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Abstract 

Background: An alternative approach to investigate associations between genetic 

variants and disease is to examine deviations from the Hardy–Weinberg equilibrium (HWE) 

in genotype frequencies within a case population, instead of case-control association 

analysis. The HWE analysis distinctively requires disease cases without the need for 

controls and demonstrates a notable ability in mapping recessive variants. Allelic 

heterogeneity is a common phenomenon in diseases. While gene-based case-control 

association analysis successfully incorporates this heterogeneity, there are no such 

approaches for HWE analysis. Therefore, we proposed a gene-based HWE test 

(gene-HWT) by aggregating single-nucleotide polymorphism (SNP)-level HWE test 

statistics in a gene to address allelic heterogeneity.  

Results: This method used only genotype count data and publicly available linkage 

disequilibrium information and has a very low computational cost. Extensive simulations 
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demonstrated that gene-HWT effectively controls the type I error at a low significance level 

and outperforms SNP-level HWE test in power when there are multiple causal variants 

within a gene. Using gene-HWT, we analyzed genotype count data from genome-wide 

association study for six types of cancers in Japanese individuals and found that most of 

the genes detected are associated with cancers. In addition, we identified novel genes 

(AGBL3 and PSORS1C1), novel variants in CTSO known to be associated with breast 

cancer prognosis and drug sensitivity, and novel genes as germline factors, which have 

associations in gene expression or methylation status with cancers in the combined 

analysis of six types of cancers.  

Conclusions: These findings indicate the potential of gene-HWT to elucidate the genetic 

basis of complex diseases, including cancer. 

 

Keywords: Hardy–Weinberg equilibrium test, gene-based analysis, cancer-related genes, 

allelic heterogeneity, recessive variants, genome-wide association study 

 

BACKGROUND 

Case-control association analyses for individual single-nucleotide polymorphisms 

(SNPs; i.e., single-SNP case-control analysis), such as the chi-squared or Fisher's exact 

test on a 2 x 2 contingency table or logistic regression analysis, have been used to assess 

the genetic association between SNPs and disease states, leading to the detection of 

numerous disease-related SNPs (1). This approach has been successfully extended to 

"gene-based" analysis (2-8). Gene-based analysis has several advantages over 

single-SNP analysis. First, collectively considering multiple variants within a gene may 

increase the statistical power of the analysis if allelic heterogeneity is present (i.e., different 
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variants at the same gene lead to the same or similar phenotypes). Second, focusing on 

genes instead of millions of SNPs reduces the burden of multiple tests, which may also 

increase the power. Third, gene-based analysis addresses the allelic heterogeneity and 

allows for more consistent findings across different studies on similar diseases. 

Furthermore, studying genes, the functional units of the genome, can provide valuable 

insights into the underlying biology of a disease. 

Instead of using a case-control analysis, using deviations in genotype frequencies 

from the Hardy–Weinberg equilibrium (HWE) within a case population, i.e., HWE analysis, 

is an alternative approach to investigate the association between SNPs and disease (9-12). 

For a particular locus with two alleles A and a with frequencies �1 � �� and �, respectively, 

the HWE states that the genotype frequencies of AA, Aa, aa are �1 � ���, 2��1 � ��, and 

��, respectively, under conditions such as random mating, a large population, and no 

migration, mutation, or selection (13). Because different genotypes in a disease-causing 

variant have different levels of susceptibility to the disease, the genotype frequencies 

within a case population may deviate from the expectations under the HWE, i.e., in 

Hardy–Weinberg disequilibrium (HWD). Therefore, HWD can be used for genetic 

association, and this approach, unlike case-control studies, requires only cases and not 

controls. This method has been used for fine mapping of recessive variants and for 

providing additional evidence for case-control analysis of recessive variants (9, 12, 14-17). 

Analogous to the gene-based case-control analysis, gene-based HWE analysis 

should be considered owing to its many advantages, including increasing statistical power 

and the interpretability of results, similar to the gene-based case-control analysis. Multiple 

recessive mutations commonly exist within the same disease-causing gene, (18) and the 

gene-based HWE analysis is precisely targeted for such scenarios. However, until now, no 
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such method has been proposed.  

Therefore, we proposed a gene-based HWE test (gene-HWT), which 

advantageously uses genotype count data and publicly available linkage disequilibrium 

information, without requiring individual genotypes, from genome-wide association studies 

(GWAS) with increasingly large sample sizes (19). Note that this proposed use of HWD is 

not intended to identify genotype errors as is commonly done (20). Rather, the use of data 

in which mutations with a high probability of error have been removed prior to analysis is 

intended. The results obtained did not show any features attributable to errors. 

