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Abstract: 

Disease heterogeneity is the hallmark of breast cancer,  which remains a scourge and the most 

common malignancy among women. With a steep increase in breast cancer morbidity and 

mortality, there exists a critical need for effective early-stage theragnostic and prognostic 

biomarkers. This would help in patient stratification and optimal treatment selection towards 

better disease management. In this study, we examined four key problems with respect to the 

characterization of breast cancer heterogeneity, namely: (i) cancer screening; (ii) identification 

of metastatic cancers; (iii) molecular subtype (TNBC, HER2, or luminal); and (iv) histological 

subtype (ductal or lobular). We mined the available public-domain transcriptomic data of breast 

cancer patients from the TCGA and other databases using stage-encoded statistical models of 

gene expression, and identified stage-salient, monotonically expressed, and problem-specific 

biomarkers. Next we trained different classes of machine learning algorithms targeted at the 

above problems and embedded in these feature spaces. Hyperparameters specific to each 

algorithm were optimized using 10-fold cross-validation on the training dataset. The optimized 

models were evaluated on the holdout testset to identify the overall best model for each 

problem. The best model for each problem was validated with: (i) multi-omics data from the 

same cohort (miRNA and methylation profiles); (ii) external datasets from out-of-domain 

cohorts; and (iii) state of the art, including commercially available breast cancer panels. 

External validation of our models matched or bested available benchmarks in the respective 

problem domains (balanced accuracies of 97.42% for cancer vs normal; 88.22% for metastatic 

v/s non metastatic; 88.79% for ternary molecular subtyping; and ensemble accuracy of 94.23% 

for histological subtyping). We have translated the results into BC-Predict, a freely available 

web-server that forks the best models developed for each problem, and provides the cascade 

annotation of input instance(s) of expression data, along with uncertainty estimates. BC-Predict 

is meant for academic use and has been deployed at: https://apalania.shinyapps.io/BC-Predict 

.  

Introduction 

Breast cancer is the most common cancer in women, accounting for 32% of all female cancers 

globally and 28.2% of female cancers in India1. With about 2.3 million new cases globally in 

2020 (11.7% of total), its incidence surpasses that of lung cancer. The statistics paint a grim 

portrait of burden of disease: 1 in 4 cancer cases and 1 in 6 cancer deaths globally could be 

attributed to breast cancer, with 88% higher incidence in transitioned countries relative to 

https://apalania.shinyapps.io/BC-Predict
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transitioning countries2. The risk of a person developing breast cancer depends on many factors 

like sex (women account for >99.5%), age (>80% occur in postmenopausal women), high-risk 

family history (upto 30% of cases),  and genetic factors. The interplay between weak 

susceptibility alleles and the other risk factors is key to the etiology of the ‘cancer phenotype’3,4. 

Genetic loci with predisposing mutations include: BRCA1/ BRCA2 (autosomal dominant, 50-

85% life time risk)5, TP53 (Li-Fraumeni syndrome, 80-90% life time risk)6, CDH1 (60% life 

time risk and primarily lobular subtype), STK11 (Peutz-Jeghers syndrome, 50% risk), PTEN 

(Cowden syndrome with 20-50% risk7; Lynch syndrome with 25% risk), PALB2 (partner and 

localiser to BRCA2, age-dependent risk), ATM, BRIP1, CHEK2 (all about 20% risk) and 

RAD51C/RAD51D (14-20% risk).  The modifiable lifestyle risk factors include physical 

inactivity especially post-menopausal obesity (100% additional risk), smoking (24% more 

risk), alcohol (7% risk for every 10g/day), and combined Hormone Replacement therapy 

(~20% further risk depending on length of use/stop)8. The prevalence of the risk factors varies 

by country and region. The typical onset of breast cancer is 60-70 years in western countries, 

but appears to be anticipated at 40-50 years in countries like India9. Data maintained at national 

registries suggest that the urbanization and growth of cities, ‘modernized’ food habits (e.g, high 

consumption of ultra-processed foods), and lifestyle changes have contributed to the increased 

incidence of breast cancer in urban areas, whereas betel quid and tobacco chewing habits have 

significantly contributed to its incidence in rural areas  (P = 0.003)10. These cancers tend to be 

more aggressive with poorer prognosis (higher grade/size, lymphovascular-invasion positive, 

triple negative, HER2 positive, node positive, and medullary/metaplastic/micro-

papillary/pleomorphic sub-types). The frequent presentation of breast cancer in its advanced 

and less treatable stages in traditional societies could be traced partly to the inadequate social 

awareness and extant taboos, leading to subpar survival outcomes. Such conditions compound 

gender inequalities, stereotypes and the burden of disease for whole families, and call for 

remediation of the situation.  

Due to the complexity associated with cancers, a composite feature space is necessary to 

capture the transformation of cells and subsequent disease progression. This may be balanced 

with the curse of dimensionality that dominates machine learning. AI models based on whole-

genome or whole-exome sequencing may be impractical and uninterpretable. McKinney et al. 

have developed a mammogram-based AI model for breast cancer screening rivalling 

radiologist readings, paving the way for AI-based decision support systems11. Convolutional 

neural network (CNN) models have been developed for identifying breast cancer samples as 
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well as cancer subtyping based on 7091 genes12. CUP-AI-DX includes two models: 1D 

inception CNN model for classifying cancers of unknown primary based on 817 expression 

features; and (ii) Random Forest model for breast cancer subtyping based on 5925 expression 

features13. Breast cancer subtyping models include learning on PAM50 inferred labels14 via 

either functional spectra of gene expression profiles15 or deep convolution of RNAseq and 

CNV profiles16. Significant strides have been made towards mechanistic understanding and 

treatment of breast cancer, which has the most number of FDA-approved molecular panels 

aimed at early-stage actionable information about the disease. These biomarker panels include 

OncotypeDx based on TAILORx and RxPONDER studies17, EndoPredict and EndoPredict 

Plus18, MammaPrint19, Prosigna (based on PAM50 and OPTIMA study)20, and Breast Cancer 

Index21. Decision aids like PREDICT, Nottingham Prognostic Index (NPI) and Adjuvant 

Online based on IHC4 (ER/PR/HER2/Ki67) or IHC4+C  (including clinical/pathological 

features like age, tumour size, grade and nodal status) parameters define the level of clinical 

risk for adjuvant chemotherapy without relying on tumour profiling tests. The translation of AI 

models into software-as-medical-devices holds promise for bridging health disparities22.  

The heterogeneity of breast cancer poses formidable challenges, and individual cancer 

manifestations vary so much that the available biomarker panels retain validity only in limited 

settings, thereby leaving a large cohort indeterminate23. Changes in gene expression and 

mutations modifying protein activities are etiological molecular events driving the cancer 

phenotype24. An integrated precision-medicine approach to early detection, effective therapy 

and favourable prognosis is necessary. Techniques from the field of machine learning could be 

highly effective in discerning key features in complex datasets, including gene expression 

datasets, and learning models that map these features to crucial clinical outcomes related to the 

diagnosis, prognosis, and treatment of cancers25. Unsupervised learning techniques have been 

used to identify subtypes in breast cancer based on gene expression26. The molecular subtype 

of breast cancer could influence the choice of adjuvant therapy27,28 . Among the histological 

subtypes, invasive lobular carcinoma is considered indolent and might necessitate a switch to 

a more lethal treatment regime29. Here we have developed a novel framework for identifying 

the markers of changes in gene expression profiles across the stages and subtypes of breast 

cancer, enabling means for differential diagnosis and personalized medicine. These candidate 

biomarkers were applied to create models that address the following challenges in breast cancer 

heterogeneity: (i) cancer or normal screening; (ii) non-metastatic or metastatic discrimination; 

(iii) molecular subtyping; and (iv) histological subtyping. Together these models could also 
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enable the prognosis of breast cancer30,31. The optimal models for each problem required only 

a handful of features that can be quantified using qRT-PCR. All the models were integrated 

into BC-Predict, a web-based unified interface for harnessing the models. BC-Predict is 

available for academic research at: https://apalania.shinyapps.io/BC-Predict. All the 

Supplementary Information for this study are available at: 

https://doi.org/10.6084/m9.figshare.25282906. 

Methods: 

Problems related to the characterization of breast cancer heterogeneity: 

Four problems related to the delineation of individual breast cancers with respect to the 

expression data of patient samples were considered: 

1. Is the patient sample ‘cancer’ or ‘normal’?  

2. If cancer: predict ‘non-metastatic’ (stages I, II or III) or ‘metastatic’ (stage-IV cancer).  

3. If cancer: predict the molecular subtype of the cancer.  

4. If cancer: predict the histological subtype of the cancer. 

A generalized workflow for the problems is depicted in Fig. 1.  

Dataset preprocessing: 

Preprocessing was done in a manner similar to Sarathi and Palaniappan32. The source dataset 

for all problems modeled here was obtained from the TCGA. Normalised BRCA expression 

data was acquired using the firebrowse portal33 

(gdac.broadinstitute.org_BRCA.Merge_rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Lev

el_3__RSEM_genes_normalized__data.Level_3.2016012800.0.0.tar.gz), and RSEM counts 

were obtained. The patient barcode was matched with the clinical data 

(gdac.broadinstitute.org_BRCA.Merge_Clinical.Level_1.2016012800.0.0.tar) to extract the 

patient.stage_event.pathologic_stage variable values that encode the AJCC TNM staging34. 

