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Summary

Genomics-driven drug discovery framework holds promise in developing novel

therapeutic targets. Here, we leveraged large-scale genomic data including

genome-wide association studies (GWAS), rare variant burden tests in exome

sequencing studies (Exome), and protein quantitative trait loci (pQTL), to prioritize

potential therapeutic targets and identify opportunities for drug repositioning in

rheumatoid arthritis (RA). We found that prioritized genes covering two approved RA

treatment targets (IL6R and CD86), and five targets tested in clinical trials for RA.

Eighteen proteins were identified as having causalities with RA risk, three out of them

showed strong support for colocalization. Bromodomain-containing protein 2 (BRD2)

was nominated as one of the most promising candidates for clinical translation as its

wide expression in joint synovial tissues and validation in observational analyses

associating with RA incidence. Collectively, our systematic screening of candidate

drug targets from different genetically informed approaches, and provided a

comprehensive insight into therapeutic strategies for RA.
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GWAS, Exome, pQTL, gene prioritization, drug target discovery, Mendelian

randomization, colocalization, rheumatoid arthritis



4

Introduction

Rheumatoid arthritis (RA), a common systemic autoimmune disease primarily

characterized by chronic tissue inflammation and joint destruction,1,2 has an estimated

heritability of nearly 50%.3 In 2020, an estimated 17.6 million people had RA

worldwide.4 Over recent decades, advancements in the treatment of RA have been

notable, with the advent of biologic disease-modifying anti-rheumatic drugs

(bDMARDs) and, more recently, targeted synthetic DMARDs.5 Nevertheless, despite

the availability of these therapeutic drugs for RA, a considerable portion of RA

patients fail to achieve low disease activity or remission.6 Additionally, there exists a

substantial cost burden and disparities in these medications accessibility,7,8 further

complicating the situation. Currently, screening for novel therapeutic targets remains a

pressing need in the management of RA.

Using human genetic data to optimize the selection of targets has potential to lead to

approved drugs.9,10,11 A previous genome-wide association study (GWAS)

meta-analysis for RAwith >100,000 subjects,3 served as a paradigm, underscoring the

pivotal role of genetics in drug discovery efforts, which revealed drug target genes of

approved RA drugs significantly overlapped with the 98 identified biological

candidate genes, and indicated that CDK6/CDK4 inhibitors12 (approved drugs for

different types of cancer) may hold promise for drug repositioning in RA treatment.

One constraint inherent in the singular approach of drug discovery driven by GWAS

lies in the fact that a significant portion of GWAS signals stemming from common

variants manifest negligible individual effect magnitudes. However, their potential
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influence on molecular phenotypes, encompassing gene expression and protein

abundance, might be significant to justify consideration for therapeutic intervention.13

Coupling large-scale GWAS with molecular quantitative trait loci (mQTL) datasets by

utilizing Mendelian randomization studies, transcriptome-wide association studies,

and colocalization methods provides insight to pathogenesis and facilitates future

drug target prioritization.14,15,16,18,19 Besides, GWAS do not fully capture

low-frequency and rare variants, but analysis of whole-exome sequencing (WES)

reveals rare coding variants, shedding light on novel biological functions for

numerous genes and presenting potential avenues for therapeutic development.19,20

Due to the evolution of these genetically informed approaches, there has been a

growing number of studies systematically assessing strategies to prioritize drug target

genes.21,22 A recent study examined the efficacy of nominating drug targets from

aforementioned genetically informed approaches (GWAS, QTL-GWAS, and Exome)

across 30 clinical traits, and further integrated gene network diffusion to prioritize

important drug target genes.21Another cross-population meta-analysis study proposed

a genomics-driven drug discovery framework comprising three complementary

methodologies for gene prioritization, which successfully identified drug targets

related to the coagulation cascade for venous thromboembolism.22

Here, we applied the core component of developed drug discovery framework22 to

facilitate identification of therapeutic targets and repurposing opportunities for RA.

We performed gene prioritization, overlap enrichment analysis, proteome-wide

Mendelian randomization (MR), colocalization, candidate target validation analysis,
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single-cell RNA-sequencing (scRNA-seq) analysis and population RA incidence

association analysis by analyzing the summary statistics from the large-scale RA

GWAS, whole-exome sequencing and aptamer-based plasma protein measurements.

Our findings provide insight into drug discovery for RA through the systematic

integration of multi-layered genetics data.

Results

Study overview and summary

The study was designed and conducted as depicted in Figure1.

First, summary statistics were obtained from the largest large-scale GWAS for RA

currently available,23 which were derived from 22,350 cases of RA and 74,823

controls in 25 European cohorts (in this study, all analyses were conducted

exclusively on individuals of European ancestry, ensuring population homogeneity in

genetic and other omics data). We utilized five gene prioritization tools by calculating

gene scores or p values to seek for drug candidate genes,15,24,25,26,27 after that 65

candidate genes were jointly identified as high priority by four or more tools. Besides,

we extracted gene-RA associations based on putative loss of function (pLOF) and

deleterious missense variants with MAF <1% from gene burden test results computed

on WES data from the UK Biobank,19 which top 5% significant genes (940 genes)

were likewise treat as candidate genes. To identify opportunities for drug reposition,

we then assessed the overlap of candidate genes with targets of existing drugs and

quantified an enrichment of the candidate genes in the target of clinical indication
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categories (i.e., Anatomical Therapeutic Chemical Classification System [ATC]).22,28

Out of these candidate genes, 21 were targets of pharmacological agents, which

included two approved RA drug targets: IL6R targeted by sarilumab and CD86

targeted by abatacept.