 

RESULTS 

gene-HWT 

We started with the statistic for the single-SNP Hardy–Weinberg equilibrium test 

(single-SNP HWT) and then introduced the proposed method, gene-HWT (an overview is 

illustrated in Fig. 1). For a particular locus with two alleles A and a with frequencies 

� � 1 � � and �, respectively, the statistic for single-SNP HWT, �, in 	 diploid samples is 

calculated as follows: 


 �
�� � 2	�̂�

2�̂�√	
, �1� 

where �� is observed number of heterozygosity in the sample, and �̂ and � represent the 

sample frequency of a and A, respectively (11). Under HWE, 
 is expected to be 0 since 

the genotype frequency of Aa is expected to be 2	��. HWT is performed based on the fact 

that 
 asymptotically follows a standard normal distribution under HWE. Note that the 

commonly used statistics for single-SNP HWT is the square of 
, 
� (11).  

The test using 
  employs continuous approximation, which does not yield 

appropriate results when the number of minor alleles in the sample is low. Therefore, in this 
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study, we focused on loci with a minor allele frequency (MAF) ≥5% in the sample. In 

addition, Yates' continuity correction was applied to 
 when the expected number of 

homozygotes for minor allele was ≤5. The correction was performed by subtracting 

0.5 � sign��� � 2	�̂�� from the numerator of 
, where sign() returns the sign of a real 

value. 

For a gene with � loci, we proposed the statistic for gene-HWT, 
����, as 

����� � ∑ ���
���

����∑ ���
��� � �

∑ ���
���

	
� 2∑ ∑ ����� , ���
���	� ��

���

, �2� 

where 
� is the HWT formula for �-th variant in the gene. ����� is the sum of 
� divided 

by its standard deviation (Fig. 1), enhancing the detection of cumulative accumulation of 

homozygote or heterozygote excesses within a gene. This statistic includes the covariance 

between 
�  and 
� , �o��
�, 
�� , due to LD, making the direct computation of �����  

challenging. Considering the representation of �o��
�, 
�� in terms of LD coefficients, ��,�, 

between the �-th and �-th variants, we successfully proved � ��
�, 
�� �  ��,�
�  as 	 is large 

in a Supplementary Note. Therefore, 
���� is as follows: 

����� � ∑ ���
���

	
� 2∑ ∑ ��,���
���	�

�
���

. �3� 

The ��,�
�  values were retrieved from a public database. Therefore, to calculate �����, only 

the genotype counts were required. The gene-HWT was performed using the standard 

normal distribution: since ����� is the standardized sum of normal variables,��, �����  

asymptotically follows a standard normal distribution under the null hypothesis that all � 

variants in the gene are under HWE. 

 

p-values under the null model and type I error rates 
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Under the null hypothesis (HWE), the behavior of the p-value and the type I error 

rates of gene-HWT were investigated by simulation. In each simulation, one gene was 

randomly selected, with replacement, from 388 genes that meet certain criteria on 

chromosome 20 from the 1000 Genomes Phase 3 (21) dataset (see Methods for details). 

Using Hapsim (22), 	 diplotypes are generated while preserving the real LD structure. The 

QQ-plots displayed p-values obtained from 20,000 simulations for each setting, 

representing approximately the total number of genes in the human genome (Fig. 2). The 

observed – log10(P) values obtained from gene-HWT (Fig. 2, circles) exhibited a good fit to 

the theoretical straight line under HWE for all sample sizes, 	 = 200, 1000, and 3000. In 

contrast, when LD was not corrected, i.e., when using the statistic with LD set to 0 in (2), 

the observed – log10(P) values (Fig. 2, cross) were substantially inflated from the expected 

theoretical curve, leading to the inflation of type I error rates. 

Type I error rates by one million simulations for each setting are presented in 

Table 1. When LD was not corrected, the type I error rate was much larger than the nominal 

significance level. Type I error for gene-HWT tended to be conservative when the sample 

size was small, especially when the nominal significance level was large. For example, the 

type I error rate was 3.0% under 	 = 200 and α = 5%. When the sample size was large, 	 

= 1000 or 3000, especially with a small nominal significance level, the type I error rates of 

gene-HWT were very close to the nominal significance level. At the nominal significance 

level of 0.025%, corresponding to Bonferroni-corrected 5% significance level for 20,000 

genes in the human genome, the type I error rates were 0.022% and 0.026% under 	 = 

1000 and 	 = 3000, respectively. Therefore, even at small significance levels, such as 

those used in the genome scan, the gene-HWT type I error rate can be effectively 

controlled by appropriately adjusting the LD. 
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Power 

A power analysis was conducted for gene-HWT under a multiplicative relative risk model, 

with 1-12 causative SNPs randomly assigned within a single gene. Diplotypes for genes on 

chromosome 20 were simulated in the same way as examining type I error rates. The 

genotype risk ratios for a causal SNP was defined as AA : Aa : aa = 1 : (1+"	) : (1+"�). The 

individual's relative risk was obtained by multiplying the risk ratios of each variant. The 

absolute risk was proportional to the relative risks, under the constraint of a prevalence 

(average risk) of 0.1 (see Methods for details). 