The sub-stages were then merged to obtain the macro stage categories. Table 1 shows the 

distribution of sample stages for the breast cancer samples according to the AJCC staging 

system. It is noted that early-stage BC indicates TNM stage-I or stage-II cancer. Stage-III BC 

(including T3N1, T4, N2-3) represents loco-regionally advanced BC, whereas T3N0 represents 

a borderline diagnosis between stages II and III. For the purposes of our study, stages I, II, and 

III were combined into the ‘non-metastatic’ class.  

https://apalania.shinyapps.io/BC-Predict
https://doi.org/10.6084/m9.figshare.25282906
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Table 1: Stage-wise distribution of breast cancer samples in the TCGA data, based on the AJCC 

system, 2018 revision.  

TCGA Stage TNM classification Cases 

1 T1N0M0 90 

181 1A T1aN0M0 85 

1B T1bN0M0 6 

2 T2N0M0 6 

616 2A T2aN0M0 357 

2B T2b(N0/N1)M0 253 

3 T3N0M0 2 

249 
3A T3a(N1/N2)M0 155 

3B T4(N0/N1/N2)M0 27 

3C T(any)N3M0 65 

4 T(any)N(any)M1 20 20 

Control - 112 

X  14 

NA - 8 

 

The immunohistochemical (IHC) status of oestrogen receptor (ER) and progesterone receptor 

(PgR), human epidermal growth factor receptor 2 (HER2) oncogene, and Ki-67 (a marker of 

cell proliferation) are used together to subtype breast tumors into Triple-negative breast cancer 

(TNBC), HER2-positive, Luminal A and Luminal B34,35, as shown in Table 2. Where reliable 

Ki-67 measurements are not available, an alternative assessment of tumor proliferation such as 

tumor grade could be used to distinguish between ‘Luminal A’ and ‘Luminal B’ (which tends 

to be HER2 negative). Complete ER, PgR and HER2 IHC metadata were available for 719 

samples of the TCGA Breast Cancer dataset, and of these, no sample had information on the 

Ki-67 labeling index nor on the tumor grade, precluding precise differentiation of luminal 

subtypes of breast cancers into ‘Luminal A’ or ‘Luminal B’. The luminal subtypes A and B 

were perforce lumped into one ‘Luminal’ type. The 719 samples were accordingly annotated 
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as 567 ‘Luminal’ (generally Luminal A with Grade 1 or 2 and Luminal B with G3), 115 TNBC 

(generally Grade 3), and 37 HER2 (generally Grade 3) based on the status of ER, PgR and 

HER2 extracted from the clinical file (Table 2).  

The two most common histological subtypes of breast cancer are infiltrating ductal carcinoma 

(IDC - no special type) and infiltrating lobular carcinoma (ILC)36. ILC tends to be difficult to 

diagnose, with MR imaging required for determining size and multifocality including 

contralateral breast (mirror image), and preferential spread to gastrointestinal tract and 

peritoneum37. The sample histological subtype is encoded in the clinical metadata 

‘patient.histological_type’ with the major values being, ‘infiltrating ductal carcinoma (IDC)’ 

and  ‘infiltrating lobular carcinoma (ILC)’, and minor values including ‘mixed histology’, 

‘metaplastic carcinoma’, ‘mucinous carcinoma’, ‘medullary carcinoma’, and ‘other (specify)’.  

Genes that had minimal variation in expression across the samples (i.e, σ < 1) were removed. 

Cancer samples which were missing stage annotation details were removed. The expression 

dataset was subjected to variance-stabilization using voom function in limma38. Linear 

modeling was then performed. The resulting dataset was split 80:20 into a training set and  a 

holdout testset stratified on the outcome variable of each problem. It is noted that the training 

dataset for Problem #2 suffered an imbalance in the distribution of the outcome classes (16 

metastatic vs 837 non-metastatic samples). , which prompted the application of SMOTE 

correction39 (Synthetic Minority Oversampling TEchnique; with arguments: perc.over-

represented = 1000 % and perc.under-represented = 300 %). Data preprocessing and analysis 

was done using R (www.r-project.org). The annotated pre-processed final dataset is available 

as Supplementary File S1. 

Table 2: Molecular taxonomy of breast cancer. Luminal A is HER2 negative, whereas Luminal 

B could be either HER2 positive (accounting for 30% of HER2 positive) or HER2 negative 

(majority of Luminal B).  

S.No. HER2 

status 

ER 

status 

PgR 

status 

Ki-67 labelling 

index 

Intrinsic Subtype 

1 + 

+ + 

Any 

Luminal B (HER2 

positive) 

+ – 

– + 

http://www.r-project.org/
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2 + – – n/a HER2+ 

3 –  

+ + 

Low(<14%) Luminal A 

High 
Luminal B 

(HER2 negative) 

+ –  

Low(<14%) Luminal A 

High 
Luminal B 

(HER2 negative) 

– + 

Low(<14%) Luminal A 

High 
Luminal B 

(HER2 negative) 

4 –  – – 

n/a Triple negative 

breast cancer 

(TNBC) 

 

Construction of feature space: 

Feature spaces for each problem were constructed using only the training dataset. Initially the 

differential expression of genes across cancer stages relative to healthy samples was studied 

using linear modelling with the limma package40. A two-leveled contrast protocol, viz. level-I: 

stage vs control and level-II: inter-stages contrast,22 was then applied to produce the following 

classes of biomarkers:  

(1) Stage-salient genes, obtained from all possible pairwise contrasts between the cancer stages; 

and 

(2) Monotonically expressed genes, obtained from strictly increasing or strictly decreasing 

mean expression across the cancer stages. 

In addition, expression contrasts specific to the problem under consideration were used, 

namely: 

(1) contrast of non-metastatic vs metastatic cancers; 

(2) three-way pairwise contrasts between the molecular subtypes; viz. (i) Luminal vs HER2, 

(ii) Luminal vs TNBC & (iii) HER2 vs TNBC;  
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(3) contrast of ductal vs lobular histologies. 

The above strategies yielded problem-specific chimeric feature spaces that could span the 

informative dimensions in each case.  

Building problem-specific classification models: 

A composite feature space comprising the top-ranked genes from the linear model, stage-salient 

genes, and genes from the problem-specific contrast was subjected to the consensus of two 

feature selection techniques: (i) Boruta, a wrapper algorithm using Random Forest to select 

features based on a measure of importance to the outcome variable of interest41 ; and (ii) 

Recursive Feature Elimination (RFE), a method that uses backward selection passes to trim the 

space of predictor variables. The workflow of the machine learning model development in 

Figure 1 presented in the context of cancer v/s normal was adapted for the non-metastatic v/s 

metastatic and subtype discrimination problems. The training dataset with the final set of 

features was loaded onto models based on various ML algorithms, including Random forest 

(ensemble method that builds numerous decision trees and ‘bags’ the majority vote), SVM 

(geometric method that finds an optimal separating hyperplane in high-dimensional space), k-

NN (based on proximal classes), Neural Networks (both 1-layer and 2-layer), and XgBoost 

(ensemble method that builds a sequence of classifiers boosted on challenging instances). 

Algorithm-specific hyperparameters were optimized using 10-fold cross-validation on the 

training dataset. The performance of the hyperparameter-optimized models was evaluated on 

the holdout testset to identify the overall best model for each problem. Evaluation was 

performed using a slew of metrics, including balanced accuracy, F1-score, area under ROC 

(AUROC), Mathews’ correlation coefficient (MCC), and Positive Predictive Value (PPV).  
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Figure 1. ML model development for Cancer vs. Normal binary classification. Data-driven 

optimization of a multi-phase workflow is shown. Problem-specific changes to the workflow 

yield adaptations to the other problems considered in this study.  

Table 3. Datasets used in the modelling of BRCA classification problems. The ‘normal vs 

cancer’ model is additionally validated on GSE18549, GSE211167, and METABRIC datasets. 

S.No Problem Dataset Used Sample Details Purpose 
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1 
Normal v/s 

cancer 

TCGA  

Training 
90 Normal; 854 

Cancer 

Model building  & 

hyperparameter 

tuning 

Testing 
22 Normal; 212 

Cancer 
Internal validation 

ICGC (BRCA-KR) 3 Normal; 47 Cancer 
External 

validation 

GTEx 218 Normal 
External 

validation 

 

2 

 

Non-metastatic 

V/s Metastatic 

TCGA 

SMOTE- 

enhanced 

Training  

480 non-metastatic 

(downsampled from 

837); 176 metastatic 

(upsampled from 16) 

Model building & 

hyperparameter 

optimization  

Testing 209 non-metastatic; 4 

metastatic 

Internal validation 

ICGC (BRCA-KR) 47 non-metastatic External 

validation 

GSE18549 14 metastatic External 

Validation 

3 
Molecular 

Subtype  

TCGA 

Training 
454 Luminal; 30 

HER2; 92 TNBC 

Model building & 

hyperparameter 

optimization 

Testing 
113 Luminal; 7 

HER2; 23 TNBC 
Internal validation 

METABRIC 
1415 Luminal; 127 

HER2; 299 TNBC 

External 

validation 

GSE211167  
26 TNBC 

External 

validation 

4 

Histological 

subtype: Ductal 

v/s Lobular 

TCGA 
Training 

624 Ductal; 162 

Lobular 

Model building & 

hyperparameter 

optimization 
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Testing 
156 Ductal; 40 

Lobular 
Internal validation 

brca_mbcproject_wag

le_2017 
96 Ductal; 19 Lobular 

External 

validation 

 

Validation: 

The overall best model for each problem was validated primarily by performing inference on 

out-of-domain external datasets. Table 3 shows the datasets used in the development and 

validation of the ML models for the respective classification problems. In addition, we sought 

to obtain concurrence for our models from multi-omic signatures, as discussed below.  

