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Abstract: 

Background: Non-small cell lung cancer (NSCLC) histological subtypes impact treatment 

decisions. While pre-surgical histopathological examination is ideal, it's not always possible. 

CT radiomic analysis shows promise to predict NSCLC histological subtypes. 

Objective: To use CT scan radiomic analysis from NSCLC-Radiomics data to predict NSCLC 

histological subtypes using machine learning and deep learning models. 

Methods: 422 CT scans from The Cancer Imaging Archive (TCIA) were analyzed. Primary 

neoplasms were segmented by expert radiologists. Using PyRadiomics, 2446 radiomic features 

were extracted; post-selection, 179 features remained. Machine learning models like logistic 

regression, SVM, random forest, XGBoost, LightGBM, and CatBoost were employed, 

alongside a deep neural network (DNN) model. 

Results: Random forest demonstrated the highest accuracy at 78% (95% CI: 70%-84%) and 

AUC-ROC at 94% (95% CI: 90%-96%). LightGBM, XGBoost, and CatBoost had AUC-ROC 

values of 95%, 93%, and 93% respectively. The DNN's AUC was 94.4% (95% CI: 94.1% to 

94.6%). Logistic regression had the least efficacy. For histological subtype prediction, random 

forest, boosting models, and DNN were superior. 

Conclusions: Quantitative radiomic analysis with machine learning can accurately determine 

NSCLC histological subtypes. Random forest, ensemble models, and DNNs show significant 

promise for pre-operative NSCLC classification, which can streamline therapy decisions. 

 

Keywords: Lung Cancer, Computed Tomography, Radiomics, Histopathology, Artificial 

Intelligence, Classification  



3 
 

Introduction: 

Lung cancer remains a leading cause of mortality worldwide, with Non-Small Cell Lung 

Cancer (NSCLC) including adenocarcinoma, large-cell carcinoma, squamous-cell carcinoma 

(SCC), and undifferentiated carcinoma constituting the majority of all diagnosed cases.1,2 Until 

now, the treatment approach to NSCLC was similar for different histologic subtypes. Early 

surgical resection with adjuvant chemoradiotherapy has been the mainstay for early stages. 

Chemoradiotherapy, usually platin-based, with a secondary agent, usually paclitaxel, has been 

used for advanced stages.3 However, different subtypes of NSCLC are associated with distinct 

patterns of genomic alterations.4 Moreover, evidence from clinical trials demonstrates that 

tumor histology influences response rates, toxicity and progression free survival of targeted 

chemotherapeutic drugs.5 Therefore, histology is now considered an important factor in 

targeted treatment selection.6,7  

Traditionally, the gold standard technique for NSCLC subtype identification involves an 

invasive biopsy procedure, done by a trained pulmonologist or surgeon. This is followed by 

meticulous histopathological analysis by an experienced pathologist. While invaluable, these 

methods are time-intensive, carry procedural risks, and are not always conclusive, leaving a 

gap in time-sensitive and safe diagnostics.8 Traditional non-invasive tools to diagnose lung 

cancer mainly revolve around the detection of biochemical markers.9 Radiologic imaging 

techniques such as computed tomography (CT) has been used as a preliminary or even 

alternative diagnostic tools for lung cancers, which is currently based on manual reporting.10 

This leaves a possibility for false negatives in during reporting, which can prove to be costly.11 

However, CT scans contain rich data that is not apparent to the human eye, but can only be 

unravelled by studying signal intensities and other such characteristics. This is where the field 

of radiomics comes into play. Radiomic data extraction refers to the extraction of quantitative 

features from medical images such as CT scans, essentially converting digital images into 

minable, high-dimensional data, which offer unique undetected information that can enhance 

our understanding of the disease and thus provide clinical decision support.12 These radiomic 

features capture normal tissue as well as lesion characteristics, mainly heterogeneity and shape 

and may be used for clinical problem solving diagnosis by itself or in combination with 

demographic, histologic, genomic, or proteomic data.13 Therefore, in a clinical setting where 

diagnosticians are busy and time is often of the essence, relying on automated tools like 

radiomic analysis can help in reducing human time and error and can thus ease bottlenecks in 

the diagnostic pipeline. 

