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Abstract

In the evolving landscape of clinical Natural Language Generation (NLG), assessing abstractive text quality
remains challenging, as existing methods often overlook generative task complexities. This work aimed to
examine the current state of automated evaluation metrics in NLG in healthcare. To have a robust and well-
validated baseline with which to examine the alignment of these metrics, we created a comprehensive human
evaluation framework. Employing ChatGPT-3.5-turbo generative output, we correlated human judgments
with each metric. None of the metrics demonstrated high alignment; however, the SapBERT score—a Unified
Medical Language System (UMLS)- showed the best results. This underscores the importance of incorporating
domain-specific knowledge into evaluation efforts. Our work reveals the deficiency in quality evaluations for
generated text and introduces our comprehensive human evaluation framework as a baseline. Future efforts
should prioritize integrating medical knowledge databases to enhance the alignment of automated metrics,
particularly focusing on refining the SapBERT score for improved assessments.

Introduction

In the rapidly developing field of Natural Language Generation (NLG) evaluation, the advent of Large
Language Models (LLMs) has opened unprecedented opportunities for assessing the quality of the gener-
ated text, highlighting the capacity for more detailed and nuanced evaluations. Despite this progress, our
foundation still heavily relies on traditional metrics such as the Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) score. While ROUGE remains a staple for summarization tasks, its dependence on
string matching reveals significant limitations, especially in capturing the subtleties of texts with high levels
of abstraction, like those encountered in medical diagnostics. Consequently, there is a noticeable disconnect
between the capabilities of these current evaluation methodologies and the demands of complex generative
tasks, underscoring a persistent gap in our understanding of their alignment.

Within the medical sphere, the assessment of NLG takes on heightened significance because of the
need to prevent biases, mitigate potential harm, and ensure accurate diagnoses. Consequently, a pressing
need arises for comprehensive and well-validated evaluation methodologies tailored to the unique challenges
posed by clinical diagnostic decision support. To navigate these challenges, our primary objective was to
examine automated metrics for their alignment with human judgments in clinical domain tasks. This work
began with an exploration of the current state of clinical NLG evaluation, emphasizing the necessity for a
nuanced approach in the diagnostic generation context. Subsequently, we delved into the critical examination
of important metrics, considering their applicability and limitations in the realm of diagnosis generation.
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Additionally, we introduced a comprehensive human evaluation framework with robust interrater reliability
and content validity, designed to assess the quality of each automated evaluation metric. By focusing on the
interplay between NLG advancements and diagnostic generation evaluation, this work aimed to contribute
valuable insights to the ongoing discourse in the evaluation of generative artificial intelligence for medical
purposes.

Background and Related Work for Automated Metrics
Across the spectrum of NLP tasks, we focused on automated metrics currently available for summarization
and question-answering as the tasks most closely aligned with diagnosis generation. A comprehensive litera-
ture search was conducted across the Association for Computational Linguistics (ACL) anthology, Medline,
and Scopus databases between April 20, 2023, and August 3, 2023, for literature that utilized human or
automated evaluation metrics on such tasks. In the screening phase, the following criteria were met: (1)
utilization of a human or automated evaluation metric; (2) a task related to text generation from a LLM;
(3) a summarization task; and (4) in the clinical domain. The keywords used in the search are listed in
Supplementary Materials. Additional literature was pulled that detailed fundamental knowledge on any of
the search criteria based upon repeated references or citations from those already being reviewed. A review
of the paper abstracts was performed to confirm the inclusion criteria of papers and a full paper review
was completed in the final selection. Results were imported into the Zotero citation management software
(v6.0.27). The search resulted in 82 papers covering 105 metrics that were included for full review by author
EC. The full search workflow is shown in Figure 1.

Figure 1: Overview of Literature Review Process and Metric Selection

A final set of automated metrics was chosen for inclusion because of their common use in tasks similar to
the BioNLP 2023 ProbSum task [1] and/or positive reported results for correlation with human evaluations
in the clinical domain. Ten metrics were included: (1) ROUGE-L [2], (2) UMLS Scorer [3], (3) CUI F-
Score [4], (4) SapBERT Score [5], (5) clinicalBERT Score [6], (6) PubMedBERT Score [7], (7) clinicalBART
Score [8], (8) Commonsense Transformers for automated Knowledge Graph Construction (COMET) [9], (9)
ProbSum Trained COMET [9], and (10) clinicalBLEURT [10]. These 10 metrics were classified into four
categories based on the nature of the metric: (1) N-gram Overlap Based; (2) UMLS Based; (3) Non-UMLS
Embedding Based; and (4) Learned Regression Based.

