after correcting for patients total CRS-R score. To account for the 505 

possible sex-based differences, we performed a second post-hoc analysis, investigating the sex-506 

based differences in the diagnostic markers of all candidate features (see supplementary Figure 507 

S7). Most interestingly, the alpha PAR in non-anoxic patients showed a diverging effect between 508 

men and women. The alpha PAR showed a significant correlation with non-anoxic patients’ CRS-509 

R score only in women, but not men. The analysis performed by Colombo et al. (2023) did not 510 

account for participants’ age and sex. Possible interaction effects should be further investigated to 511 

avoid age- or sex-based biases in the clinical assessment of consciousness.  512 

The EEG spectral exponent might have prognostic value for anoxic unresponsive patients.  513 

In addition to the diagnostic value for non-anoxic patients, this study suggests that the EEG spectral 514 

exponent has prognostic value for anoxic patients. Specifically, anoxic patients with a steeper 515 

spectral exponent had a higher probability for recovery of consciousness. A post-hoc analysis further 516 

confirmed a correlation between the spectral slope and anoxic patients’ quality of recovery (i.e., 517 

maximally achieved GOSE score within one year) (r(51)=-0.30, p<0.05), with a steeper spectral 518 

slope indicating a higher GOSE score and thus better recovery. Previous results provide evidence 519 

linking the flattening of the spectral exponent to higher levels of consciousness (Colombo et al. 520 

2019; Lendner et al. 2020; Maschke, Duclos, Owen, et al. 2022). Our group previously demonstrated 521 

paradoxical effects on the spectral exponent and signal complexity following exposure to anesthesia 522 

(Maschke, Duclos, and Blain-Moraes 2022; Maschke, Duclos, Owen, et al. 2022), where  overly-523 

steep spectral exponents flattened in response to anesthesia. We therefore suggest that the EEG 524 

spectral exponent can be related to different underlying pathologies: 1) an over-steepening of the 525 

spectral exponent indicating altered excitation-inhibition balance; and 2) an over-flattening of the 526 
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spectral exponent indicating global neuronal cell death and severity of injury in anoxic patients. A 527 

previous study investigating the prognostic value of the EEG spectral exponent in cardiac arrest 528 

patients did not find a significant difference between recovered and non-recovered patients (Alnes 529 

et al. 2021). However, outcome measures in this study might have been affected by the withdrawal 530 

of life sustaining treatment and the estimation of the spectral exponent while patients were sedated 531 

and in hypothermic treatment. More research needs to be done to further investigate the prognostic 532 

value of the spectral exponent for anoxic patients.  533 

Changes in signal complexity can be largely, but not exclusively, attributed to spectral 534 

properties. 535 

The analysis of spontaneous and evoked brain complexity has gained increasing attention as a 536 

marker of human consciousness. Reduced brain complexity and entropy of spontaneous EEG 537 

activity has been shown during anesthesia-induced unconsciousness (Bruhn et al. 2000; Zhang et 538 

al. 2001; Jordan et al. 2008; Schartner et al. 2015), sleep (Burioka et al. 2005; Mateos et al. 2018), 539 

epilepsy (Mateos et al. 2018) and in disorders of consciousness (Sarà and Pistoia 2010; Gosseries 540 

et al. 2011; Sitt et al. 2014; Stefan et al. 2018; Lei et al. 2022). In this study we demonstrated that 541 

the diagnostic value of LZC was largely attributable to changes in the spectral exponent. After 542 

correcting the signal complexity to a phase-shuffled signal with similar spectral properties (i.e., 543 

making LZC more independent from the spectral properties) diagnostic value of LZC weakened or 544 

vanished completely. However, disentangling signal complexity from the spectral exponent also 545 

revealed some diagnostic power of LZC for anoxic patients, which was not present in the classic 546 

LZC. We confirm our hypothesize that loss of signal complexity in lower levels of consciousness is 547 

epiphenomenal to changes in the spectral exponent and highlight the potential of metrics of signal 548 

complexity that rely less on the spectral exponent. LZC is only one measure from a multitude of 549 
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available complexity and entropy measures (Lau et al. 2022); more research is needed to identify 550 

measures of signal complexity which are better suited for the assessment of unresponsive patients. 551 

None of the candidate EEG markers generalized to patients with other injuries. 552 