Secondly, we extracted plasma proteome GWAS data derived from the deCODE study,

where plasma protein abundances were quantified utilizing 4,907 aptamers across a

cohort comprising 35,559 individuals.17 Following this, we proceeded with

proteome-wide MR analysis29 to estimate causal relationships between plasma

proteins and RA. Through this analysis, we identified 18 proteins, including tumor

necrosis factor (TNF-α) and bromodomain-containing protein 2 (BRD2).

Subsequently, we validated these causal relationships using colocalization analysis.30

Among the proteins analyzed, hyaluronan and proteoglycan link protein 4 (HPLN4),

histone H1x (H1X), and WNT1-inducible signaling pathway protein 1 (WISP1)

exhibited high support evidence for colocalization.

Thirdly, we examined whether candidate target genes/proteins interacted with

approved RA drug targets in the protein-protein interaction network31 and whether the

signaling pathways they were significantly enriched in were related to the

pathogenesis of RA32,33. These validation analyses for utility of candidate target

genes/proteins revealed that multiple prioritized genes (for example: colony

stimulating factor 1 receptor, CSF1R) interactions with 7 targets of current RA

medications, and significant enriched signaling pathways of these candidate targets

were related to RA development (for example: JAK-STAT signaling pathways).
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Finally, to elucidate the biological function of candidate targets for RA, we analyzed

scRNA-seq data of joint synovial tissues samples from RA patients.34 The scRNA-seq

analysis demonstrated that BRD2 widely expressed in joint synovial cells. Then

verified whether the most promising target (BRD2) was associated with the onset of

RA based on the UKB population cohort.35

Each of these parts is described in more detail below.

Gene prioritization and overlap enrichment in RA relevant medication

categories

We employed five gene prioritization tools in parallel, i.e., MAGMA,24 DEPICT,25

Priority index (Pi),15 Polygenic Priority Score (PoPS)26 and Transcriptome-wide

association studies (TWAS)27. Briefly, MAGMA relies on a multiple linear principal

components regression framework, integrating linkage disequilibrium (LD) among

markers to identify multi-marker effects and ascertain gene significance through

p-values.; DEPICT gene prioritization employs a phenotype- and mechanism-agnostic

algorithm based on the assumption that truly associated genes share functional

annotations, prioritizing genes through scoring, bias adjustment, and false discovery

rate estimation steps; Pi represents a scoring system tailored for the drug development

landscape within immune-related diseases, and it amalgamates various annotations,

encompassing eQTL, chromatin interaction data, and genes associated with immune

functions; PoPS leverages the entirety of the polygenic signal while incorporating

comprehensive data regarding genes from diverse sources, such as cell-type-specific
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gene expression and biological pathways, to conduct gene prioritization; TWAS

calculates credible sets of causal genes through the utilization of prediction eQTL

weights, LD, and GWAS summary statistics. The previous drug discovery framework

has demonstrated that the comprehensive integration of five gene prioritization

methods can effectively nominate candidate gene sets, thereby enhancing the

enrichment of disease-relevant drug-target genes.22

The number of genes prioritized by the MAGMA, DEPICT, Pi, PoPS, and TWAS

gene prioritization tools is 798, 240, 920, 916 and 3300 (Figure 2A, Tables S1-S5)

respectively. The intersections of these gene sets determined by different tools are

presented in Table S6, and 12 genes including IRF5, PTPN22, IL2RA, IFNGR2,

TYK2, etc are highly prioritized by all five tools. We observed significant enrichment

of drug target genes (ORs: 1.65-3.88) in anti-tumor and immune modulator categories

(“L” in ATC coding) across the five tools (Figure 2B, Table S7). This anti-tumor and

immune modulator categories enrichment aligns well with the current mainstream

drug categories for treating RA.36 Additionally, we examined the overlap and

enrichment of these prioritized genes in other ATC codes (such as "M" for the

musculoskeletal system); however, we did not identify any significant overlap or

enrichment, indirectly suggesting that the concentration of priority genes within the

"L" category was not a random occurrence (Figure 2B). The omnibus results

embracing 65 prioritized genes reach relatively higher enrichment (OR=6.93,

p=0.00058) (Table S7). Notably, this omnibus integration nominated several drug

targets including IL6R (targeted by tocilizumab/sarilumab, Interleukin-6 receptor
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alpha subunit inhibitor), which was previously proved to be a successful example of

GWAS signals mapped to the target of an indicated pharmacological agent for RA

(Figure 2C, Table S8).37 Likewise, we observed a marginally significant enrichment

of drug target categories in anti-tumor and immune modulators (OR=1.58, p=0.07)

when analyzing the prioritized genes from rare variant burden test results. This

finding may be attributed to the fact that not all prioritized genes from the rare variant

burden test achieved sufficient statistical significance (all genes-RA associations with

p > 1×10-5) (Table S9 & S10). Nevertheless, despite the limitations in statistical

significance, this efficiently identified the target gene CD86, which corresponds to the

clinically approved RA drug abatacept (Table S10).36

Proteome-wide Mendelian randomization analysis identified 18 proteins for RA

Proteome-wide Mendelian randomization uses genetic predictors of protein level to

gain insights into the putative causal implications of a multitude of proteins in

influencing the risk of various diseases.38,39 For our proteome-wide Mendelian

randomization analyses, we used cis-pQTLs located within a 1 Mb proximity to the

transcription start site of the protein-coding gene as genetic instrument, because

cis-pQTLs are considered to have a higher prior probability of specific biological

effects.40 Following multiple test corrections, we identified 53 proteins that exhibited

significant causality with RA (PFDR < 0.05, Table S11). However, upon further

examination using the heterogeneity in dependent instruments (HEIDI) test,41

distinguish proteins that were related with RA risk owing to a shared variant rather
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than genetic linkage, it was revealed that the causal association of 18 out of these 53

proteins with RA was not driven by linkage disequilibrium (P HEIDI > 0.05, Figure 3A