The integration of artificial intelligence such as machine learning/deep learning with radiomics 

presents an opportunity to harness these vast amounts of data and boost the era of precision 

medicine. The appeal of a radiomic approach in the context of NSCLC lies not just in its 

potential accuracy and precision, but also in its non-invasiveness.14 By obviating the need for 

invasive biopsy procedures, patient morbidity can be significantly reduced. Furthermore, by 

capitalizing on the quantitative nature of radiomics, we can pave the way for more 

standardized, reproducible, and objective diagnostic criteria that aren't as susceptible to 

interobserver variability, which is a challenge with current methods.15 The potential ripple 

effect on clinical practice will be profound, where, for example, initial CT scans done to 
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confirm the presence of a lung nodule could concurrently predict the NSCLC subtype, thereby 

accelerating the diagnostic journey and ensuring timely and tailored treatment. 

With these challenges and potential to overcome them in mind, the intersection of quantitative 

radiomic features extracted from seemingly unassuming CT scans with artificial intelligence 

techniques such as machine and deep learning has tremendous potential. Specifically, we 

focussed our efforts to investigate the efficacy of a hand-crafted quantitative radiomic analysis 

in predicting the histological subtypes of NSCLC using CT scans. In a landscape where every 

advancement could mean a significant difference in survival and quality of life, we believe that 

this approach could make a dent in existing knowledge and clinical practice. 

 

The aim of our study was to evaluate the efficacy and accuracy of hand-crafted quantitative 

radiomic analysis combined with machine and deep learning techniques in predicting 

histological subtypes of NSCLC using CT scans. The objectives were to extract quantitative 

radiomic features from segmented CT scans of patients diagnosed with NSCLC, to categorize 

and profile these features based on their potential relevance to distinct NSCLC histological 

subtypes, and thus subsequently train machine and deep learning models that can integrate and 

interpret the extracted radiomic features. We also validated the performance of these models 

using a subset of the data, ensuring their predictive accuracy and reliability. 

 

  



5 
 

Methodology: 

Study Design 

We followed the CheckList for EvaluAtion of Radiomics research (CLEAR) and the Image 

Biomarker Standardization Initiative (IBSI) guidelines while reporting the results to ensure 

standardization.16,17 Ethical details and eligibility criteria are available from the original study 

by Aerts et al.18 CT scans of 422 patients with NSCLC were used to extract radiomic data. The 

study was conducted as a retrospective analysis of previously acquired data. A detailed 

flowchart depicting the technical pipeline from data collection to analysis is provided in Figure 

1. 

 

Data 

Data were collected from the NSCLC-Radiomics data collection hosted on The Cancer 

Imaging Archive.19 Care was taken to ensure that there was no overlap between the training 

and test datasets by splitting data before preprocessing. Data were randomly divided into 80% 

training and 20% testing sets for machine learning models and 90% training and 10% testing 

sets for the deep neural network model. Image acquisition and processing were performed 

using standard clinical protocols for spiral CT scans (3 mm slice thickness) with or without 

contrast. Fully manual delineation of segments was done by expert radiation oncologists using 

a standard clinical delineation protocol on fused PET-CT images. Details are provided in 

original article by Aerts et al.18 Clinical variables measured in these patients included age, 

gender, clinical TNM staging, patient outcome, and survival time. Histological subtype 

confirmation through biopsy served as the reference standard. 

 

Pre-processing 

Fixed-bin width discretization with a bin width of 32 was used. Original and filtered images 

(Laplacian of Gaussian [LoG], wavelet, exponential, gradient, local binary pattern [LBP] in 2D 

and 3D, square, and square root) were used. Scale was normalized to 1. The list of sigma values 

used for LoG were [0.5, 1.0, 1.5, 2.0, 2.5, and 3.0]. These settings were used to instantiate the 

feature extractor using the PyRadiomics library.20 

 

Feature Extraction 

The hand-crafted features mentioned above were extracted providing a total of 2446 features. 

Texture, shape, and intensity were the main feature classes. 

 

Data Preparation 

Segmentation data for 1 patient was missing and was dropped. Out of the remaining 421 

patients, there was no missing radiomic data. Details about missing clinical data is provided in 
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Table 1. No imputation methods were employed to handle these missing data. Data were split 

into training and testing groups in an 80:20 ratio. Random oversampling was used to address 

class imbalance for the machine learning models, while Adaptive Synthetic (ADASYN) 

oversampling was used for the DNN model. Features were normalized using min-max 

normalization. For machine learning models, Spearman’s rank correlation was utilized to 

remove highly correlated features with coefficients ≥0.8. This reduced the total number of 

features to 321. Recursive feature elimination with cross-validation (RFE-CV) was used to 

further reduce the number of features to 179 for the machine learning pipeline. For the DNN 

mode, principal component analysis (PCA) to retain 95% variance was used after Spearman’s 

rank correlation for dimensionality reduction. This reduced the total number of features to 55 

for the deep learning pipeline. 