(1) External validation: 

(i) Normal vs. cancer 

We validated model#1 on multiple independent external breast cancer datasets:  

(a) BRCA-KR dataset retrieved from the ICGC DataPortal (https://dcc.icgc.org/) using 

‘BRCA’ as the search keyword42, containing 47 cancer samples and 3 control samples.  

(b) GTEx normal breast dataset (by querying for ‘Breast’ in the “GTEX_phenotype 

primarysite”)43 with 218 control samples.  

(c) GSE18549, GSE211167, and METABRIC datasets. 

(ii) Non-metastatic vs. metastatic  

We validated model#2 on two different external breast cancer datasets:  

(a) BRCA-KR dataset described above, with all 47 cancer samples being non-metastatic 

cancers. 

(b) GSE18549 dataset of metastatic cancers 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18549)44, with 14 samples 

having ‘Breast’ as the primary tumor site.  

(iii) Molecular subtyping 

We validated model#3 on two different external breast cancer datasets:  

https://dcc.icgc.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18549
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(a) METABRIC a landmark study of breast cancer transcriptomics, available on cBioPortal 

(https://www.cbioportal.org/study/summary?id=brca_metabric )45. Breast cancer 

samples in METABRIC were subtyped as Luminal, HER2, or TNBC based on the IHC 

status of ER, PgR and HER2 extracted from the METABRIC clinical metadata. This 

yielded 1415 Luminal, 127 HER2, and 299 TNBC METABRIC samples. Since 

METABRIC had used microarray technology to measure gene expression, a platform-

specific bias might be induced. To mitigate this bias and obtain data compatible with 

RNA-Seq technology, we applied the Feature Specific Quantile Normalization (FSQN) 

technique to the METABRIC data46.  

(b) GEO Dataset GSE21116747, consisting of only TNBC samples from 26 patients of 

African ancestry. The dataset was log2-transformed prior to serving for model 

inference.  

(iv) Histological subtyping: 

We validated model#4 on an external breast cancer dataset from cBioPortal with 96 IDC and 

19 ILC samples 

(https://www.cbioportal.org/study/summary?id=brca_mbcproject_wagle_2017)48.  

(2) Multi-omics: 

(i) Integration of miRNA analysis 

miRNAs play a crucial role in the regulation of global mRNA expression in both physiological 

and pathological processes, including the invasion and metastasis of cancer. By exerting 

control over the expression of target genes, miRNAs act as oncogenes, tumor-suppressive 

genes, and modulators of distant metastasis in breast cancer. To identify differentially 

expressed (DE) miRNAs, we used the miRSeq dataset from the same TCGA BRCA cohort 

(gdac.broadinstitute.org_BRCA.Merge_mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Le

vel_3__miR_isoform_expression__data.Level_3.2016012800.0.0.tar.gz). Being a 

transcriptomics dataset, the miRSeq dataset was treated akin to the mRNASeq dataset, with 

cancer stage as indicator variable. DE stage-specific miRNAs were revealed upon application 

of the two-level contrast (stage vs control level-I contrast and inter-stages level-II contrast). 

For each identified stage-salient miRNA, the target genes were predicted using multiMiR49, 

which provides an integration of 14 miRNA-mRNA interaction databases including 

TargetScan50, miRDB51, miRanda52, and miRTarBase53. Of the predicted targets for each 

https://www.cbioportal.org/study/summary?id=brca_metabric
https://www.cbioportal.org/study/summary?id=brca_mbcproject_wagle_2017
https://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/BRCA/20160128/gdac.broadinstitute.org_BRCA.Merge_mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_isoform_expression__data.Level_3.2016012800.0.0.tar.gz
https://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/BRCA/20160128/gdac.broadinstitute.org_BRCA.Merge_mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_isoform_expression__data.Level_3.2016012800.0.0.tar.gz
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miRNA, the stage-salient targets were investigated for differential miRNA expression-driven 

genes.   

(ii) Identification of differential methylation-driven genes (DMDGs) 

Epigenetic processes such as methylation could contribute to changes in gene expression, and 

drive pathological processes. To evaluate differentially methylated genes, we used the Level3-

processed 450k methylation dataset from the same TCGA BRCA cohort 

(gdac.broadinstitute.org_BRCA.Merge_methylation__humanmethylation450__jhu_usc_edu_

_Level_3__within_bioassay_data_set_function__data.aux.2016012800.0.0.tar.gz). The 

correlation between methylation and expression of the stage-salient genes was analyzed using 

R MethylMix54, with the preset threshold -0.3 and p-value < 0.001. Differentially methylated 

states were identified using significance from Wilcoxon rank-sum testing (adj. p.value < 0.05) 

with an additional effect size filter (> 0.1). Genes passing these marker filters were designated 

as differential methylation-driven genes. Stage-salient differentially methylated genes were 

identified using the consensus of three stage-informed models, namely Averep, M-value and 

MethylMix as described in ref. 55.  

Development of cascade classifier: 

A prediction pipeline that integrates the predictions from all the models into one combined 

readout was designed. A schematic for one such cascade model is shown in Figure 2. Based on 

the decision at the shown fork, the new sample may be taken forward for assessment of 

metastatic potential and molecular / histological subtyping. The final readout for a sample from 

the cascade classifier would consolidate the inference from each model; for e.g., ‘Metastatic 

triple-negative ductal cancer’. This formed the basis for the development of BC-Predict.   

https://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/BRCA/20160128/gdac.broadinstitute.org_BRCA.Merge_methylation__humanmethylation450__jhu_usc_edu__Level_3__within_bioassay_data_set_function__data.aux.2016012800.0.0.tar.gz
https://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/BRCA/20160128/gdac.broadinstitute.org_BRCA.Merge_methylation__humanmethylation450__jhu_usc_edu__Level_3__within_bioassay_data_set_function__data.aux.2016012800.0.0.tar.gz
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Figure 2. Design of BC-Predict. A schematic of a cascade model for early-stage breast cancer 

subtyping and prognosis is presented. If the sample is predicted as ‘cancer’ in the first level, it 

is passed through three more models in the second level that characterize the cancer sample 

towards personalized prognosis.  

Results: 

 The TCGA BRCA dataset consisted of 1212 samples, each with the measurement of 

expression of 20532 genes. Post data preprocessing, we obtained an annotated dataset of 1178 

samples x 18880 genes (Supplementary File S1). An adj.p.value cut-off of 0.05 yielded 14838  

DE genes in breast cancer samples. Tightening the significance to 1E-05 still yielded 10167 

DE genes, underscoring the persistence of genome instability in the march of cancer4. A 

volcano plot depicting differentially expressed genes showed  significant dispersion (Figure 

3a), meaning some genes were much more dysregulated than others. We performed a principal 

components analysis with the top ten genes from the linear modelling, and found that a clear 

separation between the normal and cancer samples could be obtained (Figure 3b). This 

provided some basis for considering top-ranked genes from the linear modeling as candidate 

cancer-specific biomarkers. Table 4 provides information on the top ten genes of the linear 

modeling, including their regulation status. Information on the top 200 such cancer-specific 

genes from the linear modelling are provided in Supplementary File S2. Figure 4 shows violin-

plot representations of expression distribution of the top ranked genes of the linear model. 

Violin plots for all the top 200 genes from the linear model are provided in Supplementary File 

S3. 
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Figure 3: (a) Volcano plot of statistical significance vs log-fold change of differentially 

expressed genes. Downregulated genes (log-fold change < 2) are shown as blue dots, whereas 

upregulated genes (log-fold change > 2) are shown as red dots. Stage-salient genes are 

highlighted. (b) Top two principal components of the expression matrix of the top-ten genes 

from linear modelling. Normal samples can be seen to orient away from cancer samples. (c) A 

representation of differentially expressed genes to convey the trends across stages. (d) Heatmap 

representation of the stagewise expression of the 24 stage-salient genes, with both sample and 

gene dendrograms. It is seen that the gene dendrogram exhibits two main clusters, 

corresponding to overexpressed genes (red) and downregulated genes (blue). Euclidean 

distance was used as the metric for hierarchical clustering.  
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Table 4. Top ten genes of the linear model with their stagewise mean log-fold change with 

respect to control. FDR-corrected significance and inferred regulation type are indicated. 