& Table S11). The most prominent causal effect was observed with

bromodomain-containing protein 2 (BRD2), where the odds ratio for RA was 26.8

(PFDR= 3.03×10-6) per SD increase in genetically predicted levels (Table S11). We

performed sensitivity analyses on the identified 18 proteins using either the Wald ratio

or the inverse-variance weighted method, found that approximately half of these

proteins maintained a significant causal association with RA after applying

Bonferroni correction (P<0.05/2/18=0.0013, two independent RA GWAS studies and

18 proteins for validation) (Figure S2, Table S12).

Among the 18 MR-identified proteins associated with RA, 3 proteins (HPLN4, H1X

and WISP1) had high support of colocalization analysis (PPH4 ≥0.8) (Figure 3B,C

& Table S11). HAPLN4 (gene corresponding to HPLN4) and WISP1 (gene

corresponding to WISP1) were also known as risk loci for RA.23 The co-expression of

H1FX (gene corresponding to H1X) with HMGB1, as illustrated in Figure S3, the

latter impacts overexpression of signal transduction receptors and abnormal regulation

of osteoclastogenesis and bone remodelling possibly linked with progression of RA.42

These corresponding genes of 15 identified RA-associated proteins had interaction

networks, in particular physical interactions and co-expression (Figure 3D).

To verify the prioritized proteins within the framework of drug discovery, we

proceeded to collate pharmaceutical compounds from the foremost drug repositories:

DrugBank,43 Therapeutic Target Database,44 PharmGKB,45 and the Open Targets
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Platform.46 This yielded 22 drugs relevant to 3 protein-disease associations. (Table

S13). In addition to TNF-α, a major inflammatory cytokine implicated in the

pathogenesis of RA and targeted by several approved monoclonal antibody treatments

(such as Infliximab, Etanercept, and Adalimumab),46 We also found that

literature-based supportive evidence for biologic effects of BRD2 and GPNMB on RA

were aligned with putative causality by MR estimates: For instance, Inhibition of BET

family proteins (for example: BRD2) suppresses the inflammatory, matrix-degrading,

proliferative and chemoattractive properties of rheumatoid arthritis synovial

fibroblasts.47 Glycoprotein nonmetastatic melanoma protein B (GPNMB) expression

in the majority of synovial fibroblasts and tissue-infiltrating monocyte for rheumatoid

arthritis and osteoarthritis.48

Validation of the potential of nominated drug targets for treating RA

Integrative approaches have substantial efficiency in screening candidate drug targets:

the 21 drug-target genes and 3 actionable proteins in total was nominated (Figure 4A).

Among the 8 drug targets identified, 3 (TNF, IL6R, and CD86) were targeted by

approved RA medications, while 5 (CD28, CD19, CSF1R, ESR1, and IFNAR1) were

the focus of drugs taken into clinical trials for RA (Table 1), thus bolstering the

validity of genomics-guided drug discovery and repositioning for RA. Additionally,

Furthermore, we conducted a comparison of the prioritized targets— specifically,

those involving 65 genes from GWAS, 940 genes from Exome, and 18 proteins from

pQTLs— against the druggable genome,49 and found that 247 of the 1005 (24.7%)
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prioritized genes and 14 of the 18 (77.8%) identified proteins overlapped with the

druggable genome (Table S14).

The PPI network revealed enrich interactions between candidate targets and the seven

targets of current RA medications (TNF, CD86 and IL6R were also prioritized targets

in our study) (Figure 4B & Figure S4). JAKs-MTOR, MET, CDK6, IL2R, FGF2 and

IFNAR1 were determined to have known interactions. For example, JAK1 can be

phosphorylated by by four cytokine-receptor families such as IFNAR1 and IL-2R,50

which have been validated as pathogenic pathways in RA.

We conducted further evaluation of the pathway enrichment of the candidate targets

and observed significant enrichment for 150 pathways from Reactome (Table S15), as

well as 20 from KEGG (Figure S5). Relevant signaling pathways implicated in the

pathogenesis of RA were validated, including the JAK-STAT and PI3K/AKT

signaling pathways. Particularly noteworthy was the transcriptional regulation by

RUNX3 signaling pathway (PFDR = 3.26×10−5), which was nominated by integrating

three drug-discovery approaches (Figure 5). This pathway included five genes

separately prioritized by the three approaches: PSMB8 and PSMB9 by the omnibus

gene prioritization approach, BRD2 by proteome-wide MR, and PSMB2 and PSMB5

by the rare variant burden tests from Exome. RUNX3 signaling pathway might play

roles on the mechanisms of T cell activation in RA.51 Our finding demonstrates that

the three approaches synergistically prioritized therapeutic targets for RA. We also

observed BRD2, PSMB2, PSMB5, PSMB8 and PSMB9 were almost moderate to high

expression in most human tissues (Figure S6).
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Follow-up analyses for the putatively therapeutic target-BRD2