 

Machine Learning Modeling 

From the scikit-learn library, we decided to use logistic regression (one-vs-rest), support vector 

machine (SVM) with linear kernel, random forest, extreme gradient boosting (XGBoost), light 

gradient boosting (LightGBM), and categorical boosting (CatBoost) classification models to 

predict a multiclass outcome (histology).21 We performed 5-fold cross-validation to assess 

average performance of the models. After modelling the data, we tested their performance on 

test data. 

 

Deep Neural Network Modeling 

A deep neural network (DNN) was constructed using TensorFlow's Keras API.22 The 

architecture consisted of five dense layers with decreasing neuron counts from 1024 to 64. 

Each layer employed L2 regularization and was followed by a LeakyReLU activation function, 

batch normalization, and dropout layers. The final layer utilized a softmax activation function 

for classification across multiple categories. The Adam optimizer was employed with an 

exponential decay learning rate scheduler. We trained the model using categorical cross-

entropy loss, monitored for validation loss, and optimized using two callbacks: reduce learning 

rate on plateau and early stopping. Validation set predictions were subsequently generated. 

 

Evaluation 

Accuracy, precision/positive predictive value (PPV), negative predictive value (NPV), recall 

(sensitivity), specificity, AUC-ROC were used as performance metrics based on their relevance 

to classification problems. Confidence intervals were calculated using bootstrapping with 2000 

replicates for the machine learning models and 100 replicates for the DNN model. 

The methodology was meticulously designed to ensure robustness, repeatability, and 

transparency in the evaluation of the proposed radiomic analysis technique for predicting 

NSCLC subtypes. All code and supplementary materials are available upon request. 
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Results: 

In a cohort of 379 lung cancer patients, we analyzed demographic and clinical characteristics 

based on histological subtypes: Adenocarcinoma (N = 51), Large cell (N = 114), 

Undifferentiated (N = 62), and Squamous cell carcinoma (N = 152). The median age across the 

cohort was 69 years (IQR: 61-76), with Squamous cell carcinoma patients being the oldest 

subgroup with a median age of 71 (IQR: 64-78; p=0.011). Regarding the clinical staging, T-

stage distribution showed the majority at stage 2 (39%) and 4 (29%) with no significant 

variation between histological types (p=0.368). N-stage indicated a high number at stages 0 

(37%) and 2 (35%), with a p-value of 0.098. Almost all patients were at M-stage 0 (99%, 

p=0.2). When analyzing overall cancer stage, the highest proportions were observed in stages 

IIIb (44%) and IIIa (29%), revealing significant differences between subtypes (p=0.012). 

Gender distribution highlighted a male predominance (69% male vs. 31% female) across all 

subtypes, but with no significant variation (p=0.2). The median survival time for the entire 

cohort was 558 days (IQR: 258-1,384; p=0.5). A majority (89%) of the cases resulted in death, 

uniformly distributed among the subtypes (p=0.5). (Table 1) 

 

Performances of various machine learning models in predicting the histological subtype of 

NSCLC were evaluated. Ensemble methods like Random Forest, XGBoost, LightGBM, and 

Deep Neural Network models showcased the highest accuracies and AUC-ROC values, 

indicating that they had superior predictive abilities for the histological subtype of NSCLC. 

(Table 2, Figure 2)  

 

In one-versus-rest analyses for a multiclass outcome (histology), the performance metrics of 

different machine and deep learning models on various cancer histological subtypes are 

provided in Table 3 and 4, illustrated in Figure 3. Almost all models were able to detect 

adenocarcinoma and undifferentiated carcinoma with high metrics: 

1. Performance on Adenocarcinoma: 

Random Forest and LightGBM show the highest accuracy with values of 0.9836 and 0.959 

respectively. Random Forest achieved the highest AUC-ROC of 0.9936. Both Random Forest 

and LightGBM have strong precision and recall values, suggesting they can identify 

Adenocarcinomas effectively. 