Gene                                 Stage1 

lfc(β1) 

Stage2 

lfc(β2) 

Stage3 

lfc(β3) 

Stage4 

lfc(β4) 

Adj.P.Val Regulation 

status 

NEK2 4.34 4.83 4.65 4.82 1.37E-188 Up 

MMP11 5.94 5.75 5.96 6.43 3.80E-173 Up 

PKMYT1 4.42 4.83 4.73 4.90 1.60E-172 Up 

GPAM -3.57 -3.68 -3.65 -3.85 9.39E-171 Down 

CPA1 -4.34 -4.56 -4.28 -4.21 6.39E-170 Down 

COL10A1 7.04 6.74 6.95 7.22 3.43E-169 Up 

MYOC -6.06 -6.55 -6.34 -7.17 1.06E-166 Down 

KIF4A 4.05 4.54 4.33 4.55 1.61E-164 Up 

CA4 -6.63 -7.35 -6.91 -7.11 2.01E-162 Down 

LYVE1 -4.76 -5.19 -4.90 -4.91 5.79E-159 Down 

 

 

Figure 4: Distribution of expression of the top-ranked five genes in linear model, sorted by 

sample stage. It is seen that NEK2, MMP11 and PKMY11 (top row) are overexpressed in 

cancers, whereas GPAM and HSD17B13 are downregulated in cancers. 
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Applying the level-I biomarker filters (|lfc| > 2 and p-value <0.001) yielded a total of 927 stage-

specific genes (74 Stage-I, 238 Stage-II, 90 Stage-III, and 525 Stage-IV specific DEGs, 

visualized as an Upset plot56 in Figure 3c). For the identification of stage-salient genes two 

contrasts were applied with stringent criteria and the DEGs identified with different 

comparisons. This contrast has yielded 2 Stage I salient, 2 Stage II salient, 10 Stage III salient 

and 20 Stage IV salient genes. Limiting to the top ten stage-IV salient genes (by significance), 

we finally obtained 24 stage salient genes (Table 5). A heatmap visualization of the stage-

salient genes exhibited a systematic differential regulation relative to the controls (Figure 3d). 

Stage III 4 genes cluster along with Stage I genes and DEPDC1 Stage II with outward CST2. 

Rest genes from stage III and stage IV form a cluster along with COX7A1 Stage II gene. Violin 

plots of expression distribution across sample phenotypes for these genes could be found in 

Supplementary File S4.  

Table 5: Trends in mean expression of stage-salient genes with cancer progression. The 

inferred regulation status in cancer is noted.   

Gene 
Stage 

Information 
β0 β1 β2 β3 β4 

Adj.P.Va

l 

(from 

contrast) 

Adj.P.Val 

(from 

control) 

Regulation 

status 

CHRNA6 Stage I -1.67 3.35 2.85 2.93 2.21 2.25E-52 7.59E-51 Up 

MMP10 Stage I 0.04 3.19 2.76 2.61 1.68 5.07E-23 1.66E-24 Up 

DEPDC1 Stage II 2.01 2.83 3.32 3.03 2.43 3.26E-92 1.39E-89 Up 

COX7A1 Stage II 2.36 -2.31 -2.62 -2.30 -2.03 3.15E-72 4.39E-69 Down 

KCNK15 Stage III 1.99 2.40 1.85 2.59 1.72 8.24E-21 5.27E-20 Up 

MFSD4 Stage III 1.56 -2.06 -1.96 -2.32 -1.79 4.51E-41 2.88E-41 Down 

CDH19 Stage III -3.13 -2.60 -2.58 -3.19 -2.61 3.31E-26 1.53E-24 Down 

CXCL5 Stage III -2.03 -2.47 -2.17 -2.87 -2.83 5.12E-24 1.30E-22 Down 

AKR7A3 Stage III 3.26 2.05 1.52 2.33 2.12 1.83E-13 2.55E-12 Up 

DEGS2 Stage III 4.82 2.60 2.02 2.69 2.27 9.30E-22 1.68E-21 Up 

CST2 Stage III -0.60 4.18 3.57 4.22 3.52 2.19E-48 8.75E-52 Up 

LOC100124692 Stage III -2.52 -3.64 -3.60 -4.13 -3.83 2.98E-46 8.24E-48 Down 

GDF5 Stage III -1.26 -2.08 -2.31 -2.63 -2.24 1.67E-26 3.64E-26 Down 
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FOXA1 Stage III 7.19 2.09 1.64 2.32 1.94 4.81E-13 1.30E-11 Up 

EGR3 Stage IV 4.14 -2.33 -2.71 -2.57 -4.04 3.53E-18 1.46E-44 Down 

FOS Stage IV 7.27 -2.44 -3.07 -3.09 -4.19 3.40E-21 3.50E-62 Down 

FOSB Stage IV 4.71 -3.80 -4.33 -4.30 -5.66 9.16E-25 4.51E-76 Down 

DUSP1 Stage IV 7.00 -2.13 -2.40 -2.23 -3.13 2.51E-19 1.81E-58 Down 

FREM1 Stage IV 0.85 -3.67 -4.13 -3.70 -5.09 1.29E-23 2.43E-77 Down 

EGR1 Stage IV 7.45 -2.72 -3.18 -3.11 -4.00 3.63E-23 2.23E-75 Down 

HFM1 Stage IV -3.44 -2.02 -2.24 -2.23 -3.02 6.13E-18 1.43E-52 Down 

ABCA10 Stage IV -0.28 -4.38 -4.80 -4.48 -5.67 5.63E-33 3.89E-115 Down 

KLK5 Stage IV 1.26 -3.21 -3.44 -3.44 -5.45 6.93E-20 2.41E-09 Down 

KCNA1 Stage IV -1.69 -2.58 -2.99 -2.81 -3.93 3.08E-15 1.99E-45 Down 

The GO and KEGG pathway analysis was performed for the Stage salient genes to identify 

over-represented biological processes among these candidate biomarkers (complete results in 

Supplementary  File S5 and S6, respectively). Genes that were monotonically expressed with 

cancer progression were identified by observing the trend in mean expression with increasing 

cancer stage. This yielded 2246 significantly monotonic genes (1015 with increasing 

expression, and 1231 with decreasing expression). The top 20 such genes with their inferred 

regulation status are shown in Table 6. A stage-specific gene is said to be contra-regulated 

when its mean expression is “paradoxical” with cancer progression. There are six patterns of 

“paradoxical” mean expression, enumerated in Supplementary File S7. We identified 112 

stage-specific genes with such contra-regulation, including one stage-I salient gene 

(CHRNA6). Contra-regulated genes exhibit unstable expression with cancer progression, and 

their anomalous behavior might represent possible directions for experimental investigations 

(Supplementary File S7). Stage-specific DEGs devoid of such contra-regulation suggest a more 

general role as enhancers of cancer progression.  

Table 6: Top 20 genes with significant monotonic patterns of expression. Intercept, coefficient 

and adj. p-values from the ordinal model are used. Status indicates monotonic upregulation 

(UP) or monotonic downregulation (DOWN). The table is sorted by significance (adj.p-value). 

Adj. R2 goodness-of-fit of a stage-ordinal model of expression for each gene is provided.  

Gene Intercept Coefficient Adj.P-value Adj.R2 Status 
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FAM13A 9.842826 -0.62121 1.70E-64 0.2255 DOWN 

GABRD 3.697762 0.889287 2.27E-64 0.2249 UP 

KLHL31 6.778289 -0.8667 2.33E-63 0.2217 DOWN 

POC1A 6.587719 0.525973 4.14E-63 0.2209 UP 

PAFAH1B3 8.753896 0.602506 1.23E-62 0.2193 UP 

SORBS1 11.50753 -0.83632 5.17E-62 0.2174 DOWN 

NIPSNAP3B 6.082268 -0.70387 1.27E-61 0.2161 DOWN 

TMEM220 6.96875 -0.67023 7.56E-60 0.2102 DOWN 

SPTBN1 13.42746 -0.45273 2.81E-59 0.2083 DOWN 

SIK2 10.23114 -0.52331 2.56E-58 0.2051 DOWN 

RECQL4 6.916714 0.743136 1.59E-57 0.2025 UP 

C7orf41 10.91012 -0.61324 1.81E-57 0.2023 DOWN 

RAG1AP1 9.736787 0.453142 5.56E-57 0.2001 UP 

HSD17B6 4.70826 0.715399 6.98E-57 0.2004 UP 

SLC35A2 9.380796 0.311207 7.48E-57 0.2002 UP 

CCDC64 6.871398 0.724435 3.72E-56 0.1979 UP 

DMD 9.497599 -0.92277 2.47E-55 0.1952 DOWN 

RUSC1 9.565741 0.353172 1.24E-53 0.1897 UP 

CXCL2 6.668874 -1.23033 4.45E-53 0.1877 DOWN 

PRR19 4.794229 0.497467 1.87E-52 0.1857 UP 

Normal v/s cancer 

Stratified sampling of the TCGA BRCA dataset based on the class ‘cancer’ or ‘normal’ yielded 

a training dataset of 90 Normal and 854 Cancer samples, and a test dataset of 22 Normal and 

212 Cancer samples. Completion of feature engineering yielded ten consensus features for 

model development, including two stage-salient genes (FREM1, ABCA10) and eight genes 

from the linear model (NEK2, MMP11, PKMYT1, GPAM, CPA1, COL10A1, CA4, LYVE1). 