The powers for gene-HWT are shown in Fig. 3. The recessive (2"	 � 0, "� # 0) 

and dominant (2"	 � "� # 0) models were as follows. A larger sample size increased the 

power. More causal SNPs led to greater detection of power. Even a small increase from 1 

to 3 causal SNPs significantly increased the power of detection. For example, when "� = 

0.2 in a recessive case, with 	 = 200, 1000, and 3000, the detection rates increased from 

2.8% to 13% (4.64-fold), 8.7% to 36.9% (4.24-fold), and 18.5% to 69.4% (3.75-fold), 

respectively. In both recessive and dominant models with sufficient sample size (	 � 3000), 

even for relatively weak effects with "� = 0.05, 0.1 and 0.2, a power of 70% was achieved 

with 12, 6, and 3 causal SNPs, respectively. Under the same value of "�, the power for the 

recessive and dominant models were equivalent but deviated in opposite directions from 

HWE, with the recessive model showing "Homozygote excess" (z < 0) and the dominant 

model showing "Heterozygote excess" (z > 0) (Fig. 4). The semidominant model 

(2"	 � "� # 0) had very low power. 

 

Power comparison: gene-HWT versus single-SNP HWT 
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A comparison of the power of gene-HWT and single-SNP HWT, at the overall 

significant level of 0.05 both with multiple testing corrections, is shown in Supplementary 

Fig. 1. Specifically, for each parameter set, 1000 genes (=1000 simulations) were set and 

in gene-HWT Bonferroni correction was applied for the testing of 1000 genes. In 

single-SNP test, Bonferroni correction was applied for the number of SNPs (on average, 

78,537 SNPs across parameter sets) within each of the 1000 genes. 

 Compared with the single-SNP test, gene-HWT generally exhibits higher power 

(Supplementary Fig. 1). Particularly, in cases of intermediate detection power, gene-HWT 

exhibits a detection power approximately 1.2 to 1.8 times greater than that of the 

single-SNP testing. For example, when 	 = 200, causal SNP = 12, and "� = 0.2 in the 

dominant model, the power of single-SNP test was 14.4%, while that of gene-HWT was 

25.6% (1.78-fold increase). In the recessive model, the power of single-SNP test was 

15.9%, whereas that of gene-HWT was 22.8% (1.43-fold increase).  

 The power of detection was compared between single-SNP test and gene-HWT 

using the standard genome-wide significance levels as shown in Supplementary Fig. 2. In 

gene-HWT, the number of genes was set to 20,000, corresponding to 

Bonferroni-corrected significance level of P < 2.5 × 10-6. For single-SNP test, we assumed 

1 million SNPs, corresponding to Bonferroni-corrected significance level of P < 5 × 10-8. 

The results aligned with the previous comparison (Supplementary Fig. 1), demonstrating 

that gene-HWT generally displays a higher power of detection than single-SNP test. 

 

Analysis of genome-wide data in six cancer types  

The genotype count data from GWASs for esophageal, lung, breast, gastric, colorectal, 

and prostate cancers in Japanese individuals were obtained from the website of the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 22, 2024. ; https://doi.org/10.1101/2024.03.20.24304529doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.20.24304529
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

National Bioscience Database Center (NBDC) Human Database (23). Each dataset had 

been quality-controlled and consisted of approximately 190 individuals. LD information was 

obtained from the 1000 Genomes Phase 3 dataset (21). The SNPs overlapping with genes 

(within 2 kb upstream or downstream of the transcripts) , and those with MAF ≥5% were 

selected. For the six types of cancers, gene-HWT was applied to analyze 11,813 to 13,482 

genes and 92,690 to 174,270 SNPs (see Methods for details). 

Eighty cancer type-gene pairs were identified by applying the gene-HWT with the 

criterion: FDR q-value < 0.2 for each cancer type (Supplementary Table 1). The 80 genes 

encompassed SNPs ranging from 1 to 103. To identify common causal genes in cancers, 

the results of six cancer studies were combined. In the combined analysis (see Methods for 

details), 11 genes were identified with q-values < 0.05 (Table 2). The combined 
����  

values are all negative, suggesting that these 11 genes may have recessive mutations. 