2. Performance on Large Cell: 

Random Forest provided the best accuracy (0.8033) and AUC-ROC (0.8714). Despite its 

relatively low recall, the XGBoost model achieves a balanced performance with good precision 

and F1 Score. 

3. Performance on Undifferentiated: 
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Random Forest and LightGBM outperform other models in accuracy with 0.9262 and 0.8852 

respectively. Random Forest has an excellent AUC-ROC of 0.9729. Both models show good 

precision and recall, indicating a balanced performance. 

4. Performance on Squamous Cell: 

Random Forest achieves the best accuracy (0.8443) and AUC-ROC (0.9109). LightGBM and 

XGBoost follow closely in terms of performance metrics. 

 

Table 6 provides information on the performance of the random forest model across three 

different datasets: the original dataset (with class imbalance), an undersampled dataset (with 

each class having 51 samples), and an oversampled dataset (with each class having 152 

samples). Most of the metrics showed lower values when there was undersampling. However, 

invariably, all the metrics showed improvement after oversampling and led to the best 

performance of the classifier. The model was validated on the test set which was otherwise 

unexposed to preprocessing and model training. 
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Table 1: Details about patient and tumor characteristics 

Charact

eristic 

Overall, 

N = 3791 

Adenoc

arcinom

a, N = 

511 

Large 

cell, N = 

1141 

Undiffer

entiated

, N = 621 

Squamo

us cell 

carcino

ma, N = 

1521 

p-value2 

Age 

(years) 

69 (61, 

76) 

68 (60, 

75) 

67 (60, 

74) 

67 (59, 

75) 

71 (64, 

78) 

0.011 

Missin

g data 

13 2 4 4 3  

Clinical 

stage (T) 

     0.368 

1 69 

(18%) 

12 

(24%) 

18 

(16%) 

14 

(23%) 

25 

(16%) 

 

2 147 

(39%) 

22 

(43%) 

47 

(41%) 

23 

(38%) 

55 

(36%) 

 

3 50 

(13%) 

9 (18%) 11 

(9.6%) 

7 (11%) 23 

(15%) 

 

4 111 

(29%) 

8 (16%) 37 

(32%) 

17 

(28%) 

49 

(32%) 

 

5 1 (0.3%) 0 (0%) 1 (0.9%) 0 (0%) 0 (0%)  

Missin

g data 

1 0 0 1 0  

Clinical 

stage 

(N) 

     0.098 

0 140 

(37%) 

18 

(35%) 

32 

(28%) 

27 

(44%) 

63 

(41%) 

 

1 21 

(5.5%) 

4 (7.8%) 5 (4.4%) 0 (0%) 12 

(7.9%) 

 

2 134 

(35%) 

15 

(29%) 

48 

(42%) 

21 

(34%) 

50 

(33%) 

 

3 81 

(21%) 

14 

(27%) 

28 

(25%) 

14 

(23%) 

25 

(16%) 

 

4 3 (0.8%) 0 (0%) 1 (0.9%) 0 (0%) 2 (1.3%)  
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Clinical 

stage 

(M) 

     0.2 

0 375 

(99%) 

50 

(98%) 

112 

(98%) 

61 

(98%) 

152 

(100%) 

 

3 4 (1.1%) 1 (2.0%) 2 (1.8%) 1 (1.6%) 0 (0%)  

Overall 

stage 

     0.012 

I 66 

(17%) 

11 

(22%) 

15 

(13%) 

17 

(27%) 

23 

(15%) 

 

II 38 

(10%) 

8 (16%) 5 (4.4%) 2 (3.2%) 23 

(15%) 

 

IIIa 108 

(29%) 

14 

(27%) 

36 

(32%) 

14 

(23%) 

44 

(29%) 

 

IIIb 166 

(44%) 

18 

(35%) 

57 

(50%) 

29 

(47%) 

62 

(41%) 

 

Missin

g data 

1 0 1 0 0  

Gender      0.2 

Femal

e 

119 

(31%) 

19 

(37%) 

43 

(38%) 

17 

(27%) 

40 

(26%) 

 

Male 260 

(69%) 

32 

(63%) 

71 

(62%) 

45 

(73%) 

112 

(74%) 

 

Survival 

time 

(days) 

558 

(258, 

1,384) 

583 

(199, 

1,573) 

655 

(258, 

1,530) 

585 

(302, 

1,337) 