Of the six different ML models trained, the neural network with one hidden layer model 

provided the best performance, yielding 99.82 % balanced accuracy on the training dataset and 
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100 % on the holdout testset (Table 8). The model was re-built using the full dataset and 

validated on external datasets: (i) with BRCA-KR, it yielded a balanced accuracy ~ 94.00%; 

and (ii) with GTEx, the model produced  an accuracy ~ 100% (all correct predictions), yielded 

an overall balanced accuracy ~ 97.42% on external validation. The details could be found in 

Supplementary File S8. Supplementary File S8 provides the prediction probabilities for all 

instances in the external validation as well. Prediction probability is a measure of the strength 

of evidence for the predicted class, and based on the distribution of its values, recommendations 

for evidence of the predicted class may be generated. Correct predictions were supported by 

very strong prediction probabilities (> 0.9) relative to incorrect predictions.    

Table 7: Performance of different ML models for the different problems. Four problems are 

discussed: (i) normal v/s cancer using ten features, (ii) metastatic v/s non-metastatic using five 

features, (iii) molecular subtyping using 16 features, and (iv) histological subtyping using 24 

features. The model with the best performance (balanced accuracy) on the holdout testset for 

each problem is identified and externally validated. MCC and AUROC values of the best model 

are rescaled to the range [0,100].  

S.No Model 

Train Test External  Validation  

Balanced 

acc.(%) 

Balanced 

acc.(%) 
Specificity Sensitivity 

Precision 

(PPV) 
MCC 

AUR

OC 

Normal v/s Cancer 

1 SVM 98.71 99.99 -      

2 RF 99.99 97.73 -      

3 kNN 99.82 97.73 -      

4 NN (1 

layer) 
99.82 100 97.42 95.74 99.09 95.74 94.84 97.42 

5 NN (2 

layer) 
99.82 99.99 -      

6 XGBoost 99.39 95.45 -      

Non-metastatic V/s Metastatic 

1 SVM 99.99 59.62       

2 RF 99.99 61.54       
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3 kNN 93.29 54.84       

4 NN (1 

layer) 
99.17 82.24 88.22 93.87 78.57 91.67 80.87 88.22 

5 NN (2 

layer) 
93.63 71.41       

6 XGBoost 96.49 65.32       

Molecular subtype  

1 SVM 88.60 77.97       

2 RF 99.99 91.43 88.79 93.11 84.46 93.63 84.06 90.23 

3 kNN 79.81 88.12       

4 NN (1 

layer) 
82.94 79.42       

5 NN (2 

layer) 
90.71 88.11       

6 XGBoost 89.37 86.37       

Histological subtype 

1 SVM 87 83.40       

2 kNN 81.51 74.65       

3 RF 99.99 84.3       

4 XGBoost 95.13 84.94 

76.92 53.85 100 93.81 71.07 76.92 
5 NN (1 

layer) 

96.97 81.83 

6 NN (2 

layer) 

97.29 83.69 
      

Non-metastatic v/s Metastatic 

Stratified sampling of the TCGA BRCA dataset based on the class ‘non-metastatic’ or 

‘metastatic’ yielded a training dataset of 837 non-metastatic and 16 Metastatic samples, and a 

test dataset of 209 non-metastatic and 4 Metastatic samples. SMOTE balancing of the training 

dataset yielded a dataset with 480 non-metastatic and 176 Metastatic samples. Completion of 

feature engineering yielded five consensus features for model development, namely DEPDC1, 

FOSB, DUSP1, MMP27 and ABCA10. Of the six different ML models trained, the neural 
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network with one hidden layer model provided the best performance, yielding 99.14% balanced 

accuracy on the training dataset and 82.24% on the holdout testset (Table 8). The model was 

re-built using the full dataset and validated on the BRCA-KR and GSE18549 datasets, yielding 

an overall balanced accuracy ~ 88.22% on the external validation. The details could be found 

in Supplementary File S9. Supplementary File S9 provides the prediction probabilities for all 

instances in the external validation. On inspection of the distribution of prediction probabilities, 

correct predictions were found to be supported by high values (> 0.75) relative to incorrect 

predictions.   

Molecular Subtype classification 

Stratified sampling of the TCGA BRCA dataset based on the molecular subtype class 

(‘Luminal’ or ‘TNBC’ or ‘HER2’) yielded a training dataset of 434 Luminal, 30 HER2 and 92 

TNBC samples, and a test dataset of 113 Luminal, 7 HER2 and  23 TNBC samples. Completion 

of feature engineering yielded 16 consensus features for model development, namely GATA3, 

AGR3, CA12, TBC1D9, ERBB2, MLPH, KCNK15, ANXA9, FLJ45983, GRB7, PGAP3, 

STARD3, SLC44A4, PCSK6, FOXA1 and BCAS1. Of the six different ML models trained, 

the Random forest model provided the best performance, yielding 100% balanced accuracy on 

the training dataset and 91.43% on the holdout testset (Table 8). The model was re-built using 

the full dataset and was validated with external datasets. Validation with the METABRIC 

dataset yielded a balanced accuracy ~ 88.79%. Validation on out-of-chort TNBC-only dataset 

yielded a single misclassification (Luminal) out of 26 TNBC samples. The details could be 

found in the Supplementary File 10. Supplementary File S10 and S12 provide the prediction 

probabilities for all instances in the external validation (METABRIC and TNBC datasets, 

respectively). On inspection of the distribution of prediction probabilities, correct predictions 

were found to be supported by high values (> 0.7) relative to incorrect predictions. In addition, 

we investigated the RandomForest model for feature importance using R caret57.  Feature 

importance was measured based on mean decrease in Gini score, and the top five features were 

GATA3, CA12, AGR3, TBC1D9, and MLPH (Figure 5). 
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Figure 5: Importance ranking of features used in developing the molecular subtype model. The 

scores are normalized with respect to the top-scoring feature, GATA3. 

Histological Subtype classification: 

Stratified sampling of the TCGA BRCA dataset based on the histological subtype (‘IDC’ or 

‘ILC’) yielded a training dataset of 624 IDC and 162 ILC samples, and a test dataset of 156 

IDC and  40 ILC samples. A contrast of ductal and lobular samples followed by the completion 

of feature engineering yielded 24 final features for model development, namely ADCY5, 

ALDH1L1, ANKRD43, C1orf64, C7, CAPN8, CCL14, CDH1, CIDEA, CTSG, DARC, F7, 

FXYD1, HPX, IGFN1, MMP1, PEBP4, PLCXD3, PROL1, SHROOM1, TFAP2B, TFF1, 

TNNT3, and WNK4.  Of the six different ML models trained, the models with >95% balanced 

accuracy on the training dataset were identified and bundled into an ensemble classifier. This 

included the XGBoost model and the neural network with 1-layer model, both yielding 88.74% 

balanced accuracy on the holdout testset (Table 8). The ensemble model re-built using the full 

dataset was validated on the external dataset: brca_mbcproject_wagle_2017, encoding both the 
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histological subtypes of interest (IDC and ILC) as well as other subtypes such as ‘mixed 

histology’, ‘DCIS’ (ductal carcinoma in situ), and ‘NOS’. If the constituent models of the 

ensemble disagreed on the predicted class, then the ensemble classifier is challenged. 

Inconsistent ensemble predictions might be instructive, but need further disambiguation. 

Omitting the eleven such instances from the external dataset, we obtained ensemble accuracy 

~94.23% and balanced accuracy ~76.92% (Table 8). It is clear that the ensemble model has 

encountered generalization errors in learning the ILC class. The details could be found in 

Supplementary File 11. Supplementary File S11 provides the prediction probabilities for all 

instances in the external validation. On inspection of the distribution of prediction probabilities, 

correct predictions were found to be supported by high values (> 0.7) relative to incorrect 

predictions.   

Table 8: Performance of histological subtype model on external validation. The confusion 

matrix of the ensemble model on brca_mbcproject_wagle_2017 is provided below. Instances 

with ambiguous predictions were omitted in evaluating the ensemble model.  

Confusion matrix Ground Truth 

Ductal Lobular  

Predicted 

Ductal 91 6 

Lobular  0 7 

 

Validation with miRNA analysis: 

Stage-salient miRNA were identified using the two-level contrasts of the miRNA expression 

data, and then their targets were identified using the R multiMiR package (Supplementary File 

S12). Based on these results, we determined the concordance between the regulatory miRNAs 

and their target genes. Temporal concordance in expression exists if the salience in miRNA 

expression is at least as early as the salience in target gene expression. If the expression pattern 

of an miRNA is antagonistic to that of its target gene, a paradoxical aberration with a protective 

function is possible. Table 9 summarizes the validation of stage-salient gene expression from 

the angle of miRNA expression. Concordance between the mRNA and miRNA in both 

direction of expression and temporal dimension is achieved for 13 stage-salient genes: MMP10, 
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DEPDC1, CDH19, FOXA1, DEGS2, CST2, AKR7A3, EGR1, EGR3, FOS, FOSB, FGF2, and 

HCN2. Among the stage-salient genes that feature in the ML models, DEPDC1 and FOSB are 

strongly-supported as candidate biomarkers. We also sought to identify the key regulatory 

miRNAs decoded by stage. In summary, 25 stage-salient miRNAs were identified 

(Supplementary File S12), and found to regulate most of the stage-salient genes. Stage-salient 

miRNA that were fully concordant with target mRNAs included hsa-miR-182-5p, hsa-miR-

210-3p, hsa-miR10b-5p, hsa-miR-200a-5p, hsa-miR-96-5p, hsa-miR-21-5p, hsa-miR-133a-3p, 

hsa-miR-335-5p, hsa-miR-204-5p, and hsa-miR-145-5p. Further, four of the stage-salient 

miRNAs regulated genes that featured in the ML models, namely hsa-miR-210-3p, hsa-

miR10b-5p, hsa-miR-200a-5p, and hsa-miR-96-5p. Only five stage-salient miRNAs displayed 

targets none of which were a stage-salient gene, and conversely, eleven stage-salient genes 

were not subject to regulation by a stage-salient miRNA (namely COX7A1, DACT2, 

KCNK15, MFSD4, DSC3, KLK5, KRT15, LOC100124692, ABCA10, MAPK8IP2, and 

MASP1). The detailed analysis is provided in Supplementary File S12.  