Among these 11 genes, 8 genes (CCDC32, POFUT2, PPP1CB, QRFPR, FSTL4, ACRV1, 

CTSO, and GPR180) have been reported to be associated with gene expression, 

methylation, or germline mutations, and 3 genes, including AGBL3 and PSORS1C1, were 

newly identified as candidate cancer-related genes. Additionally, among the genes 

detected using the threshold of FDR q-value < 0.2 for each cancer type (Supplementary 

Table 1), 8 genes were found in multiple cancers (Table 3). For genes except for OR4N2, 


���� values were negative, suggesting the presence of recessive mutations. HLA-DMA 

was identified in four cancer types, while ZNF736 and AL163636.2 were identified in three 

cancer types, and the remaining genes were observed in two cancer types. 

 

DISCUSSION 

The proposed method, gene-HWT, is the first method to detect HWD at the 
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gene-level by aggregating HWD in genetic variants (SNPs) within or close to the gene, 

while adjusting the LD among variants. This test uses only genotype count data, without 

the individual genotype data, and publicly available LD information. The derived simple 

relationship between the covariance of the HWT statistic of a pair of variants and the LD 

coefficient, i.e., � ��
�, 
�� �  ��,�
� , allows for the immediate calculation of the gene-HWT 

statistic from the single-SNP HWT statistics in a gene of interest without computationally 

intensive permutation or simulation. gene-HWT effectively controls the type I error rate at a 

very low significance level, enabling genome scanning, and exhibits significantly increased 

power compared to single-SNP tests as the number of causal variants within the gene 

increases. The method also allows for combining results for each gene from different 

studies, i.e., studies for different cancer types as shown in this study, with allelic 

heterogeneity, which might lead to further increases in power. 

We applied the gene-HWT to six cancer genome data sets, each with 

approximately 190 cases. By combining these results, we identified 11 significant genes at 

a threshold of q-value = 0.05. Of the 11 significant genes, 8 genes (CCDC32, POFUT2, 

PPP1CB, QRFPR, FSTL4, ACRV1, CTSO, and GPR180) were reported to be associated 

with various cancers (24-32). Furthermore, of those eight genes, cancer types reported in 

existing studies often showed the highest significance in our analysis. These findings 

suggest that gene-HWT captures true causal genes. 

CTSO exhibited the most significant association with breast cancer (
����  = 

–4.44) in a recessive manner in the combined analysis. This aligns with previous reports 

indicating that the homozygous G variant of CTSO rs10030044 is associated with a worse 

prognosis (i.e., in recessive form) in patients with hormone receptor-positive breast cancer 

receiving tamoxifen therapy (30). The SNP rs10030044 and the linked rs4256192 lead to 
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increased CTSO expression, resulting in decreased BRCA1 expression and, consequently, 

tamoxifen resistance (33). Our results showed that CTSO could be one of the causative 

genes for not only breast cancer but also other types of cancer, particularly esophageal 

cancer, as indicated by its large negative z-score (
���� = –2.2). For breast cancer, the 

strong effect was observed with the SNP rs10019161 (single-SNP HWT P = 2.18 × 10-9), 

which was also significant in lung cancer (P = 0.0054). In esophageal cancer, the strong 

effects were observed in rs10019975 (P = 0.0174) and rs7684248 (P = 0.0563). According 

to the LDmatrix (34) using data in the 1KG Project EAS population (21), these three SNPs 

rs10019161, rs10019975 and rs7684248 are not in LD with the previously reported 

rs10030044 and rs4256192 (r2 < 0.01). This suggests that these three SNPs (which are in 

LD with each other with r2 > 0.4) could potentially act as independent factors in the cancer 

of the two previously reported SNPs. 

In the analysis of each of the six cancer types in Japanese individuals, the 

positive z-score for TP53 detected only in colorectal cancer (P = 1.45 x 10-4), suggesting 

dominant variants, could be due to "dominant negative" features for TP53 variants (35). 

Furthermore, RAD51 (36), APOBEC3A (37), and BRAP (38) identified in gastric, lung, and 

esophageal cancers, respectively are well-known for their association with cancer. In the 

analysis of each of the six cancer types with a threshold of q-value = 0.2, out of the 8 

detected genes, 6 genes (HLA-DMA, NUP54, OR4N2, QRFPR, TBK1 and ZNF736) are 

associated with cancers (27, 39-47). HLA-DMA showed significant associations with four 

types of cancer in this study. HLA-DM (encoded by HLA-DMA and -DMB ) is a 

non-classical MHC class II-like protein that acts as a peptide editor in the antigen 

presentation process and plays a crucial role in regulating the loading of antigenic peptides 

onto MHC class II molecules. In patients with chronic hepatitis C virus type 1 infection in 
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the Chinese Han population who underwent interferon/ribavirin therapy, individuals 

carrying the rs1063478 TT genotype of HLA-DMA had a higher likelihood of achieving 

sustained virological response (SVR) (39). In patients with lung adenocarcinoma, low 

HLA-DMA expression was associated with disease-specific survival and overall survival 

(OS) (40). In glioma, high HLA-DMA expression was associated with poor prognosis (41). 