492 

(260, 

1,082) 

0.5 

Outcom

e (death) 

336 

(89%) 

45 

(88%) 

99 

(87%) 

53 

(85%) 

139 

(91%) 

0.5 

1Median (IQR); n (%) 

2Kruskal-Wallis rank sum test; Fisher's exact test; Pearson's Chi-squared test 
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Table 2: Overall model performance to classify histological subtypes of non-small cell lung 

cancer 

Model Metric Value 95% CI Lower 95% CI Upper 

Logistic Regression 

Accuracy 0.459 0.377 0.5492 

Precision/PPV 0.4607 0.3727 0.5478 

NPV 0.7211 0.6424 0.7892 

Recall/Sensitivity 0.457 0.3783 0.547 

Specificity 0.7227 0.6446 0.7881 

F1 Score 0.4557 0.3682 0.539 

AUC-ROC 0.72 0.6566 0.7826 

SVM (linear kernel) 

Accuracy 0.5164 0.4344 0.6066 

Precision/PPV 0.5016 0.4112 0.5906 

NPV 0.7698 0.704 0.8258 

Recall/Sensitivity 0.5142 0.4317 0.5958 

Specificity 0.7627 0.6943 0.8222 

F1 Score 0.5022 0.4144 0.5783 

AUC-ROC 0.7404 0.6802 0.801 

Random Forest 

Accuracy 0.7787 0.7049 0.8443 

Precision/PPV 0.772 0.7017 0.8418 

NPV 0.9204 0.889 0.9501 

Recall/Sensitivity 0.7761 0.7052 0.8416 

Specificity 0.918 0.8826 0.9478 

F1 Score 0.7734 0.7042 0.8432 

AUC-ROC 0.9372 0.9037 0.9633 

XGBoost 

Accuracy 0.7377 0.6557 0.8197 

Precision/PPV 0.7368 0.6505 0.813 

NPV 0.9014 0.8642 0.934 

Recall/Sensitivity 0.7349 0.6578 0.8096 

Specificity 0.8943 0.8546 0.9283 

F1 Score 0.7278 0.641 0.8008 

AUC-ROC 0.9349 0.9005 0.9633 
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LightGBM 

Accuracy 0.7623 0.6885 0.8361 

Precision/PPV 0.7622 0.6844 0.8363 

NPV 0.9111 0.875 0.9415 

Recall/Sensitivity 0.7599 0.6875 0.8294 

Specificity 0.908 0.8723 0.938 

F1 Score 0.757 0.6761 0.8263 

AUC-ROC 0.9447 0.9145 0.9698 

CatBoost 

Accuracy 0.7377 0.6557 0.8115 

Precision/PPV 0.7342 0.6589 0.8107 

NPV 0.9013 0.8617 0.9348 

Recall/Sensitivity 0.7349 0.6632 0.8061 

Specificity 0.898 0.8613 0.933 

F1 Score 0.7316 0.6537 0.7998 

AUC-ROC 0.9292 0.8957 0.9584 

Deep Neural Network 

Accuracy 0.7675 0.7627 0.7797 

Precision/PPV 0.7734 0.7584 0.7834 

NPV 0.9263 0.9248 0.93 

Recall/Sensitivity 0.7615 0.7602 0.7782 

Specificity 0.9106 0.9086 0.9163 

F1 Score 0.752 0.7466 0.7661 

AUC-ROC 0.9435 0.9407 0.9458 
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Table 3: One-vs-rest model performance for each histological subtype for the random forest 