To explore whether the candidate targets had any cell type-specific enrichment in

joint synovial tissues, we further performed single cell-type expression analysis using

data from 5,265 scRNA-seq profiles of 36 RA patients (Single-Cell Portal of the

Broad Institute, AMP Phase 1 study). Our observations indicated that BRD2 exhibits a

notably widespread expression across various cell types in joint synovial tissues,

especially when compared to other candidate targets (Figure 6A). The expression

values of BRD2 in each cell, positioned in a t-Distributed Stochastic Neighbor

Embedding (tSNE52) plot, and relatively higher expression values of BRD2 were

found in B cells and T cells (Figure 6B). These cells correspond to 18 clusters within

5 cell types, namely fibroblasts, B cells, monocytes, plasmablasts, and T cells (Figure

6C). Specifically, we found that BRD2 was significantly expressed in 2 types of B

cells (naïve IGHD+CD27- and autoimmune-associated B cells), plasmablast, 3 types

of fibroblasts (HLA-DRAhi sublining, DKK3+ sublining and CD55+ lining

fibroblasts), NUPR1+ monocytes, 4 types of T cells (CCR7+ and three CD8+ clusters:

GZMK+, GNLY+GZMB+ cytotoxic lymphocytes, and GZMK+GZMB+ T cells)

(permutation test P < 0.001; Figure 6D). We also found BRD2 differential expression

between rheumatoid arthritis patients (n=315) and healthy control (n=315) in

CD14dim.CD16+ cell from Rheumatoid Arthritis Bioinformatics Center53 (RABC,

dataset id: RABC18) (Figure S7).

Given that BRD2 was identified as one of the highest confidence targets supported by
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diverse approaches, we sought to investigate whether BRD2 might have potentially

beneficial or deleterious effects on traits beyond RA. To accomplish this, we screened

the results from a phenome-wide association study (PheWAS) performed on the

AstraZeneca PheWAS Portal.54 While BRD2 itself was not significantly associated

with any other traits at the gene level (Figure S8), an indel variant

(6-32977921-TGAG-T) of BRD2 was found to be positively associated with psoriasis

and psoriatic arthropathy, which the odds ratios (ORs) and p-values for these

associations were 1.95 (9.12 × 10 − 122) and 2.50 (6.36 × 10 − 36), respectively.

Furthermore, a missense variant (6-32974662-A-G) of BRD2 was observed to be

associated with multiple sclerosis, with an OR of 9.30 (P = 0.0052) (Figure 6E &

Table S16). These evidence suggesting that inhibition of bromodomain proteins have

potentiality in drug reposition for rheumatic diseases.55

To triangulate the evidence regarding the effect of BRD2 on RA, we further evaluated

whether rs206783 (the top cis-pQTL of BRD2) was associated with RA incidence in

the general population, such as in the UK Biobank dataset. Our analysis revealed that

individuals with the genotype (AA) of rs206783 exhibited a slightly higher risk of RA,

with an odds ratio (OR) of 1.10 (95% CI: 1.01-1.20), and a p-value of 0.03, when

compared to those with the genotype (CC) (Figure 6F). The significant relevance

between rs206783 and RA was reaffirmed in the FinnGen study using RA GWAS

summary statistics rather than population observational data (Table S17).
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Discussion

In the present study, we integrated three genomics-driven approaches (GWAS,

QTL-GWAS, and Exome) to prioritize drug target genes/proteins. We further

evaluated their biological and clinical relevance with RA to ascertain their utility in

discovering candidate drug targets. GWAS and Exome analysis complement each

other in prioritizing genes for drug targeting when considering overlap with drug

target in RA-relevant medication codes (primarily anti-tumor and immune modulator

categories). Of note, both approaches corroborated IL6R (targeted by approved RA

drug sarilumab) and CD28 as candidate drug targets for RA. Whereas currently, only

a relatively few clinical trials have proved the abilities of remaining candidate targets

such as IFNAR1 antagonist [Anifrolumab] and CSF1R Inhibitor [JNJ-40346527] in

achieving remission of RA. Furthermore, proteme-wide MR improved drug

development yield by revealing causality of 15 proteins with RA beyond gene

prioritization. The two causal proteins (BRD2 and GPNMB) have the potential as

therapeutic targets for RA as indicated in the supporting literatures.47,48 The

subsequent single-cell RNA sequencing analysis revealed high expression of BRD2 in

immune cells and fibroblasts, indicating its possible role in inflammation and

fibrogenesis, thereby triggering the development of RA. Finally, we assessed the

distinct effects of BRD2 on wide-range traits through phenome-wide association

studies (PheWAS) and found its top cis-pQTL (rs206783) significant association with

RA incidence at the population level.