These findings and the result of our analysis suggest that HLA-DMA may be associated 

with a variety of cancers. 

New candidate cancer-related genes were identified in our analysis, such as 

AGBL3, PSORS1C1, and ZNF680. ATP/GTP Binding Protein-Like 3 (AGBL3), is a 

metallocarboxypeptidase that mediates deglutamylation of both tubulin and non-tubulin 

target proteins. Psoriasis Susceptibility 1 Candidate 1 (PSORS1C1) is one of the genes 

associated with psoriasis (48), an inflammatory skin disease, and since there is a known 

association between psoriasis and cancer (49), PSORS1C1 may also be a cancer-causing 

gene. In addition, many previous reports have focused on mRNA expression and 

methylation studies, and this is the first study to find an association between SNPs and 

cancer for genes such as OFUT2, PPP1CB, QRFPR, FSTL4, ACRV1, GPR180, OR4N2, 

QRFPR, and ZNF736. 

The public data of the six cancer types used in this study had been quality 

controlled, and thus, HWD detected by gene-HWT was not attributable to genotyping errors. 

If the effect of error had been dominant in the detected genes, a tendency towards excess 

heterozygosity would have been observed (20); however, many detected genes showed 

excess homozygosity. This is not likely due to population structure or inbreeding (50, 51). If 

the effect had been large, the z-value should be negative overall, but the median SNP-level 

z-values for the six cancers were close to zero: –0.021, –0.026, –0.015, –0.056, and 
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–0.029 for esophageal, lung, breast, stomach, colon, and prostate cancers, respectively. Of 

course, in the case of non-negligible effects of population structure or inbreeding, 

gene-HWT may produce erroneous results. Thus, the development of a gene-based HWE 

test that considers population structure and inbreeding is a future challenge. 

The proposed method has certain limitations. It targets common variants with 

MAF ≥5%. As a result, many variants would be excluded from consideration. BRCA1- and 

BRCA2-associated hereditary breast and ovarian cancer (HBOC) follow a dominant 

inheritance pattern. Such dominant variants exert their effects heterozygously, making it 

difficult for them to be highly maintained in the population through natural selection. Indeed, 

all genes detected, except for ORN2, exhibited negative 
����  values, indicating the 

presence of recessive mutations in those genes. The reason for excluding variants with 

MAF <5% is that the single-SNP HWT may not work well with rare mutations owing to 

breakdown of continuous approximation, and naturally, gene-HWT would also fail for these 

cases. Moreover, since gene-HWT enhances the detection of cumulative accumulation of 

homozygous or heterozygous excess within a gene, it might be difficult to detect genes with 

both recessive and dominant mutations using gene-HWT. 

 

CONCLUSIONS 

In summary, we proposed a novel method for detection of gene-based HWD, which uses 

only the genotype counts and publicly available LD information. It is common for specific 

genes to have multiple disease-causing mutations, and our approach can aggregate their 

cumulative effects to enhance the detection power. We successfully demonstrated the 

application of this method on cancer genomic data, showing its effectiveness. Together, 

these findings highlight the potential utility of gene-HWT in elucidating the genetic basis of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 22, 2024. ; https://doi.org/10.1101/2024.03.20.24304529doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.20.24304529
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

cancers and other complex diseases. 

 

METHODS 

Simulation for type I error rates of gene-HWT 

Type I error rates for the proposed gene-HWT were investigated by simulations under 

the null hypothesis (HWE) using real data for mimicking realistic LD structure. Specifically, 

phased genotype data from chromosome 20 in the East Asian (EAS) population, 

comprising 504 individuals from the 1000 Genomes Phase 3 (21), were utilized. Only SNPs 

with MAF ≥5% were selected. To reduce the computational burden and to specify a 

maximum of 12 causal SNPs for subsequent power analysis, genes with 12 to 200 SNPs 

on chromosome 20 were selected, resulting in the use of 388 genes. In each simulation, 

one gene was randomly selected from 388 genes obtained, and using Hapsim (22), 2n 

haplotypes were generated while preserving the LD structure obtained from real data 

within the gene. Then, 2n haplotypes were randomly combined to create n diplotype and 

finally, gene-HWT was applied. 

 

Simulation for power analysis of gene-HWT 

A power analysis was conducted using simulations based on a disease causation model 

involving 1-12 causal SNPs in a single gene. The process of creating diplotypes was 

identical to that of simulation for type I error rates. The causal SNPs were randomly 

determined in SNPs within the genes. The genotype risk ratio for each causal mutation is 

defined as AA : Aa : aa = 1 : (1+"	) : (1+"�). The individual's risk ratio was determined by 

multiplying the risk ratios for each variant. The individual's absolute risk was determined 

while considering the constraint of prevalence = 0.1. In one simulation, a sufficiently large 
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population with '	/prevalence' diploids was created in advance, and then 	 individuals 

were selected based on each individual's absolute risk. Finally, gene-HWT was applied to 

the diplotypes in the patient population. 