N-gram overlap metrics were those that compared candidate and reference output using the number of
words, phrases, or some other sub-sequence type that were present in the outputs. Our only n-gram overlap
metric was the ROUGE-L [2] because it was the current gold standard for evaluating text summarization.
ROUGE-L is the longest common sub-sequence variant of ROUGE and uses that common sub-sequence as
the n-gram overlap.

The UMLS based metrics were UMLS Scorer, CUI F-Score, and SapBert Score. Each of these relied on
the Unified Medical Language System (UMLS) [11] to generate embedding representations of the candidate
and reference outputs for comparison. The UMLS Scorer [3] used UMLS-based knowledge graph embeddings
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[10] and computed an F-score. The CUI F-score [4] also computed an F-score but used Concept Unique
Identifiers (CUIs) from the UMLS. Finally, SapBert Score created embeddings using a concept-based model
that was trained on the UMLS. This metric is a variation on the BERTScore [12], a metric that computed
the maximum pairwise cosine similarity between words in reference and candidate output

The Non-UMLS embedding-based metrics were the clinicalBERT Score, PubMedBERT Score, and clin-
icalBART Score. The clinicalBERT and PubMedBERT scores are additional variations on the BERTScore
where the concept-based model was trained on clinical notes from Medical Information Mart for Intensive
Care (MIMIC)-III [13] and abstracts from PubMed, respectively. The clinicalBART Score was a variation
on the BARTScore [8] using a Bidirectional and Auto-Regressive Transformer (BART) model fine-tuned on
abstracts from PubMed to create embeddings. The score was computed as the sum of the log probabilities
of the candidate output given the reference output.

Finally, the Learned Regression-based metrics were COMET, a customized COMET trained on our train-
ing data (ProbSum COMET), and clinicalBLEURT. COMET is a neural framework trained for evaluation
[9]. We looked at both the default COMET model and fine-tuned an additional COMET model using a small
portion of data from the train set of the ProbSum task. Both of these models use a regression approach
and were built upon the XLM-RoBERTA pre-trained text encoder. We also included the clinical BLEURT
score [10]. This metric is a variation on a learned evaluation BLEU score, called the Bilingual Evaluation
Understudy with Representations from Transformers (BLEURT). BLEURT was a regression-based metric
that was fine-tuned on clinical notes [14].

Methods

Problem Summarization Shared Task for Diagnosis Generation

We utilized data from the Problem List BioNLP Summarization (ProbSum) 2023 Shared Task [1], which
was one of the first natural language generation tasks in the medical domain. The goal of this task was to
summarize a patient’s active problems/diagnoses given the Subjective, Objective, and Assessment sections
from the daily progress notes. The Plan section was used to label the gold standard diagnoses. The progress
notes came from MIMIC-III, and the full annotation protocol was detailed previously [4].

Large Language Model for Diagnosis Generation

We selected ChatGPT-3.5-turbo as our language model because of its superior performance and availability
under an exemption status without sharing data [15] [16] [17]. In compliance with the Physionet Credentialed
Data Use Agreement, Azure OpenAI service approved our request to opt out of human review in our
institution’s Azure environment to run ChatGPT. For prompt design in the task, ChatGPT was asked to
paraphrase 50 prompts from a prompt initially authored by human subject matter experts. The lowest
perplexity prompt was chosen [18] and self-consistency [19] metrics were also performed to achieve the final,
optimal prompt.

The final prompt in the persona of a physician was the following: ”Imagine you are a medical professional,
and generate the top three direct and indirect, differential diagnoses from the input note. Use # to separate
the output diagnoses, then write a separate text that starts with <Reasoning> to explain the reasoning
behind your answer: ”. In addition to the prompt, context from the progress note was provided with the
Subjective and Assessment sections. The Subjective section includes recent events during the hospitalization
with relevant data, and the Assessment section includes the overall summary of the patient’s condition.
Several examples were provided in a few-shot design from the training data to achieve full in-context learning
for the LLM[20].