The gene priority determined by the Exome method mostly differs from that
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determined by the GWAS method, a distinction also reflected in the identified drug

targets. The odds ratio of drug target enrichment in the anti-tumor and immune

modulator medicine categories for the Exome method was 1.58 (P=0.068), which was

significantly lower than that of the GWAS method (OR 5.19, P=0.002). This

difference may be attributed to two situations: Firstly, the Exome method exclusively

focuses on rare variations with a minor allele frequency (MAF) less than 1% in the

WES data. The gene score is derived from the gene load test of functional loss and

missense variation, which may lead to relatively low power, a trend consistent with

previous studies comparing gene prioritization methods.21 Secondly, gene

prioritization based on the GWAS method is an omnibus strategy (Contains five gene

prioritization methods with respective advantages), and one of its components, PI,

could lead to a considerably higher enrichment in immune drugs, as consistently

reflected in our results.15

The confirmation of CD28 as a candidate drug target by both GWAS and exome

analysis is notable. CD28 superagonists (CD28SA), exemplified by TGN1412, is a

CD28-specific monoclonal antibody known to activate T cells without substantial

TCR involvement.15 However, early-phase I clinical trials of TGN1412 encountered

severe cytokine storms, prompting termination of development. Subsequent

investigations suggested that appropriate dosages, such as those used for TAB08

(another CD28 superagonists), could selectively activate regulatory T cells without

inducing significant release of pro-inflammatory cells (Clinical trials identifie:

NCT01885624). Phase Ib trials in RA patients demonstrated acceptable adverse
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events level associated with TAB08 (Clinical trials identifier: NCT01990157). Future

phase II trials are needed to further establish TAB08's capacity to activate regulatory

T cells for immune diseases. Colony-stimulating factor 1 receptor (CSF1R) emerged

as another promising drug candidate target in our study. CSF1R plays a crucial role in

modulating monocyte proliferation, migration, and activation, all of which are

considered significant factors in the pathogenesis of RA. Increased expression of

CSF1R has been observed in the synovium of RA patients,and blockade of CSF1R has

demonstrated protective effects against bone and cartilage destruction in mouse

models.57 However, the results of a phase IIa parallel-group study (Clinical trials

identifier: NCT01597739) investigating the oral CSF1R inhibitor JNJ-40346527 in

patients with active rheumatoid arthritis did not show a significant improvement in

disease activity or inflammatory levels.58These studies collectively indicate that there

remains a substantial gap between genetic-supported drug candidates and their actual

clinical applications, underscoring the need for further in-depth research and

verification.

Mendelian randomization contribute to genetic drug target validation, which utilized

instrument variable to proxy drug target and estimated causal relation with

diseases.38,39Considering that proteins are typically the direct targets of drugs in most

cases (over 90% of drug targets are proteins), protein exposure is usually the preferred

choice for drug target MR. A prior investigation assessed the causal effects of

inflammation-related proteins across immune-mediated disorders, elucidating the

directionally disparate impact of CD40 on the susceptibility to RA compared to other
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autoimmune conditions such as multiple sclerosis and inflammatory bowel disease.15

While we were unable to replicate the causal association between CD40 and RA in

proteome-wide MR analysis due to the unavailability of CD40 pQTLs for present MR

testing, our study did demonstrate that four out of the five gene prioritization methods

based on GWAS jointly confirmed its prioritization. Furthermore, in situations where

genetic instrument variables for related proteins are unavailable, upstream markers

such as mRNA or downstream markers can also serve as indirect confirmations of

alternative exposure.59 A recent study investigated the association between

cis-expression quantitative trait loci (cis-eQTL) and RA risk using MR and

colocalization analysis as the primary study design. The study identified CCR6,

HLA-DPA1, HLA-DRB1, IFNGR2, C5, ATP2A1, and FEN1 as potential candidate

drug target genes, and candidate drug prediction and molecular docking were utilized

for further verification.60 We study used proteome-wide MR analysis based on

cis-pQTL and obtained a list of candidate drug targets that were completely different

from this study, this discrepancy indicated the MR estimation of tissue-specific drug

targets through eQTL weighted analysis may not always align with evidence from

similar blood-based pQTL analysis or drug trials.59 While our study and existing

research did not yield shared determined actionable subjects through drug target MR,

these findings provide valuable insights into drug target prioritization and medicinal

potential from different perspectives. Among the 15 causal proteins identified by our

study, three of them (HPLN4, H1X, and WISP1) were verified to have colocalization

support with RA. However, little is known about the potential role of these three
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proteins in the pathogenesis of RA. H1X may contribute to the induction and

persistence of complement activation and arthritis in RA, as it is one of many

citrullinated peptides found in the synovial fluid of RA patients, which are targets of

the anti-citrullinated protein antibody response.61 Genetic polymorphisms in WISP1

have been associated with RA susceptibility,23 WISP1 plays a significant role in

regulating Wnt signaling in bone homeostasis,62 which might be linked to the

progression of RA. HAPLN4 has been identified as a drug-targeting gene for

schizophrenia and bipolar disorder.63 Additionally, existent evidence have shown

consistent effect directions of multiple genetic variants between schizophrenia-RA

and bipolar disorder-RA pairs.64 These findings suggest that HAPLN4 may serve as a

therapeutic target not only in psychiatric disorders but also in immune disorders like

RA. This indicates potential shared mechanisms or pathways underlying these

seemingly distinct indications, opening avenues for further exploration into their

treatment.

The series of results from our current study suggest promising clinical prospects for

BRD2 in the treatment of RA. BRD2 is belong to the bromodomain and

extra-terminal (BET) family member proteins. BRD2, BRD3, and the most studied

BET protein BRD4 are ubiquitously expressed in mammalian cells and tissue types.65

A recent investigation has illustrated that targeted suppression of the second

bromodomains within BET proteins (referred to as iBET-BD2) efficiently attenuated

the synthesis of pivotal pro-inflammatory mediators, notably Th17 cytokines, within a

co-culture system comprising B and T cells. Remarkably, this inhibition exerted no
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discernible influence on the proliferative capacity of the cells, yet it notably

diminished the secretion of effector cytokines, including IFNγ , IL-17A, and IL-22.