 

Analysis of genotype count data in six cancers  

The genome-wide genotype count data for the six cancer types were obtained from the 

website of the National Bioscience Database Center (NBDC) Human Database 

(http://humandbs.biosciencedbc.jp/). Each dataset had been quality controlled with sample 

call rate ≥ 0.98, SNP call rate ≥ 0.95 and p-value of original SNP-level HWT ≥ 1 x 10-6, and 

consisted of approximately 190 individuals. LD information was obtained using LDmatrix 

function of R package LDlinkR (34) from EAS population in the 1000 Genomes Phase 3 

dataset (21). The variants overlapping with genes (within 2 kb upstream or downstream of 

the transcripts), which were determined using SNPnexus (52), and those with MAF ≥5% 

were selected. For esophageal, lung, breast, gastric, colorectal, and prostate cancers, we 

applied gene-HWT to 13,482 genes with 174,270 variants, 12,051 genes with 100,496 

variants, 11,813 genes with 94,412 variants, 11,992 genes with 99,748 variants, 11,855 

genes with 92,809 variants, and 11,857 genes with 92,690 variants, respectively. q-value 

(53), an FDR-adjusted p-value, was calculated using the q-value package in R. We 

combined 
���� values from the six cancers using Stouffer's method. Specifically, the 

combined z-score, 
����
����, was computed by summing up the individual z-scores, 


����
��, and dividing by the square root of the total number of studies, $�� 6�: 


����
���� �
∑ 
����
��

√$
 

P-values (and subsequently q-values) were calculated based on the fact that, under the 

null hypothesis, 
����
���� follows the standard normal distribution. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 22, 2024. ; https://doi.org/10.1101/2024.03.20.24304529doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.20.24304529
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

 

Statistics and bioinformatics tools 

The following tools were used: 

qvalue package in R: http://www.bioconductor.org/packages/release/bioc/html/qvalue.html 

SNPnexus: https://www.snp-nexus.org/v4/ 

Hapsim package in R: https://cran.r-project.org/web/packages/hapsim/index.html 

LDlinkR package in R: https://cran.r-project.org/web/packages/LDlinkR/index.html 
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Fig. 1. Overview of the gene-HWT. 

The input is genotype count data of SNPs located on a specific gene. Within this gene, 

SNP-level HWT statistics are computed. To consider the correlations among z(�s, linkage 

disequilibrium (LD) coefficients, ��,�
� , are derived from a public database. The gene-based 

HWT statistics, 
����, and corresponding p-value are calculated. 

 

Fig. 2. QQ plot of P-values for gene-HWT and the test not corrected for LD under the 

null hypothesis.  

P values for gene-HWT and the test not corrected for LD through simulations with sample 

size (n)=200, 1000 and 3000 under the null hypothesis (HWE), utilizing real data from 

chromosome 20 of the EAS population in the 1000 Genomes Phase 3. The grey line 

represents the expected value under the null hypothesis. 

 

Fig. 3. Power of gene-HWT. 

The results shown are based on simulations with sample size (n)=200, 1000 and 3000 

using data from chromosome 20 of EAS population in the 1000 Genomes Phase 3. The 

genotype risk ratios for a specific causal SNP are defined as AA : Aa : aa = 1 : (1+"	) : 

(1+"�). Simulations were performed for the recessive model ("	=0, "�>0), dominant model 

("	="�>0), and semidominant model (2"	="�>0). 

 

Fig. 4. z-values of gene-HWT (zgene).  

z-values of GHWT obtained from the same simulations as in Figure 2. 
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TABLES 

Table 1 Empirical type I error rates from 1,000,000 simulations. 

 

Numbers in parentheses are numbers of rejections. 

* Corresponds to significance level of 0.05 corrected for Bonferroni correction with 20,000 genes (0.05/20,000 = 0.025%). 

LD, linkage disequilibrium; HWT, Hardy–Weinberg equilibrium test. 

 

 

 

Table 2 Genes identified by combined gene-HWT results for six cancer types at q-value < 0.05. 