Human Evaluation Framework for Diagnosis Generation

Development

The human evaluation was split into two parts: (1) Diagnostic Accuracy Evaluation; and (2) Diagnostic
Reasoning Evaluation. The Diagnostic Accuracy part was benchmarked against the validated revised SaferDx
instrument [21] that incorporates metrics for diagnostic error and safety. We defined a medical diagnosis
using the Medical Subject Headings (MeSH) and National Cancer Institute (NCI) definitions from the
National Library of Medicine Unified Medical Language System (UMLS). The MESH definition states, ”The
determination of the nature of a disease or condition, or the distinguishing of one disease or condition
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Figure 2: Human Evaluation Survey Workflow An overview of the human evaluation survey workflow
and the questions associated with each component of the evaluation. This framework consists of a Diagnostic
Accuracy flow (orange) and a Diagnostic Reasoning flow (teal).

from another. Assessment may be made through physical examination, laboratory tests, or the like.” The
NCI definition states, ”The investigation, analysis and recognition of the presence and nature of disease,
condition, or injury from expressed signs and symptoms; also, the scientific determination of any kind; the
concise results of such an investigation.”

The diagnostic accuracy framework was categorized into the following components: (1) Overall Accu-
racy, (2) Plausibility, (3) Specificity, and (4) Omission/ Uncertainty. Accuracy, Plausibility,
and Specificity were applied at the individual diagnosis level and were conditioned such that only diagnoses
classified as accurate were scored for plausibility and only those classified as plausible were scored for speci-
ficity. Accuracy represented how well it met the definition of a diagnosis as stated above. Plausibility
represented if the diagnosis was hallucinated and could pose potential harm. Finally, Specificity captured
the level of detail in the diagnosis (i.e., sepsis vs sepsis from influenza pneumonia). The final component
of diagnostic evaluation, Omission/ Uncertainty, was applied to the entire list of outputted diagnoses.
Omission captured instances in which a diagnosis was missing from the output, but would be considered
in a clinical setting. Uncertainty, which is conditional on Omission, further penalized a model for not
utilizing the information it was provided versus not being provided with enough information.

The Diagnostic Reasoning Evaluation part was benchmarked against the framework established by Sing-
hal et al. for evaluating the quality of evidence [22]. Their particular framework was supported by a high
level of validity when compared to other established frameworks found during our literature review. The
Reasoning Evaluation was categorized into the following components: (1) Comprehension, (2) Ratio-
nale, (3) Recall, and (4) Omission. In a similar manner to the Diagnostic Accuracy Evaluation, the
Diagnostic Reasoning Evaluation was performed at the sentence level and the entire output level. Our goal
in performing sentence-level evaluation as well as entire output was to increase inter-annotator agreement.
Comprehension, Rationale, and Recall were pulled directly from the Singhal et al. framework and
applied at the sentence level. Comprehension referred to reading comprehension and captured instances
where the model did not understand information from the clinical note. Rationale captured instances in
which the model took incorrect reasoning steps. Finally, Recall referred to the recall of knowledge and
penalized a model for irrelevant, incorrect, or hallucinated facts. At the output level, Omission captured
when a model failed to include explanations for diagnostic choices or conclusions.

The guideline with instructions for reviewers and implementation into the REDCap survey tool is shown in
Supplementary Materials. In addition to the components outlined above, the guidelines present an additional
component that was utilized in another project and not reported here. The questions for each component
were scored using either a 5-point Likert scale or a binary decision. The Likert scales were Strongly Disagree
to Strongly Agree except in the cases of Omission, Omission Uncertainty, and Specificity. The exact scales
can be seen in Figure 3 and 4.
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Statistical Analysis of Human Evaluation Framework

The overall Diagnostic Accuracy and overall Diagnostic Reasoning scores were calculated using a linear
combination of the components ascribed to each component. The scores were then normalized to a (0, 1)
scale for a more direct comparison to the automated metrics. For every component, any NAs that were a
result of branching logic were imputed to 0. The Comprehension, Rationale, and Recall scores were
transformed (6− x) to account for the inverse meaning of the questions on scoring. A Diagnostic Accuracy
score (Di) for record ID i was therefore represented as

Di =
p̄i + s̄i + ōi

15

where for record ID i p̄i is the mean of the plausibility scores, s̄i was the mean of the specificity scores, and
ōi was the mean of the omission and uncertainty scores. A Diagnostic Reasoning score (Ri) for record ID i
was similarly represented as

Ri =
c̄i + ēi + āi

15
where for record ID i c̄i was the mean of the comprehension scores, ēi was the mean of the recall scores, and
āi was the mean of the rationale scores.