Table 9: Putative target stage-salient genes mapped with their regulatory stage-salient miRNA. 

Concordance in expression is noted if miRNA overexpression is observed with target gene 

downregulation or vice-versa. Evaluation of temporal concordance is useful if concordance in 

expression exists. If there is no concordance in expression, temporal concordance is not 

evaluated. Genes that display concordance with regulatory miRNA in the direction of 

expression as well as temporal dimension are emphasized. Target stage-salient genes that 

represent features used in the ML models are italicized. Upregulated miRNAs denote candidate 

oncomiRs, whereas downregulated miRNAs denote candidate TSmiRs.  

 

S.No Gene Regulatory miRNA 

Name Express

ion 

Salience Name Concordance 

Expression Temporal 

1 CHRNA6 Up Stage I hsa-miR-452-3p Yes No 

2 MMP10 Up Stage I hsa-miR-182-5p Yes Yes 

hsa-miR-210-3p Yes No 
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3 DEPDC1 Up Stage II hsa-miR-200b-3p Yes Yes 

hsa-miR-210-3p Yes Yes 

hsa-miR10b-5p Yes Yes 

hsa-miR-200a-5p Yes Yes 

hsa-miR-96-5p No - 

4 CDH19 Down Stage III hsa-miR10b-5p No - 

hsa-miR-182-5p No - 

hsa-miR-335-5p No - 

5 GDF5 Down Stage III hsa-miR-21-5p Yes No 

hsa-miR-335-5p No - 

hsa-miR-182-5p No - 

6 FOXA1 Up Stage III hsa-miR-200a-3p Yes Yes 

hsa-miR-141-3p No - 

7 DEGS2 Up Stage III hsa-miR-200b-3p Yes Yes 

8 CST2 Up Stage III hsa-miR-210-3p Yes Yes 

hsa-miR-335-5p Yes No 

9 AKR7A3 Up Stage III hsa-miR-210-3p Yes Yes 

10 CXCL5 Down Stage III hsa-miR10b-5p No - 

11 EGR1 Down Stage IV hsa-miR-21-5p Yes Yes 

hsa-miR183-5p Yes Yes 

hsa-miR-204-5p No - 
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hsa-miR-133a-3p No - 

hsa-miR-452-5p No - 

hsa-miR-224-5p No - 

hsa-miR10b-5p No - 

hsa-miR-210-3p No - 

hsa-miR-182-5p No - 

12 EGR3 Down Stage IV hsa-miR183-5p Yes Yes 

hsa-miR-335-5p No - 

hsa-miR10b-5p No - 

hsa-miR-182-5p No - 

13 FOSB Down Stage IV hsa-miR183-5p Yes Yes 

hsa-miR-224-3p No - 

hsa-miR-224-5p No - 

hsa-miR-200b-3p No - 

14 KLK7 Down Stage IV hsa-miR-335-5p No - 

hsa-miR-182-5p No - 

15 DUSP1 Down Stage IV hsa-miR10b-5p No - 

hsa-miR-200b-3p No - 

hsa-miR-200b-3p No - 

17 FOS Down Stage IV hsa-miR-196a-5p Yes Yes 

hsa-miR183-5p Yes Yes 



 

29 
 

hsa-miR-335-5p No - 

hsa-miR10b-5p No - 

hsa-miR-139-5p No - 

hsa-miR-182-5p No - 

18 KCNA1 Down Stage IV hsa-miR-210-3p No - 

19 FGF2 Down Stage IV hsa-miR-196a-5p Yes Yes 

hsa-miR-96-5p Yes Yes 

hsa-miR-145-5p No - 

hsa-miR-133a-3p No - 

hsa-miR10b-5p No - 

hsa-miR-210-3p No - 

hsa-miR-182-5p No - 

20 HCN2 Up Stage IV hsa-miR-133a-3p Yes Yes 

21 KIT Down Stage IV hsa-miR-335-5p No - 

22 FREM1 Down Stage IV hsa-miR-335-5p No - 

23 HFM1 Down Stage IV hsa-miR-335-5p No - 

 

Validation with methylation analysis: 

Aberrant methylation in the core / proximal promoter regions as well as enhancers could have 

profound regulatory effects on gene expression. We obtained a total of 22 stage-salient DMGs 

from the consensus of Averep, Mvalue, and MethylMix procedures: 1 stage-I salient DMG 

(VOPP1), 8 stage-II salient DMGs (HS3ST3B1, CPLX1, EGR1, GMDS, ITPKB, TGFB1I1, 

C6orf145, SHC1), 10 stage-III salient DMGs (BTLA, TNFAIP2, PHYHIPL, LYN, MAML2, 

C16orf62, GPRC5B, CAPN9, AIPL1, AGAP1), and 4 stage-IV salient DMGs (CNP, TSPYL5, 

SLC7A5, HCN2). Salient methylation of a gene is an epigenetic mechanism to tune gene 

expression, and will precede changes in its expression. In this respect, the stage-II salient 
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methylation of EGR1 possibly set the stage for its stage-IV salience in expression. It is 

observed that the stage-IV salient hypermethylation of HCN2 was at odds with its stage-IV 

salient overexpression.  

Mining the methylation patterns of all stage-salient genes for differential methylation-driven 

genes revealed five transcriptionally predictive genes negatively correlated with gene 

expression, namely AKR7A3, COX7A1, DEGS2, EGR1, and FOXA1 (Figure 6). Four of these 

genes exhibited two-component mixtures of methylation distribution, indicating a probable 

shift in methylation levels in cancer samples relative to healthy ones. COX7A1 showed three-

component mixtures of methylation distribution, with an additional methylation component 

signifying cancer progression. Table 10 summarizes the information for each of these genes. 

FOXA1 showed a maximum inverse correlation of -0.66. Methylation of FOXA1 is concordant 

with the expression of its regulatory miRNA, but FOXA1 mRNA expression is at odds with its 

epigenetic profiles, suggesting that epigenetic modulation was being used to restore FOXA1 

aberrant expression. Methylation of AKR7A3, DEGS2, EGR1, and COX7A1 is concordant 

with their mRNA expression, providing strong support for their stage-salience. In addition, the 

above genes except COX7A1 were modulated by stage-salient miRNAs and in a concordant 

manner. This suggests a concert between the different layers of omics, adding ‘definiteness’ to 

gene expression on the path to phenotypic states. The mixture decomposition of methylation 

patterns of the remaining stage-salient genes is provided in Supplementary File S13. It could 

be seen, for e.g., that the methylation of ABCA10 is positively correlated with its expression, 

escaping clear interpretation.  
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Figure 6. Mixture model of methylation pattern, and scatter of expression vs methylation for 

the respective cluster of each stage-salient differential methylation-driven gene. (a) AKR7A3 

(b) COX7A1 (c) DEGS2 (d) EGR1 and (e) FOXA1. Two mixture components each are seen 

for AKR7A3, DEGS2, EGR1, and FOXA1, and three for COX7A1. Bayesian Information 

Criterion was used for estimating the number of mixture components. A strong inverse 

correlation between expression and methylation is apparent for FOXA1. Visualized using 

MethylMix  

Table 10: Summary of the stage-salient differential methylation-driven genes. Since the 

methylation of each gene was assayed at a variable number of CpG probe locations, the 

methylation patterns at different probes for a given gene were clustered based on Pearson’s 

correlation coefficient cut-off (> 0.7). Significant clusters were used to obtain the rest of the 

values in the table (namely effect size of differential methylation across mixture components, 

significance of the methylation pattern, coefficient of correlation between expression and 
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methylation, and concordance). Sign of the DM effect signifies the type of aberrant methylation 

(hyper / hypo) across the mixture components.                                                                                                                                                                                                                                                                                          

Gene of 

interest 

CpG sites Significant cluster DM 

effect 

size 

p-value Type 

of 

DM  

Correlation 

with 

expression 

Concordance  

 Probes Clusters  ID Probes      

FOXA1 18 10 Cluster2 5 0.373 1.25E-98 Hyper -0.66 No 

AKR7A3 14 6 Cluster4 1 -0.321        9.89E-48 Hypo -0.49 Yes 

COX7A1 4 2 Cluster2 3 0.413     3.36E-45 Hyper -0.48 Yes 

DEGS2 15 13 Cluster12 1 -0.157        1.56E-25 Hypo -0.36 Yes 

EGR1 13 11 Cluster4 2 0.185   1.21E-23 Hyper -0.35 Yes 

 

Discussion 

Validation of the models implied that the identity of cancer biomarkers for these problems 

might be invariant of ethnicity, and suggested that our models are robust to out-of-domain test 

data, notwithstanding shifts in expression profiles. Recently, we applied dimensionality 

reduction and unsupervised learning to the space of nine expression features (viz. NEK2, 

PKMYT1, MMP11, CPA1, COL10A1, HSD17B13, CA4, MYOC, LYVE1) and addressed the 

‘cancer’ vs. ‘normal’ binary classification, producing BrcaDx 

(https://apalania.shinyapps.io/BrcaDx)58 with a balanced accuracy of 95.52% on the BRCA-

KR and GTEx. Here we have used a supervised learning approach to the same problem (Fig. 