model 

Cancer Type Metric Value 95% CI Lower 95% CI Upper 

Adenocarcinoma 

Accuracy 0.9836 0.959 1 

Precision/PPV 0.9677 0.8919 1 

NPV 0.989 0.989 0.989 

Recall/Sensitivity 0.9677 0.8929 1 

Specificity 0.989 0.989 0.989 

F1 Score 0.9677 0.913 1 

AUC-ROC 0.9936 0.9786 1 

Large Cell 

Accuracy 0.8033 0.7295 0.8689 

Precision/PPV 0.6071 0.4194 0.7813 

NPV 0.8617 0.8617 0.8617 

Recall/Sensitivity 0.5667 0.3913 0.7419 

Specificity 0.8804 0.8804 0.8804 

F1 Score 0.5862 0.4151 0.7213 

AUC-ROC 0.8714 0.8043 0.9254 

Undifferentiated 

Accuracy 0.9262 0.877 0.9672 

Precision/PPV 0.8235 0.6957 0.9394 

NPV 0.9659 0.9659 0.9659 

Recall/Sensitivity 0.9032 0.7878 1 

Specificity 0.9341 0.9341 0.9341 

F1 Score 0.8615 0.7576 0.9444 

AUC-ROC 0.9729 0.9349 1 

Squamous Cell 

Accuracy 0.8443 0.7787 0.9098 

Precision/PPV 0.6897 0.5172 0.8529 

NPV 0.8925 0.8925 0.8925 

Recall/Sensitivity 0.6667 0.4872 0.8294 

Specificity 0.9022 0.9022 0.9022 

F1 Score 0.678 0.52 0.806 

AUC-ROC 0.9109 0.8598 0.957 
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Table 4: One-vs-rest model performance for each histological subtype for the deep neural 

network model 

Cancer Type Metric Value 95% CI Lower 95% CI Upper 

Adenocarcinoma  

Accuracy 0.9332 0.9311 0.9557 

Precision/PPV 0.8207 0.8152 0.8538 

NPV 0.9932 0.9889 1 

Recall/Sensitivity 0.9902 0.9834 1 

Specificity 0.9139 0.9008 0.9328 

F1 Score 0.921 0.8921 0.9293 

AUC-ROC 0.9998 0.9891 1 

Large Cell 

Accuracy 0.7936 0.7821 0.8012 

Precision/PPV 0.4327 0.421 0.4523 

NPV 0.8724 0.8735 0.8819 

Recall/Sensitivity 0.4512 0.4128 0.4514 

Specificity 0.8621 0.8527 0.8823 

F1 Score 0.4425 0.4289 0.452 

AUC-ROC 0.8604 0.8632 0.8735 

Undifferentiated 

Accuracy 0.9745 0.9741 0.9832 

Precision/PPV 0.9036 0.8923 0.9428 

NPV 0.9935 0.9851 1 

Recall/Sensitivity 0.9914 0.9847 1 

Specificity 0.9528 0.9519 0.9834 

F1 Score 0.9521 0.9428 0.9723 

AUC-ROC 0.9928 0.9812 1 

Squamous Cell 

Accuracy 0.8523 0.8304 0.8628 

Precision/PPV 0.8542 0.7521 0.8824 

NPV 0.8519 0.8423 0.862 

Recall/Sensitivity 0.4632 0.4314 0.5017 

Specificity 0.9746 0.9632 0.9823 

F1 Score 0.5923 0.5538 0.6429 

AUC-ROC 0.9147 0.8924 0.9225 
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Table 6: Overall random forest model performances for 3 pipelines – original sampling 

(unbalanced histological classes), random under sampling (balanced histological classes), or 

random over sampling (balanced histological classes) 

Metric Original [95% CI] 
Undersampling [95% 

CI] 

Oversampling [95% 

CI] 

Accuracy 
0.3158 [0.2105, 

0.4211] 
0.2927 [0.1707, 0.439] 

0.7784 [0.7049, 

0.8443] 

Precision/PPV 
0.2029 [0.1128, 

0.3261] 

0.3045 [0.1614, 

0.4738] 
0.772 [0.889, 0.9501] 

NPV 
0.5575 [0.4306, 

0.6579] 

0.5562 [0.3795, 

0.7089] 

0.9204 [0.889, 

0.9501] 

Recall/Sensitivi

ty 

0.2231 [0.1544, 

0.3042] 

0.2955 [0.1586, 

0.4373] 

0.7761 [0.7052, 

0.8416] 

Specificity 
0.6353 [0.5558, 

0.7033] 

0.5738 [0.3935, 

0.7107] 

0.918 [0.8826, 

0.9478] 

F1 Score 
0.2022 [0.1292, 

0.2803] 
0.2874 [0.147, 0.422] 

0.7734 [0.7042, 

0.8432] 

AUC-ROC 
0.4917 [0.4059, 

0.5818] 
0.5498 [0.416, 0.682] 

0.9372 [0.9037, 

0.9633] 
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Figure 1: Workflow of radiomic feature extraction and model training 

  Image Acquisition in DICOM format 

422 patients with NSCLC from the Lung1 dataset in TCIA 

Included with raw imaging, segmentations of ROIs, and 
deidentified patient clinical data 