Content Validity and Interrater reliability

The operating characteristics for the human evaluation framework were calculated by using standard defini-
tions. Content validity was measured by first benchmarking the metrics to existing frameworks as described
above and then reviewing the metrics in beta testing sessions with two senior physicians. Interrater reliability
was assessed by comparing the evaluations of two senior physicians and two medical professionals against a
predetermined threshold, necessitating adjudication until a kappa coefficient of at least 0.70 was achieved.

Statistical Analysis of Automated Metrics against Human Evaluation

The ten automated metrics utilized in this analysis were organized into four categories: (1) N-gram over-
lap Based Metrics, (2) UMLS Based Metrics, (3) Non-UMLS Embedding Based Metrics, and (4) Learned
Regression Based Metrics. There were three metrics in each category, except the n-gram overlap category
which only had ROUGE-L. For COMET, we used the default model (wmt22-comet-da) and trained our
model with the ProbSum training data. For the fine-tuned COMET model (ProbSum Trained COMET),
we followed the training script outlined in the COMET github [23] using the default model as the base, the
regression model configuration, and 20% of the ProbSum training data.

Only the Diagnostic Accuracy Evaluation was utilized from the human evaluation for correlation with
the automated metrics. The Diagnostic Reasoning Evaluation was omitted since no ground truth labels were
available. The Spearman, Pearson, and Kendall-Tau correlations were computed between each automated
metric and the human evaluation scores. The Spearman and Kendall-Tau correlations both assume an
independent, monotonic relationship between the compared populations, but the Kendall-Tau is more robust
to small samples and many ties. The Spearman correlation uses the rank values of the cohorts, and the
Pearson correlation uses the raw integer scores. Both assume linearity and normal distribution on two
continuous populations. Additionally, we performed the Wilcoxon Signed Rank Test as a non-parametric
method to assess the significance of the differences between the medians of two related samples between
human metrics and automated scores, providing a deeper understanding. All correlation-related analyses
and statistical testing were performed using R v4.3.1. Every automated evaluation metric was executed in
Python 3.11.3.

Results

Human Evaluation

Given the input progress note without the Plan section that contained the ground truth diagnoses, ChatGPT
generated 768 diagnoses with 828 reasoning sentences. Human evaluation was performed on every diagnosis
and sentence. In human evaluation, ChatGPT had a median diagnostic accuracy score of 0.667 (IQR: 0.547
- 0.744), and a median reasoning accuracy score of 0.933 (IQR: 0.890-0.966).

In addition to the overall scores, the individual score components for the diagnosis and reasoning evalu-
ations are presented in Figures 3 and 4, respectively. Among the diagnoses, 80.6% (n = 619), were classified
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as fulfilling the definition of a diagnosis, 75.9% (n=583) were deemed plausible, and 40.8% (n=313) were
determined to be specific or highly specific. Of all the outputs generated, only 14.5% (n=27) had no diagnos-
tic omissions and 14.0% (n=26) had omissions of diagnoses that were directly related to the input progress
note. In addition, 32.5% (n=60) exhibited omissions from epistemic uncertainty.

In the reasoning score components, for every sentence scored, 94.3% (n=781) were deemed to have little
to no evidence of incorrect reading comprehension. Furthermore, 92.7% (n=767) had little to no evidence of
incorrect recall of knowledge and 74% (n=613) exhibited little to no evidence of incorrect reasoning steps.
Across the reasoning paragraphs generated for the 186 progress notes, 13.1% (n=108) did not contain an
explanation for the generated diagnoses.

Figure 3: Diagnostic Accuracy Evaluation Each bin refers to the text associated with the Likert Scale
scoring scheme for each component in Diagnostic Accuracy Evaluation. They are represented in order where
the far left bin represents a score of 1, or 0 in specific cases, and increases evenly by bin to 5.