2), and derived ten features, including ABCA10, GPAM, FREM1, and the first seven features 

in the above-noted prior work. This has yielded a balanced accuracy of 97.42% on the same 

external datasets, which is a significant improvement. Beyond the performance improvement, 

it is noted that BrcaDx also suffers from the relative opaqueness of surrogate biomarker spaces 

that tend to obscure interpretation. Other recent advances for discriminating breast cancer from 

normal samples include a supervised learning model of 20 biomarkers, which was validated on 
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only an internal test set with a balanced accuracy that does not exceed 86%59. BC-Predict and 

BrcaDx are both reproducible and interestingly share no common biomarkers with these earlier 

models.  

Literature discussion:  

 We searched Pubmed (www.pubmed.gov) using the keyword: “breast cancer” AND 

“stage specific” AND “gene”, and found a handful of known stage-specific genes. TIEG (or 

KLF10) is an anti-metastasis / tumor-suppressor gene, which inhibits invasive breast cancer by 

blocking EGFR transcription in the EGFR signalling pathway60. Stage-specific expression of 

KLF10 in breast cancer biopsies has been published, with sustained downregulation leading to 

complete absence of expression in invasive subtypes61. Here KLF10 expression is found to be 

decreasing with stage relative to the normals. γ-Synuclein (SNCG) expression is strongly 

correlated with the stages of breast cancer, showing little expression in normal or benign 

samples and increasing expression with cancer stage, and detectable only in a subset of 

patients62. Here we find increasing expression of SNCG in late-stage cancers, but 

downregulated with respect to expression in normal samples, which is a contrarian finding.  

Top genes from linear models  

Players in cell cycle regulation featured among the top genes of the linear model, namely 

NEK2, PKYMT1, DEPDC1, KIF4A and CA4. Aberrations in cell cycle regulation facilitate 

sustained proliferative signalling and evasion of the growth suppressor, which are 

complementary hallmarks of cancers4. The top 200 linear model genes were screened against 

the known cancer driver genes in Cancer Gene Census, yielding four hits: BUB1B, EBF1, 

PPARG, and RECQL4. RECQL4 is a key DNA helicase, with a vital role in the maintenance 

of genomic stability63. It has been found to be mutated and often upregulated in breast cancer64, 

and its tumor-promoting activity has been observed in sporadic breast cancers with aggressive 

tumor behavior65. Searching the top 200 MEGs against the Cancer Gene Census yielded two 

other hits: EGFR and QKI. EGFR is the first antitumor target to be identified, and known to be 

overexpressed in most of the TNBC and inflammatory breast cancers66, but associated with 

paradoxical function in metastatic cancer progression67. Significant downregulation of QKI has 

been noted in breast cancer relative to normal tissues, along with poor prognosis, which suggest 

its tumor-suppressor role68. Expression of SLUG and QKI was correlated with epithelial to 

mesenchymal transition (EMT), and showed promise for use in breast cancer prognosis69. 

Intersection of the top 200 linear model genes with the top 200 MEGs yielded 18 genes 
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(including RECQL4), whereas intersection with the top 200 of the second linear model yielded 

32 genes.  We found 17 genes in common to all the three sets, including FAM13A, GABRD, 

and SORBS1. Supplementary File S14 presents the complete results. FAM13A is a hypoxia-

induced gene in non-small lung cancer, increasing susceptibility to BC in a population-based 

cohort70. Genes coexpressed with GABRD in colon cancer showed an enrichment for breast 

cancer and HPV infection pathway71, hinting at a possible regulatory role for the monotonic 

expression of GABRD. Downregulation of SORBS1 in cancer samples was associated with 

increased metastasis and poor survival outcomes72. Stage-wise distribution of expression of 

some consensus genes is presented in Supplementary File S15.  

The 34 stage-salient candidate biomarkers identified here were cross-referenced with the  

Human Protein Atlas73. We found 11 genes (2 stage-III salient genes and 9 stage-IV salient 

genes) annotated as ‘cancer related genes’, of which two stage-IV salient markers, namely 

EGR3 and KRT15, were specifically noted as prognostic markers of breast cancer 

(Supplementary File S16). 

Early-stage salient Genes (Figure 7): 

Nicotine in tobacco exerts its action through nicotinic acetylcholine receptors, which initiate 

cell proliferation74, concording with the identification of CHRNA6 (neuronal nicotinic 

acetylcholine receptor) as stage-I salient here. The downregulation of CHRNA6 with cancer 

progression is supported by studies on nicotinic expression in non-small cell lung cancer 

progression, where expression of CHRNA6 was found higher in non-smokers than smokers75. 

MMP10 is a member of the peptidase M10 family of matrix metalloproteinases, and could set 

the stage for cancer progression by facilitating tumor cell dissociation, augmenting 

migration/invasion capability, promoting endothelial cell tube formation, and inducing the 

expression of key angiogenic and metastatic factors76. Recently, Piskor et al. proposed that 

MMP10 in combination with MMP3 and CA-15 could be used as a biomarker panel for early-

stage BC through a non-invasive approach77. Both these results accord with maximum 

expression of MMP10 in the early stages of cancer, reaffirming the effectiveness of our study 

design in identifying stage-salient markers. DEPDC1 is a novel cell cycle gene regulating 

apoptosis78, whose over-expression signifies cancer progression in BC and its subtypes79,80. 

Here we have pinpointed the stage-II salience of DEPDC1 over-expression. COX7A1 is 

involved in mitochondrial metabolism and was identified as a tumor suppressor in invasive 

breast carcinoma, due to aberrant promoter hypermethylation81. The stage-II salience of 
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COX7A1 obtained in our studies supports its further exploration as a new biomarker and 

therapeutic target. 

 

Figure 7: Distribution of expression patterns of stage-I and stage-II salient DEGs. CHRNA6 

and MMP10 are both upregulated stage-I salient DE genes. With respect to the stage-II salient 

genes,  DEPDC1 is upregulated and COX7A1 is downregulated. 

Stage III salient Genes (Figure 8): 

It is known that KCNK15 is overexpressed in BC82, specifically in Luminal A subtype, but 

downregulated in TNBC subtype83. MFSD4 (major facilitator superfamily domain containing 

4) has been identified as a tumor suppressor of cell motility and invasiveness (by influencing 

promoter methylation) and a biomarker of hepatic metastasis in gastric cancer84, correctly 

identified here as downregulated. CDH19 encodes a cell-cell adhesion receptor cadherin, 

essential to maintenance of intercellular connections, whose loss of function was observed in 

BC samples85. Aligning with this result, CDH19 is seen here to be downregulated. CXCL5, a 

chemokine, was found to regulate bone colonization in metastatic BC via its functional target 

CXCR286, and its downregulation here might need further review. Oncogenic expression of 

AKR7A3 in the late stages of BC is detrimental to the period of disease-free survival, and it is 

interesting to note its stage-III salient upregulation here87. DEGS2 (delta(4)-desaturase 

sphingolipid 2) exhibits oncogenic expression in response to increased levels of ceramide in 

BC88, which resonates with the findings here. Growth differentiation factor-5 (GDF5) regulates 
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TGFβ-mediated pro-angiogenic signaling89, and its significant downregulation in the late 

stages here might set the stage for metastatic cancer. Oncogenic expression of FOXA1 

(Forkhead box A1) enables widespread epigenetic reprogramming in ER metastatic BC90, 

concordant with its overexpression here. Oncogenic expression of CST2 has been documented 

to promote bone metastasis in breast cancer91, borne out by its upregulated stage-III salience 

here.   

 

Figure 8: Distribution of expression patterns of stage-III salient genes. The mean expression of 

KCNK15, AKR7A3, DEGS2, CST2, and FOXA1 are smoothly upregulated, reaching a 

maximum in Stage-III. Conversely, the mean expression of MFSD4, CDH19, CXCL5, 
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LOC100124692, and GDF5 DEGs are smoothly downregulated, reaching a minimum in stage-

III. 