 
α = 5%  

α = 0.1%  α = 0.025%*  α = 0.01%  

 gene-HWT Not corrected  
for LD  gene-HWT Not corrected  

for LD  gene-HWT Not corrected  
for LD  gene-HWT Not corrected  

for LD  

n=200 3.0% 
(29,736) 

56.1% 
(560,857)  

0.058% 
(585) 

36.335% 
(363,350)  

0.016% 
(161) 

32.124% 
(321,242)  

0.008% 
(75) 

29.773% 
(297,725)  

n=1000 3.9% 
(38,794) 

59.3% 
(593,201)  

0.082% 
(824) 

39.685% 
(396,849)  

0.022% 
(224) 

35.347% 
(353,471)  

0.010% 
(104) 

32.936% 
(329,357)  

n=3000 
4.5% 

(44,992) 
61.1% 

(610,684)   
0.097% 
(972) 

41.529% 
(415,289)  

0.026% 
(257) 

37.209% 
(372,086)  

0.010% 
(103) 

34.734% 
(347,343)  

 gene-HWT z-value, ����� (# of SNPs)  Combined results 
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Gene Esophageal Lung Breast Gastric Colorectal  Prostate  

����� 
(combined) 

p-value 
(x107) 

q-value 
(x104) 

highlights 

  CCDC32   -1.4 (1)   -2.5 (1)   -2.8 (1)   -2.4 (1)   -3.4 (1)   -3.0 (1)  -6.4  0.002  0.02  

SNP-SNP 
interactions within 
CCDC32 are 
observed in 
colorectal cancer 
GWAS (24). 

AC007998.2   -1.1 (7)   -1.3 (2)   -2.6 (2)   -3.5 (2)   -2.1 (2)   -4.2 (2)  -6.0  0.020  0.10  None 

POFUT2   -0.5 (3)   -0.9 (2)   -3.5 (1)   -1.5 (2)   -4.6 (1)   -3.2 (1)  -5.8  0.075  0.26  

Reduced expression 
of POFUT2 is 
associated with poor 
prognosis in 
colorectal cancer 
(25). 

PPP1CB   0.9 (5)   -1.7 (2)   -3.1 (2)   -4.4 (3)   -1.1 (2)   -3.0 (2)  -5.1  4.0  10.3  

Expression of 
PPP1CB is 
associated with poor 
prognosis in 
pancreatic cancer 
(26). 

QRFPR   0.0 (9)   -4.2 (9)   -0.5 (9)   -1.8 (9)  -0.9 (11)  -3.8 (11)  -4.6  43.2  89.0  

Significant 
upregulation of 
QRFP expression is 
observed in prostate 
cancer tissue 
samples (27). 

FSTL4  -0.7 (101)  -1.4 (42)  -0.7 (43)  -1.2 (47)  -3.7 (48)  -3.3 (49)  -4.5  64.5  110.7  

A 6-gene score 
using expression, 
featuring FSTL4, 
predicts pancreatic 
adenocarcinoma 
prognosis (28). 

ACRV1   0.6 (1)   -2.1 (3)   -2.7 (3)   -1.3 (3)   -2.2 (2)   -3.2 (2)  -4.4  110.7  162.7  

Four messenger 
RNAs, including 
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If cancer types reported in existing studies showed the highest significance in our analysis, those cancer types and ����� values have been 

highlighted in bold. 

HWT, Hardy–Weinberg equilibrium test; SNP, single-nucleotide polymorphism. 

ACRV1, distinguish 
pancreatic cancer 
patients from 
non-cancer subjects 
(chronic pancreatitis 
patients and healthy 
controls) (29). 

AGBL3   -0.3 (11)   -1.7 (3)   -3.2 (1)   -2.2 (2)   -1.8 (1)   -1.5 (2)  -4.3  166.2  211.8  None 

CTSO   -2.2 (7)   -1.3 (3)   -4.4 (2)   -1.4 (2)   -1.1 (2)   -0.0 (2)  -4.3  185.2  211.8  

The GG homozygote 
of CTSO 
rs10030044 is 
associated with poor 
prognosis in 
hormone 
receptor-positive 
breast cancer 
patients receiving 
tamoxifen therapy 
(30). 

PSORS1C1   -1.5 (16)   -3.4 (4)   -1.4 (2)   -1.9 (3)   -1.2 (3)   -0.8 (3)  -4.1  358.5  368.9  None 

GPR180   -0.5 (4)   -0.7 (4)   -1.8 (4)   -1.3 (4)   -2.5 (3)   -3.2 (2)  -4.1  486.1  454.8  

GPR180, a 
component of TGFβ 
signaling (31), is 
likely a tumor 
suppressor gene; 
increased 
methylation is 
associated with poor 
prognosis (32).  . 
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Table 3 Genes detected in multiple cancer types with FDR q-value < 0.2 criteria. 