Figure 4: Diagnostic Reasoning Evaluation Each bin refers to the text associated with the Likert Scale
scoring scheme for each component. They are represented in order where the far left bin represents a score
of 1, or 0 in specific cases, and increases evenly by bin to 5.
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Metric Spearman ρ Pearson r Kendall τb Wilcoxon p-value

N-gram Overlap Based Metrics

ROUGE-L 0.113 0.117 0.076 2.25e-31
(95% CI) (0.109, 0.118) (-0.027, 0.257) (0.073, 0.079)

UMLS Based Metrics

UMLS Scorer 0.137 0.143 0.097 2.93e-31
(95% CI) (0.133, 0.142) (-0.0009, 0.281) (0.093, 0.100)

CUI F-Score 0.060 0.071 0.044 4.04e-31
(95% CI) (0.055, 0.064) (-0.073, 0.213) (0.040, 0.047)

SapBERT Score 0.185 0.170 0.122 0.784
(95% CI) (0.180, 0.189) (0.026, 0.306) (0.119, 0.125)

Non-UMLS Medical Embedding Based Metrics

clinicalBERT Score 0.067 0.059 0.043 2.07e-23
(95% CI) (0.062, 0.071) (-0.085, 0.201) (0.040, 0.046)

PubMedBERT Score 0.017 -0.025 0.010 4.88e-32
(95% CI) (0.012, 0.021) (-0.169, 0.119) (0.006, 0.013)

clinicalBART Score -0.171 -0.150 -0.116 2.86e-32
(95% CI) (-0.176, -0.167) (-0.287, -0.005) (-0.119, -0.113)

Learned Regression Task Based Metrics

COMET -0.033 -0.046 -0.024 4.17e-07
(95% CI) (-0.038, -0.028) (-0.189, 0.098) (-0.027, -0.020)

ProbSum Trained COMET -0.077 -0.067 -0.052 0.003
(95% CI) (-0.082, -0.073) (-0.210, 0.076) (-0.055, -0.049)

clinicalBLEURT -0.176 -0.181 -0.119 0.005
(95% CI) (-0.181 ,-0.172) (-0.317, -0.038) (-0.122, -0.116)

Table 1: Correlation between Human Evaluation and Automated Metrics Multiple correlation met-
rics and nonparametric paired statistical testing with Wilcoxon Signed Rank test for selected Automated
Metrics and the Diagnostic Accuracy Evaluation from the Human Evaluation Framework. The 95% confi-
dence intervals are listed in subscripts below each correlation.

Automated Evaluation

The correlations between each selected automated metric and the corresponding human evaluation scores
are shown in Table 1. The largest Spearman correlation with the human evaluation scores was with the
SapBERT Score at 0.185. However, this correlation was not significantly different from many of the other
correlations between an automated metric and human evaluation (p-value > 0.1). The largest Pearson
correlation with the human evaluation scores was again with the SapBERT Score at 0.170. Similar to
the Spearman correlation, this value was not significantly different from the other correlations, but the
SapBERT Score was the only metric to have a 95% confidence interval that does not encompass 0 for the
Pearson correlation coefficients. The final correlation metric, Kendall-Tau, showed the same trend as the
other two. The Wilcoxon Signed Rank Test p-value was only favorable for the SapBERT Score at p=0.784
showing no difference between human evaluation and SapBERT. Overall, we did see a significant difference
in correlations for the UMLS Based Metrics versus the Learned Regression Task-based metrics and some
of the Non-UMLS Medical Embedding Based Metrics (p-values < 0.05). However, none of the automated
metrics had a significant improvement over the ROUGE-L.

In addition to correlations at the total score level, we also included correlations between each automated
metric and a single component of the diagnostic score. Comparisons for the specificity component, plausibility
component, and diagnostic omission component are outlined in Supplementary Materials. For specificity, the
SapBERT Score had the highest Spearman correlation (r = 0.119) and the highest Kendall-Tau correlation
(τb = 0.082) and the UMLS Scorer had the highest Pearson correlation (ρ = 0.135). For plausibility,
the SapBERT score had the highest Spearman, Pearson, and Kendall-Tau correlations, 0.220, 0.180 and

7

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2024. ; https://doi.org/10.1101/2024.03.20.24304620doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.20.24304620
http://creativecommons.org/licenses/by/4.0/


0.154 respectively. Finally, for the diagnostic omission, the highest correlations for Spearman, Pearson, and
Kendall-Tau were 0.109, 0.143, and 0.080 for the ROUGE-L automated metric. However, in each case, none
of the correlations were significantly superior to the other automated metrics (p-value > 0.1).