In this study, none of the candidate EEG markers showed diagnostic value for the group of patients 553 

who were unresponsive caused by other etiologies. One possible explication for this is the high 554 

heterogeneity of this group, which was composed of a variety etiologies and different mechanisms 555 

leading to alterations in consciousness. Our results indicate the importance of carefully using the 556 

term ‘markers of consciousness’ in the context of the evaluation of unresponsive patients. Previous 557 

research has pointed out that correlates of unresponsiveness are not solely markers of 558 

consciousness, but are also conflated with indexes of connectedness (Casey et al. 2024). In 559 

addition to level of consciousness and connectedness, EEG markers for the clinical assessment of 560 

consciousness are likewise influenced by type and severity of injury. Anoxic and non-anoxic brain 561 

injuries are highly heterogenous, the aim of identifying a ‘one size fits all’ marker of level of or 562 

capacity for consciousness is overly idealistic in a clinical context. Although it is meaningful to 563 

investigate markers of loss of consciousness in the healthy brain through different mechanisms 564 

that result in unconsciousness, those mechanisms do not necessarily translate to the injured brain. 565 

Instead, we want to point out the need for markers for consciousness and recovery which account 566 

for the type and severity of brain injury, and address interindividual and etiology-dependent 567 

differences. There is an unmet need for more clinically homogenous large datasets for the 568 

investigation of etiology-dependent clinical markers. As an alternative, the use of perturbation for 569 

patient-assessment overcomes the problem of individual differences by enabling within-subject 570 

analysis. More research is needed on personalized medical approaches for clinical assessment to 571 

overcome the limitation of interindividual heterogeneity yielding differences in spontaneous EEG 572 

markers. 573 
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Limitations 574 

The results of this study need to be interpreted in light of several limitations.  575 

First, level of consciousness was assessed using the proxy of responsiveness (CRS-R score). 576 

However, the absence of responsiveness is not sufficient to claim the absence of consciousness 577 

(Sanders et al. 2012). To partially address this limitation, we conducted five variations of the 578 

diagnostic analysis: a basic diagnostic analysis (analysis 1-3); an analysis focused on patient 579 

responsiveness (analysis 4); and an analysis focused on the patient’s potential to recover (analysis 580 

5). To maximally exclude confounding factors beyond the pure level and content of consciousness, 581 

we additionally analyzed the minimal contrast between UWS and MCS, MCS- and MCS+. Still, the 582 

diagnosis which relies on behavior alone is insufficient to correctly reflect the state of an 583 

unresponsive patient and should be ideally paired with evidence from functional brain imaging 584 

assessment (Naccache 2018).  585 

Second, we combined traumatic brain injury and stroke into the group of non-anoxic patients. The 586 

same grouping has been performed in previous research (Colombo et al. 2023), in which they 587 

reported diverging effects between anoxic and non-anoxic patients but similar results within the 588 

group of non-anoxic patients (i.e., between stroke and TBI patients). In line with this, we performed 589 

analysis 1 (i.e., the correlation between candidate features and patients’ diagnosed level of 590 

consciousness) on TBI and stroke patients individually and provided the results in the 591 

supplementary material (see supplementary Figure S4). While similar trends were observed in the 592 

individual groups, the possibility to draw conclusions based on statistics is limited by the small 593 

sample size of 22 stroke patients. Despite similar cognitive recovery process (Castor and El 594 

Massioui 2018), TBI and stroke are still two distinct clinical conditions which should be treated and 595 

investigated independently. More research is needed to validate candidate EEG markers for their 596 

diagnostic and prognostic value for stroke and TBI patients independently. 597 



 

 

33 

 

Third, we only investigated space-averaged EEG features and did not account for the location and 598 

severity of injury. Investigating the diagnostic and prognostic value of specific brain regions’ EEG 599 

values would require accounting for individual characteristics of location and size of injury, which 600 

was not available in this dataset. Previous studies demonstrated a steepening of the spectral 601 

exponent in the stroke-affected hemisphere, compared to the healthy hemisphere (Lanzone et al. 602 

2022). To partially address the spatial variability in EEG features, we performed a post-hoc analysis 603 

investigating the prognostic value of the standard deviation of the spectral exponent. More research 604 

is required to investigate spatial characteristics of EEG features for the prediction of outcome.  605 

6 Conclusion 606 

Identifying reliable markers of consciousness is fundamental for the assessment unresponsive 607 

patients. Alpha power has long been considered a reliable and generalizable clinical index of 608 

consciousness; our results support the claim that alpha power is an etiology-specific marker, which 609 

has higher diagnostic value for anoxic patients. In addition, we highlight the diagnostic value of the 610 

spectral exponent for the assessment of non-anoxic patients and point out the strong dependence 611 

between complexity and the spectral exponent. Our results demonstrate the importance of 612 

considering etiologies independently when investigating markers for capacity for consciousness. 613 

We demonstrated clinical limitations of current EEG markers of consciousness which are not 614 

generalizable across different brain pathologies. Moving forward, we encourage the development 615 

of within-subject approaches to address the limitation of interindividual heterogeneity.  616 
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