Extracted pixel data from DICOM files and 
convert them into ITK images for 421 patients 

Processed DICOM files containing 
segmentation data for the primary neoplasm 

ROI and convert into ITK images 

Excluded 1 
patient due to 

missing 
segmentation file 

Extracted radiomic features using the raw image and 
segmentation provided 

Extracted 2446 quantitative radiomic features including 
shape-based, first order, GLCM, GLDM, GLRLM, GLSZM, 
and NGTDM features 

Filters used along with the original included LoG, wavelet, 
exponential, gradient, square, and square-root 

Machine Learning Pipeline 

Fixed class imbalance 

Standardized data 

Split into training and testing data 

Spearman’s correlation to remove highly correlated 
features 

Recursive feature elimination with cross validation 
to further retain optimal features only 

5-fold cross validation of different ML models  

Training 6 ML models on the training data (logistic 
regression, linear kernel SVM, random forest, 
XGBoost, LightGBM, and CatBoost) 

Deep Learning Pipeline  

Fixed class imbalance 

Standardized data 

Split into training and testing data 

Spearman’s correlation to remove highly correlated 
features 

PCA to reduce dimensions 

5-fold cross validation of various DNN models 

Training of the final model on the training data 

Validation of the selected models on test data Validation of the final DNN model on test data 

Excluded 42 
patients due to 
inconclusive 

histopathological 
reports 
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Figure 2: Micro-averaged ROC curves for different models providing performance to 

determine histological subtypes of NSCLC 
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Figure 3: Machine and deep learning model performance to classify non-small cell lung cancers 
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Discussion: 

Lung cancer remains a major global health challenge, with Non-Small Cell Lung Cancer 

(NSCLC) forming a significant proportion of cases.2 Our study was a technical task-specific 

evaluation focused on building and evaluating the predictive capabilities of machine and deep 

learning models to predict the histological subtype of NSCLC from CT scans using hand-

crafted quantitative radiomic analysis. We successfully demonstrated the potential of 

quantitative radiomic analysis in tandem with machine and deep learning techniques to provide 

accurate, non-invasive prediction of NSCLC histological subtypes using CT images. 

Specifically, our findings indicated that ensemble methods such as Random Forest and 

LightGBM as well as deep learning using DNN outperformed other models, particularly in the 

detection of adenocarcinoma and undifferentiated carcinoma. 

This study offers a fresh perspective on combining radiomic approaches with artificial 

intelligence (AI) techniques for prediction modelling. Our results consolidate findings 

supporting the transformation of diagnostic processes for complex classifications. The history 

of radiomics has undergone substantial growth, with only a few features being extracted and 

used initially to usage of advanced computational techniques to extract upwards of 2000 

features.18,23 The use of radiomics has been consistently showing tremendous application in the 

diagnosis of malignancies, such as lung cancer.24 Previous studies have documented that with 

similar samples sizes such as ours, the AUCs obtained ranged from 0.71 to 0.87 to detect 

histologic subtype of NSCLC.25  

 

Historically, the standard technique for NSCLC subtype identification necessitated an invasive 

biopsy procedure followed by a meticulous histopathological examination. Such methods, 

which are gold-standard currently, pose potential risks and can be time-consuming.26 Recent 

advancements in the field of radiomics and artificial intelligence have hinted at the possibility 

of a more refined, non-invasive, and time-efficient approach.27 A study by Wu et al. studying 

wavelet-based features achieved a AUC-ROC of 0.72 using Naïve Baye’s classifier.28 Ferreira 

et al. achieved an AUC-ROC of 0.92 in detecting histology of lung cancer.29 Radiomic analysis 

also proved to have a high AUC-ROC in detecting epithelial ovarian carcinoma subtypes on 

CT with AUCs or 0.836.30 In contrast to most of such studies, our study has achieved AUC-

ROCs of 0.95 in detecting the histological subtype of NSCLC. Moreover, these studies have 

extracted variable numbers of features ranging from 107 to 1160 radiomic features, using  3D-

Slicer and MATLAB to do so.31,32 

 

The distinct edge our study offers over previous research lies in the using a standard 

PyRadiomics pipeline to extract all features possible using different filters to offer precise 

subtype predictions based purely on CT scans. Further, we have applied a filter-based feature 

selection method followed by a wrapper-based method to ensure retaining only the most useful 

features which contribute to the model. Lastly, 5-fold cross validation of each of our models 

ensured best and most optimal selection. 
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The implications of this study on clinical practice are multifold: 

Non-invasive Diagnostic Tool: With our proposed methodology, there arises a potential to 

significantly minimize or even negate the need for invasive biopsies in certain cases, thereby 

reducing associated procedural risks and patient discomfort. 