Discussion & Conclusions
This study introduces a human evaluation framework that offers a comprehensive assessment of essential
elements critical to diagnostic evaluations in clinical decision support systems. Our findings reveal that
numerous existing frameworks in the medical domain fail to include critical components such as content
validity and inter-rater reliability, nor do they amalgamate various components into a single, simplified score
for ease of comparison. Among the frameworks evaluated, the one proposed by Singhal et al. stands out as
the most comprehensive, featuring a detailed revision system that ensures reliable evaluations. However, it
primarily focuses on assessing the accuracy of medical facts within the MultiMedQA benchmark—a collection
of six diverse medical question-answering datasets. This focus on question-answering tasks is common among
current evaluation frameworks. In contrast, our framework extends beyond this limitation by offering a
holistic evaluation of diagnosis generation, incorporating lessons from both the successes and shortcomings
of previous methodologies. We have rigorously tested, reviewed, and validated our framework to guarantee
a high-quality human evaluation standard for comparing automated metrics.

Our systematic review of the literature showcases the lack of automated evaluations that mirror human
judgements in summarization tasks relating to the clinical domain. Each of the categories of automated
evaluation was designed to leverage one component of natural language for evaluation. Despite expectations
of strong performance from metrics categorized under Learned Regression Task-Based Metrics, these too
exhibited a disappointing lack of correlation with human evaluations. This shortfall could likely be attributed
to the relatively simplistic nature of the learning algorithms applied in our study. Furthermore, our iterations
of these metrics, specifically tailored with clinical training using real-world patient progress notes, did not
yield the anticipated improvement. In contrast, metrics based on the UMLS demonstrated some performance
improvement over other metrics. Notably, SapBERT emerged as the most promising, benefiting from its
training on the UMLS database. This allowed it to grasp subtle nuances by drawing on the extensive
medical knowledge within UMLS. Its reliance on a cosine similarity score further minimized penalties for
minor terminological discrepancies, provided the underlying semantics remained consistent.

These results highlight the central limitation of many automated evaluation metrics that rely on sub-
standard references. The majority of automated metrics prioritize overlap and similarity, producing scores
that may not accurately capture the factual accuracy or relevance of the text produced. Instead, the scores
reflect the degree of structural and lexicographical resemblance between the generated text and the provided
referents. While these elements remain important, they represent only a fraction of what constitutes a com-
prehensive evaluation. The quality of a reference text for evaluation can severely impact the reliability of
an evaluative result. Moramarco et al. [24] highlighted this issue, pointing out the pronounced bias many
automated metrics exhibit towards the structure of the reference text, as noted in their comparative analysis
of numerous automated evaluation tools. This bias underscores the need for further research aimed at devel-
oping metrics capable of assessing the relevance of generated texts beyond mere semantic and lexicographical
similarities. The challenge is particularly important in the medical domain, where generating diagnoses often
involves navigating abstract concepts and addressing omissions—a scenario observed in over ten percent of
our evaluations.

Similar work based on other shared tasks revealed similar conclusions. MedAlign [25], a dataset of
instruction-answer pairs from electronic health records (EHR), found that COMET had the highest cor-
relation with human judgments, but with a Kendall-Tau of 0.37 this correlation was only moderate. The
MEDIQA 2021 shared task [26], focused on question and answer summarization of clinical text, did not com-
pare any human and automated evaluation systems, but did show that across all three subtasks ROUGE-L
and BERTScore showed a Pearson correlation of 0.409. Future work must be geared toward improving
the state of evaluation to ensure that safety and accuracy remain at the forefront of improvement using
generative AI in the clinical domain.

In conclusion, we introduced a human evaluation framework specifically designed to assess the key com-
ponents of diagnosis generation relevant to diagnostic decision support systems, and we have shed light on
the misalignment between human evaluations and automated metrics. Our framework prioritizes diagnos-
tic safety and evidence-based reasoning, ensuring a thorough evaluation of diagnostic generation. We also
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focused on achieving a high degree of inter-annotator agreement. Our findings indicate that the automated
metrics currently employed for this task fall short of expectations, as they fail to mirror human judgment
accurately. However, we observed a notable improvement in UMLS-based approaches, attributed to their
sophisticated representation of medical knowledge and their foundation in the extensive resources of the
National Library of Medicine. This underscores the potential of leveraging medical knowledge databases to
enhance the accuracy of automated evaluation metrics in the clinical domain.
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