Subsequently, the study tested an optimized iBET-BD2 compound (GSK620), which

showed a significant dose-dependent inhibition of both arthritic score and IgG1

production in response to immunization in a collagen-induced arthritis model in rats.66

Additionally, BET inhibitors influence the inflammatory responses of various immune

cells, including B cells, macrophages, synovial fibroblasts, and chondrocytes,

indicating a broad role of BRD proteins in autoimmune disorders.54 These finding

aligns with the anticipated effects of inhibitors for BRD2 on RA. The extensive and

high expression of BRD2 observed in B cells, T cells, and fibroblasts in joint synovial

tissues, as identified in our current study, suggests a potential role for BRD2

inhibition in modulating the inflammatory response associated with RA.

In summary, our study has facilitated the in silico screening of abundant drugs and

targets with supporting evidence. It underscores that thorough evaluation of genetic

evidence offers indispensable potential in advancing clinical therapy for RA.

Limitations of the study

Several limitations should be considered. First, the primary focus of this study lies in

examining the overlap and enrichment of prioritized genes with the drug targets in

anti-tumor as well as immunosuppressive medications, potentially overlooking

effective targets within alternative categories. Second, despite encompassing a wide

array of blood proteins in this study, there is a possibility that we have inadvertently
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neglected significant proteins lacking genetic instruments. Moreover, besides proteins,

other intermediary molecular quantitative traits (eQTL, mQTL, sQTL) may offer

further insights. Third, subtle difference in population structure between pQTL (Only

Iceland population) and GWAS (Multiple European population). Fourth, for the

observational analysis and verification of the association between BRD2 and RA, we

did not directly utilize the standard expression of BRD2 (as measured by the UKB

through the olink platform). This decision stemmed from the relatively small number

of incident RA cases within the population with available standard protein expression

data for BRD2, potentially resulting in insufficient statistical power. Finally, while we

have substantiated some prospective targets by scrutinizing evidence derived from

biological efficacy or clinical trials, it is imperative that direct in vivo or in vitro

experimentation be undertaken as the subsequent phase for the prioritized targets

identified in this investigation.
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Figure Legend

Figure 1. Study overview and summary

We sought therapeutic targets and repurposing opportunities for rheumatoid arthritis by

conducting integrative genomics-driven approaches: we conducted gene prioritization based on

GWAS and Exome summary statistics, evaluating whether the prioritized genes overlapped with

and were enriched in drug targets within the RA-relevant medication category. Concurrently, we

identified target proteins through proteome-wide Mendelian randomization and colocalization

analysis using pQTL summary statistics. Secondly, we performed protein-protein interaction

analysis between the selected candidate drug targets and existing approved RA drugs to explore

the potential for drug repurposing. Additionally, we conducted pathway enrichment analysis to

assess the biological rationale for their use in RA treatment. Finally, we conducted single-cell

sequencing, Phewas, and observational analysis on one of the plausible drug targets, BRD2, to
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underscore the clinical translational prospects of developing RA therapies linked with it. (This

figure created with BioRender.com)

Figure 2. Gene prioritization and overlap enrichment in various medication categories

(A) Set size and intersection size of prioritized genes determined by the five gene prioritization

tools (i.e. MAGMA, DEPICT, Pi, PoPS, and TWAS).

(B) Overall enrichment of drug-target genes nominated by five gene prioritization tools and their

omnibus results. The error bars represent 95% confidence intervals.

(C) Enrichments for the five gene prioritization tools and their omnibus results per ATC code. OR,

odds ratio.

Figure 3. Identification of casual proteins by proteome-wide Mendelian randomization and

colocalization analysis

(A) Volcano plot for associations of genetically predicted 1921 plasma proteins levels with RA in

MR analysis. Labelled and colour genes refer to MR findings with FDR-corrected P<0.05 and

PHEIDI > 0.05. Red genes indicate the positive effect of the plasma proteins on RA; blue genes

indicate the negative effect of the plasma proteins on RA.

(B) Evidence for colocalization between plasma proteins and RA. Circle size indicates the

colocalization posterior probability for H4 and the colour of the circle indicate the classification of

the evidence. Evidence support order defined as: PPH4 <0.5 no colocalization support; PPH4

0.5-0.8 medium colocalization support; PPH4>0.8 high colocalization support.

(C) High support for colocalization with 3 plasma proteins including HPLN4, H1X and WISP1
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(Presented sequentially from left to right)

(D) Networks of identified causal proteins associated with RA. The network prediction was

based on GeneMANIA (http://www.genemania.org).

Figure 4. Comprehensive evaluation of drug reposition potentials of nominated candidate

drug targets for RA treatment.

(A) Candidate target genes nominated for rheumatoid arthritis drug discovery. The colors on the

Manhattan chart denote various nomination methods, while the circle type signifies the nominated

drug targets at different stages of RA treatment (including approved drugs, those in clinical trials,

and targets yet to be clinically tested in RA treatment).

(B) Protein-Protein interaction between 6 approved RA medications (7 drug targets) and

nominated candidate drug targets. The blue color of nominated candidate drug targets denotes that

the type of interaction is known ( determined from curated datasets or experiments).

Figure 5. The three drug discovery approaches complementarily prioritized drug targets for

RA

The genes prioritized for RA by the three drug discovery approaches were connected to each other

if their protein-protein interaction scores were larger than 0.4. Line thickness represents the

strength of protein-protein interaction.
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Figure 6. Multiple layers of evidence support the clinical efficacy of putative drug targets in

RA treatment.