Efficiency and Accuracy: Our method ensures quicker and accurate subtype predictions based 

on initial CT scans. This can potentially shorten the diagnostic journey, leading to faster, 

targeted treatments and better patient outcomes. 

Standardized Diagnostics: Harnessing the quantitative nature of radiomics ensures a more 

objective diagnostic criterion, effectively reducing interobserver variability which often 

plagues traditional methods. 

Optimized Resource Allocation: In a busy clinical setting, relying on automated tools like the 

ones we propose can help reduce human error, optimize resource utilization, and manage 

patient flow more effectively. 

 

While our findings are promising, they are not without limitations. The sample size was 

relatively small with 422 patients in the dataset. Furthermore, 43 patients did not have 

conclusive histopathological diagnoses for their NSCLC. Class imbalance necessitated 

balancing methods including random oversampling and ADASYN. Although these are robust 

methods, these are randomly generated and synthetically generated samples respectively. 

Finally, different feature selection methods were employed in the machine learning and deep 

learning models to ensure best model performances after trial and error. 

 

The compelling results from this study further unravel the potential of radiomic analysis in the 

classification of cancer, specifically NSCLC, subtypes. While the current study offers 

promising insights, there are several avenues to further enhance and solidify these findings in 

the future: 

Larger Datasets: In order to improve the robustness of the models, further studies should aim 

to incorporate larger and more diverse datasets. Currently, we observed that we were able to 

get optimal results after oversampling. This might suggest that the current sample size was 

insufficient to train the model without oversampling to fix class imbalance. This will ensure 

that the models are better generalized and can accurately detect NSCLC subtypes across 

various populations and clinical scenarios. 

Real-time Application: Exploring the feasibility of integrating these machine learning models 

into real-time diagnostic platforms can revolutionize clinical decision-making processes. Such 

integration will allow radiologists and oncologists to make instant, evidence-based decisions 

regarding patient management. 
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Expanding Modalities: Beyond CT scans, future studies could explore the potential of 

combining radiomic data from other imaging modalities such as MRI and PET scans. This 

multi-modal approach might capture a more comprehensive picture of tumor characteristics, 

leading to even more accurate classification. 

Temporal Analysis: Evaluating how radiomic features evolve over time could provide insights 

into tumor progression and its correlation with histological transformation, if any. This could 

further aid in predicting tumor behavior and response to treatment. 

Personalized Treatment: With accurate histological subtype classification, future research 

could delve deeper into tailoring specific therapeutic regimens based on the identified subtype, 

leading to personalized treatment plans and potentially better patient outcomes. 

Integration with Genomics: By merging radiomic data with genomic information, there is 

potential to uncover relationships between imaging features and molecular signatures. This 

could pave the way for more comprehensive diagnostic tools that consider both the physical 

and molecular landscape of the tumor. Furthermore, it might be interesting to study whether 

the type of genetic mutation in pro-oncogenes/tumor-suppressor genes is associated with 

distinct radiomic signatures. 

Model Interpretability: As the field of machine learning grows, there's increasing emphasis on 

model interpretability. Future research should focus on developing models that not only predict 

accurately but also provide insights into which radiomic features are most indicative of specific 

histological subtypes. 

 

In conclusion, our study attempts to instantiate a radiomic analysis pipeline to extract standard 

features from lung CT scans and run ensemble machine learning classifiers and deep learning 

models to predict histology of the lesion. As the age of precision medicine advances, such 

innovations aim to redefine how we approach, diagnose, and eventually treat diseases as 

multifaceted as NSCLC. 

 

Open Science: 

Images and segmentation data are available from NSCLC-Radiomics in The Cancer Imaging 

Archive.19 

Radiomic feature data extracted by us, pre-processing scripts and settings, source code for 

modeling, and final model files will be shared by us provided a reasonable request is made to 

the corresponding author. 

A ready-to-use system in the form of a web-based application where users can upload DICOM 

files and segmentation files is being developed. Kindly contact the corresponding author to 

know more about the status. 
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