Gene Cancer # of SNPs  gene-HWT Relevant literature highlights 
 

����� 
 

p-value  
(105) 

q-value 
(102) 

AL163636.2 lung 1  -4.18  2.89  4.36    
 colorectal 1  -4.33  1.47  2.90  None 
  prostate 1  -4.21  2.56  9.31    

HLA-DMA lung 1  -4.65  0.33  2.40  In patients with chronic hepatitis C virus type 1 infection, the rs1063478 TT 
genotype of HLA-DMA is more likely to achieve SVR with 
interferon/ribavirin therapy (39). 
Expression of HLA-DMA is associated with the prognosis of both lung 
adenocarcinoma (40) and glioma patients (41). 

 breast 1  -4.18  2.91  5.50  
 colorectal 1  -3.79  15.00  11.10  
  prostate 1  -4.10  4.18  9.91  

NUP54 gastric 1  -5.14  0.03  0.33  Nup54 contributes to homologous recombination repair and DNA integrity 
(42), while promoting gastric cancer cell growth and tumorigenesis 
through CARM1 nuclear importation (43). 

  prostate 1  -4.62  0.38  4.50  

OR4N2 lung 5  4.53  0.60  2.40  High expression of OR4N2 is associated with increased mortality in 
stomach adenocarcinoma (44). OR4N2 is also highly expressed in a 
subtype of glioma, and the expression may be related to glioma prognosis 
(45). 

  breast 2  4.82  0.14  1.71  

QRFPR lung 9  -4.24  2.21  4.36  Significant upregulation of QRFP expression is observed in prostate 
cancer tissue samples (27). 

  prostate 11  -3.79  15.04  17.83  
TBK1 gastric 1  -3.68  23.66  18.91  TBK1 regulates the proliferation and survival of malignant cells in many 

types of cancer and controls antitumor immunity and inflammation by 
regulating cytokine production in dendritic cells and macrophages, making 
it a potential molecular anticancer target (46). 

  prostate 1  -4.03  5.70  11.26  

ZNF680 lung 2  -3.65  25.77  17.24    
 breast 1  -4.28  1.85  4.69  None 
  prostate 1  -4.40  1.07  6.36    

ZNF736 lung 1  -3.71  20.89  15.87  Downregulated methylation of ZNF736 is observed in the PVL group, 
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  breast 1  -4.65  0.33  1.92  
compared to that in the control group (47). 

If cancer types reported in existing studies showed the highest significance in our analysis, those cancer types and ����� values have been 

highlighted in bold. 

SNP, single-nucleotide polymorphism. 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

arch 22, 2024. 
; 

https://doi.org/10.1101/2024.03.20.24304529
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2024.03.20.24304529
http://creativecommons.org/licenses/by-nc-nd/4.0/


Input: Genotype count data of SNPs on the gene A

SNP-level HWT statistics in the gene A

𝑆𝑁𝑃1 𝑥1,𝐴𝐴 𝑥1,𝐴𝑎 𝑥1,𝑎𝑎

𝑆𝑁𝑃2 𝑥2,𝐴𝐴 𝑥2,𝐴𝑎 𝑥2,𝑎𝑎

… … … …

𝑆𝑁𝑃𝑚 𝑥𝑚,𝐴𝐴 𝑥𝑚,𝐴𝑎 𝑥𝑚,𝑎𝑎

𝑆𝑁𝑃1 z1

𝑆𝑁𝑃2 z2… …

𝑆𝑁𝑃𝑚 𝑧𝑚

𝑧𝑔𝑒𝑛𝑒 and p-value

Input:

LD coefficients, 𝑟𝑖,𝑗
2 , 

form public DB

Figure 1. Overview of the gene-HWT.

The input is genotype count data of SNPs located on a 

specific gene. Within this gene, SNP-level HWT statistics are 

computed. To consider the correlations among 𝑧′𝑖𝑠, linkage 

disequilibrium (LD) coefficients, 𝑟𝑖,𝑗
2 , are derived from a public 

database. The gene-based HWT statistics, 𝑧𝑔𝑒𝑛𝑒 , and 

corresponding p-value are calculated.
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Figure 2. QQ plot of P-values for gene-HWT and the test not corrected for LD 

under the null hypothesis. P values for gene-HWT and the test not corrected for LD 

through simulations with sample size (n)=200, 1000 and 3000 under the null 

hypothesis (HWE), utilizing real data from chromosome 20 of the EAS population in 

the 1000 Genomes Phase 3. The grey line represents the expected value under the 

null hypothesis.
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Figure 3. Power of gene-HWT. The results shown are based on simulations with 

sample size (n)=200, 1000 and 3000 using data from chromosome 20 of EAS 

population in the 1000 Genomes Phase 3. The genotype risk ratios for a specific 

causal SNP are defined as AA : Aa : aa = 1 : (1+𝛽1) : (1+𝛽2). Simulations were 

performed for the recessive model (𝛽1=0, 𝛽2>0), dominant model (𝛽1=𝛽2>0), and 

semidominant model (2𝛽1=𝛽2>0).
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Figure 4. z-values of gene-HWT (zgene). z-values of GHWT obtained from the same 

simulations as in Figure 2.
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