(A) Candidate drug target genes expression levels of each cell type at single-cell resolution in the

joint synovial tissues of 36 RA patients. (B) BRD2 expression levels of each cell type (C) 18

annotated cell types clusters across 5,265 cells from all cell types in the joint synovial tissues.

(D) BRD2 expression status in 5,265 scRNA-seq profiles, including 1,142 B cells, 1,844

fibroblasts, 750 monocytes, and 1,529 T cells . BRD2 expression levels of 18 cell types are shown

in the box plot. In each box, the horizontal solid line represents the median of the expression level,

and the horizontal dashed line represents the average value. Each box extends from the 25th

percentile of each group to the 75th percentile. Whiskers extend 1.5 times the interquartile

distance from the top and bottom of the box.

(E) Manhattan plot for PheWAS of BRD2 at variant level. 35 variant-trait pairs reach the

significant genome-wide association threshold (P < 5× 10 − 8), 53 variant-trait pairs reach the

suggestive threshold (P < 5×10− 6). Upward triangle represents positive association, downward

represents negative association.

(F) Cumulative risk of RA incidence between differen rs206783 genetype (AA, AC, CC) in UK

Biobank population (424,282 individuals, 4897 incident RA cases). rs206783 is the index

cis-pQTL of BRD2.
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Table 1. RA-related randomized controlled trails on candidate targets prioritized by integrative genomics-driven approaches

Study NCT number Drug Target Pharmacological action Condition Clinical endpoint Intervention N Estimation
parameter and value

P value

Unpublished NCT01990157 TAB08 CD28

T-cell-specific surface
glycoprotein CD28

agonistT-cell-specific surface
glycoprotein CD28 agonist

active RA

Incidence of
dose-limiting

toxicity in every
dose cohort

Multiple TAB08
administrations as

intravenous infusions.
- - -

Unpublished NCT00639834 MDX-1342 CD19 anti-CD19 fully human
monoclonal antibody

active RA incidence and
severity of

treatment-emergent
adverse events

One dose of active
MDX-1342 will be
administered to
patients as an i.v.

infusion.

- - -

Genovese MC,
2015

NCT01597739 JNJ-40346527 CSF1R CSF-1R Inhibitor active RA Change from
baseline in the
Disease Activity
Score (DAS28),
using C-reactive
protein (CRP)
[Time Frame:
Week 12]

100 mg capsule, OD,
BID

95 patients (63
JNJ-40346527,
32 placebo)

Mean improvements in
DAS28-CRP from
baseline to Week 12
were 1.15 for the

JNJ-40346527 group
and 1.42 for the
placebo group

0.3

Cho SK, 2021 NCT02602704 bazedoxifene ESR1 Estrogen receptor modulator RA bone mineral
density (BMD)
change in the
lumbar spine
(L-spine) from
baseline to 48
weeks was
assessed

Bazedoxifene 20
mg/day (Viviant)

& Elemental calcium
1200mg daily and

vitamin D 800 IU daily
(Caltrate D 400 *

2/day)

114 patients
(57 patients in
each group)

increase in L-spine
BMD (0.015 g/cm2 )
was observed in the
bazedoxifene group

0.007

Unpublished NCT03435601 Anifrolumab IFNAR1 Interferon-alpha/beta
receptor alpha chain

antagonist

RA patients with an increased
type I IFN gene signature

Achieving an ACR
20 response at

week 24

IV Administration of
Anifrolumab 300 mg
every 4 weeks from
week 0 to week 20 for
a total of 6 doses.

- - -
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STAR★Methods

Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RA GWAS summary statistics Ishigaki K, et al. 2022
https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics
/GCST90132001-GCST90133000/GCST90132223/GCST90
132223_buildGRCh37.tsv.gz

Plasma pQTL summary statistics
deCODE study:
Ferkingstad E, et al 2021

https://www.decode.com/summarydata/

Whole exome gene burden tests Backman JD, et al. 2021
https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics
/GCST90085001-GCST90086000/GCST90085490/GCST90
085490_buildGRCh38.tsv.gz

Single cell RNA seq data Single Cell Portal https://singlecell.zendesk.com/

UK Biobank UK Biobank https://www.ukbiobank.ac.uk/

Software and algorithms

MAGMA Leeuw et al., 2015 https://ctg.cncr.nl/software/magma

DEPICT Pers et al., 2015 https://data.broadinstitute.org/mpg/depict/

Pi Fang et al., 2019 http://bioconductor.org/packages/release/bioc/html/Pi.html

PoPS Weeks et al., 2020 https://github.com/FinucaneLab/pops

FOCUS Mancuso et al., 2019 https://github.com/bogdanlab/focus

GREP Sakaue et al., 2019 https://github.com/saorisakaue/GREP

SMR Zhu et al. 2016
https://yanglab.westlake.edu.cn/software/smr/#SMR&HEIDI
analysis