Stage IV salient Genes (Figure 9): 

Suzuki et al. examined the role of EGR3 in BC and concluded that its overexpression in concert 

with the expression of other genes is necessary to establish invasive and metastatic BC92, which 

is in contradiction to the consistent downregulation seen here. FOS and FOSB showed near-

monotonic downregulation in mean expression here, which might require further examination 

in the context of BC subtypes93,94. DUSP1 (dual specificity phosphatase 1 or MAPK 

phosphatase 1) is a tumor-suppressor in the MAPK pathway that mediates the 

dephosphorylation of ERK1/295, and its downregulation seen here is likely to underpin 

sustained proliferative signalling. FREM1 has been identified as a tumor-suppressor, whose 

downregulation enabled metabolic shift and tumor infiltration96, a finding underlined by the 

monotonic downregulation seen here. HFM1, helicase for meiosis 1, was reported to be altered 

in tumors relative to control samples97, and seen to be a tumor-suppressor here. ABCA10 is a 

member of the active transmembrane transport family, and was recently implicated in the 

progression-free survival of epithelial ovarian sarcoma98, and appears to portray a tumor-

suppressor role in the context of our findings. KLK5, a serine protease, is a known tumor-

suppressor whose activation is a promising anticancer therapy via repression of the mevalonate 

pathway99. The downregulation of KCNA1 (a voltage-gated potassium channel subfamily 

member) has been correlated with breast cancer aggressiveness100, lending its stage-IV salience 

in our analysis. KRT15 is known as cytokeratin and has recently been shown to be closely 

associated with tumorigenesis. Overexpression  of KRT15 (cytokeratin) was seen in colorectal 

and squamous cell skin cancers, but its low expression in BC (as seen here) has been 

significantly associated with poor prognosis101. The remaining stage-IV salient genes were 

found to be involved in tumor progression via processes such as including inflammation, 

angiogenesis, and EMT  transition. 
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Figure 9: Distribution of expression patterns of the top stage-IV salient genes. The mean 

expression of all the genes shows monotonic downregulation, achieving an extremum in stage-

IV.  

The distinction between IDC and ILC has frustrated learning so far. An XGBoost model with 

147 clinical, histopathological, mammogram features, and sonographic features has been 

reported with an internal testset accuracy of 0.84 on the binary classification problem102. An 

AutoML deep-learning approach for identifying IDC samples alone from whole slide images 

yielded 0.85 accuracy on an independent dataset103. Another study for classifying IDCs as 

early-stage vs late-stage yielded an AUROC of 0.47 on the external validation104. In this 

context, the external validation of our model yields a significant improvement on the state-of-

the-art. However the limited sensitivity to ILC samples (conversely, specificity to IDC 
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samples) in the external dataset presents an outstanding challenge in the histological 

classification of breast cancer from molecular information. Some noteworthy biomarkers from 

this model include: (i) CDH1 (E-cadherin), whose germline mutations were strongly associated 

with lobular carcinoma105, was found to have a specific downregulated expression signature in 

ILC samples; (ii) CCL14, which is known to promote angiogenesis and metastasis in breast 

cancer106, was found oncogenic in expression across both histological subtypes. To enable 

benchmarking against our model for this challenging problem, we have provided the code and 

model files for IDC vs ILC as a software repository under GPLv3 license for non-commercial 

purposes only (www.github.com/apalania/BC-Predict_Histological).  

Commercial genomic assays for prognosticating breast-cancer adjuvant chemotherapy include 

Prosigna, OncotypeDX, EndoPredict (EPclin score), MammaPrint, Breast Cancer Index 

(exploring benefit of extension of adjuvant hormonal therapy beyond 5 years based on a 11-

gene signature), HER2DX (exploring benefit of neoadjuvant systemic therapy in HER2+ BC 

based on a 4-gene signature)107, and Guardant 360108 and Foundation One Test109 (using liquid 

biopsies of circulating cell-free tumor DNA to profile 70+ biomarkers at progression). 

Scanning the signatures in these genomic assays against the ten features used in our ‘normal’ 

vs ‘cancer’ model yielded: two genes in common with Prosigna (FOXA1, MMP11), one gene 

with OncotypeDX (MMP11), one gene with HER2DX (NEK2), and one gene with Breast 

Cancer Index (NEK2). Scanning these signatures against the 16 features used in our molecular 

subtyping model yielded:  four genes with Prosigna (ERBB2, FOXA1, GRB7, MLPH), four 

genes with HER2DX (ERBB2, GRB7, STARD3, AGR3), two with OncotypeDX (GRB7 and 

ERBB2), and two with Guardant360 (ERBB2, GATA3). Scanning these signatures against the 

24 features used for histological subtyping yielded:  one gene with Guardant360 (CDH1). 

Scanning these signatures against the five features used in the non-metastatic vs metastatic 

model did not identify anything in common. A complete discussion of the above validation is 

provided in Supplementary file S17.  

BC-Predict: 

To transition the results obtained from our studies, we developed BC-Predict which 

serves the models developed in a cascade inference engine and provides a comprehensive 

characterization of the given sample (Fig.2). The BC-predict web-server is built on Rshiny110 

and deployed for academic research at https://apalania.shinyapps.io/BC-Predict. All 

predictions are accompanied by prediction probabilities to provide confidence for the predicted 

http://www.github.com/apalania/BCPredict_Histological
https://apalania.shinyapps.io/bc-predict/
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class. Documentation and video tutorial for the use of BC-Predict are also provided. BC-Predict 

generates a unified readout that could nominally support medical decision-making contingent 

to clinical validation and further refinement. An alternative modeling process that used a nested 

stratification structure instead of sequential stratification was also investigated. However this 

strategy did not yield an improved performance.  

There are limitations and scope for improvement to our study, chiefly:  

1. The metastatic model does not distinguish among the stages in pre-metastatic cancer. 

A refinement may be necessary to discriminate between the early-stage cancers and 

stage-III cancers among the pre-metastatic cancers.  

2. The molecular subtype model lumps ‘Luminal A’ and ‘Luminal B’ into the ‘Luminal’ 

class, but these subclasses represent distinct subtypes with different prognosis and 

treatment.  

3. The histological subtype model may be equally optimized for detecting the ILC class.    

4. In addition, all models may need to be fine-tuned for distribution shifts possible in 

different populations, though the identity of the biomarkers could be likely invariant.   

Accumulation of data is one pathway to remediate the above limitations. Initiatives like the 

Indian Cancer Genome Association111 might facilitate monitoring the performance of models 

such as ours on new populations. 

In summary, we have developed de novo models to characterise breast cancer 

heterogeneity agnostic of hypothesis. The candidate stage-salient biomarkers could play a role 

in the progression of breast cancer, whose varying manifestations underlie differential response 

to treatment regimens. Developing models from minimal feature spaces has several advantages, 

chief among them being sensitivity to heterogeneous individual presentation,  and 

generalization to out-of-domain population. One example of this in the present study is the 

performant external validation of the Molecular Subtype model on the TNBC-only African-

enriched multiethnic international cohort (25/26 samples correctly identified). It is remarkable 

that TNBC is also the most common molecular subtype in the Indian subcontinent. It also 

frustrates drug discovery programs with few druggable targets. The candidate biomarkers 

identified here could provide novel hypotheses for chemotherapy and immunotherapy 

investigations. Our study overcomes certain limitations of earlier models, namely reporting of 

balanced performance metrics, availability for academic research, and external validation. The 

confidence returned by BC-Predict predictions could be used to safeguard against weak or 
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uncertain evidence, necessary to combat the hazard with AI/ML modelling112. The clinical 

translation of AI/ML models would be a step forward for personalized medicine, necessitating 

adequate regulation to ensure the benefits of AI for all113,114. Validation and assurance of model 

quality alleviate the risks of distribution drift and cohort selection bias, and pave the way for 

clinically effective decision support aids in precision oncology centers. The realisation of 

software-as-medical-devices promises to revolutionize the diagnosis, triage, and treatment of 

cancers.   

Conclusions: 

Assessment of low-risk genetic factors unmasks induced vulnerabilities, and early-stage 

characterization of breast cancer heterogeneity constitutes the premise for personalized and 

targeted precision medicine. In this work, we have developed de novo models for addressing 

key problems in breast cancer heterogeneity based on public-domain expression datasets. 

Using custom protocols to identify biomarkers of interest to each problem, we have trained, 

optimised and externally validated the models. Our analysis has yielded novel and stage-salient 

drivers of cancer progression, including two stage-I salient genes (CHRNA6, MMP10), two 

stage-II salient genes (DEPDC1, COXA1), ten stage-III salient genes (including AKR7A3, 

FOXA1, CXCL5 and GDF5) and 20 stage-IV salient genes (including FREM1 and HFM1). 

We have developed solutions to four problems of interest in characterizing breast cancer 

heterogeneity: (i) ‘cancer’ vs ‘normal’ based on 10 features (2 stage salient genes and 8 top 

linear model genes) with balanced accuracy ~ 97.42% on external validation; (ii) non-

metastatic vs metastatic based on 5 features with balanced accuracy ~ 88.22% on external 

validation; (iii) molecular subtyping (namely Luminal, HER2+, and TNBC) based on 16 

features with balanced accuracy ~88.79% on external validation; and (iv) histological 

subtyping (IDC vs ILC) based on 24 features with ensemble accuracy ~94.23% on external 

validation. We have validated our results in multiple modalities. Based on these outcomes, we 

have developed an inference engine BC-Predict, which serves the best models developed for 

each problem, upon an input instance of expression data from a patient sample. BC-Predict is 

available for academic and non-commercial purposes as an experimental predictive aid for 

characterization of breast cancer heterogeneity based on minimal expression information, and 

subject to refinement with new knowledge. In conclusion, we have identified various novel 

candidate biomarkers of heterogeneous breast cancers that have been embedded into an 

integrated and validated cascade model towards the ultimate aim of expediting personalized 

differential diagnosis and cure.  
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