Coloc
Giambartolomei et al.,
2014

https://cran.r-project.org/web/packages/coloc/index.html

GeneMANIA Franz M, et al. 2018. https://genemania.org/

ezQTL Zhang T, et al. 2022 https://analysistools.cancer.gov/ezqtl

FUMA K. Watanabe, et al. 2017 https://fuma.ctglab.nl/

PheWAS
AstraZeneca PheWAS
Portal

https://azphewas.com/

TwosampleMR IEU open GWAS project https://gwas.mrcieu.ac.uk/

https://www.decode.com/summarydata/
https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90085001-GCST90086000/GCST90085490/GCST90085490_buildGRCh38.tsv.gz
https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90085001-GCST90086000/GCST90085490/GCST90085490_buildGRCh38.tsv.gz
https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90085001-GCST90086000/GCST90085490/GCST90085490_buildGRCh38.tsv.gz
https://singlecell.zendesk.com/
https://www.ukbiobank.ac.uk/
https://ctg.cncr.nl/software/magma
https://data.broadinstitute.org/mpg/depict/
http://bioconductor.org/packages/release/bioc/html/Pi.html
https://github.com/FinucaneLab/pops
https://github.com/bogdanlab/focus
https://github.com/saorisakaue/GREP
https://yanglab.westlake.edu.cn/software/smr/
https://yanglab.westlake.edu.cn/software/smr/
https://cran.r-project.org/web/packages/coloc/index.html
https://genemania.org/
https://analysistools.cancer.gov/ezqtl
https://fuma.ctglab.nl/
https://azphewas.com/
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Resource availability

Lead contact

Further information and requests for resources should be directed to and will be

fulfilled by the lead contact, Dongqing Ye (ydqph@aust.edu.cn).

Materials availability

This study did not generate new unique reagents.

Method details

Genetic summary statistics resources

GWAS summary statistics for rheumatoid arthritis (RA) were obtained from the

Ishigaki K, et al’s study23 with 22,350 cases of RA and 74,823 controls of European

ancestry. The summary statistics data can be accessed via the GWAS Catalog using

the access ID: GCST90132223.

We utilized gene burden test outcomes derived from whole-exome sequencing (WES)

data obtained from the UK Biobank. Gene-RA associations were extracted, focusing

on putative loss-of-function (pLOF) and deleterious missense variants with a minor

allele frequency (MAF) below 1%. These associations were available for

approximately 18,800 genes, ranked by association p-value, and retrieved using the

provided Ensembl identifier.

Ferkingstad et al., 4719 proteins measured in 35,559 Icelanders, were employed to
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extract summary statistics of genetic associations with plasma proteins.17 We

extracted the cis-pQTL variants under multiple-testing significance threshold

(determined using Bonferroni correction for all 27.2 million tested variants, giving a

threshold of 0.05/27,200,000=1.8× 10 − 9), and cis-pQTL was defined as a SNP

residing within 1 megabase (Mb) upstream or downstream of the transcription start

site (TSS) of the corresponding protein-coding gene.

Gene prioritization

We used five distinct tools for gene prioritization based on RA GWAS summary

statistics, namely MAGMA24, DEPICT25, Priority Index (Pi)15, Polygenic Priority

Score (PoPS)26, and Transcriptome-wide Association Studies (TWAS)27. We analyzed

with default settings unless explicitly specified otherwise.

MAGMA is a gene analysis method that accounts for LD structure, which projects the

SNP matrix for a gene onto its principal components (PC), obtained PCs without

small eigenvalues as predictors to examine association between genes and phenotype

in the linear regression model. For MAGMA,24 “gene-model snp-wise = mean” option

was set. DEPICT operates by taking a collection of trait-associated SNPs as input,

leveraging them to detect independently associated loci, which may encompass

multiple genes. DEPICT predicts the biological functions of genes across a broad

spectrum of biological annotations, comprising 14,461 gene sets. Subsequently,

basing on this information of gene sets, DEPICT identifies reconstituted gene sets that

exhibit enrichment for genes within the associated loci, and prioritizes genes within
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associated loci by identifying genes from different loci that share similar predicted

functions. We selected these variants with relaxed p-values < 1.0×10−5 as input for

DEPICT.25 Pi is primarily constituted by a gene-predictor matrix that integrates

genomic and annotation predictors, aiming to prioritize approximately 15,000 genes

for a given trait. Initially, Pi identifies "Seed genes" by leveraging scores from

genomic predictors to ascertain functional linkage to the input disease-associated

genetic variant, considering factors such as proximity, conformation, and expression.

Subsequently, scores from annotation predictors related to immune function,

phenotype, or disease are exclusively applied to these seed genes. Non-seed genes are

determined based on knowledge of network connectivity. The predictor matrix

generates a numerical Pi prioritization rating ranging from 0 to 5, along with

corresponding rankings, while affinity scores ensure comparability across different

predictors for both seed and non-seed genes. Following the methodology of the

original study,15 we utilized lead variants with a significance threshold of p < 5.0×10

−8 as input, eQTL in the peripheral blood and immune cells, chromatin interaction in

immune cells, topologically associating domain boundary in the GM12878 cell line,

and the STRING31 protein-protein interaction network (PPI), with a high confidence

score. PoPS is a tool that attributes high scores to genes exhibiting features akin to

those with robust gene-level associations. It ran under the assumption that genes

located proximally to associated SNPs and sharing analogous biological annotations

are more likely to be causally related. PoPS utilizes gene-level associations derived
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from GWAS summary statistics to ascertain collective polygenic enrichments of gene

features sourced from cell-type-specific gene expression, biological pathways, and

PPI. In order to nominate potential causal genes, PoPS assigns a priority score to each

protein-coding gene based on these enrichments.26 In this context, we opted to employ

top-ranked genes rather than pinpointed genes, thereby incorporating multiple genes

per locus for drug discovery purposes, as the conduction done by previous study.22We

conducted FOCUS27 to disentangle the causal and tagging gene-trait associations at a

TWAS-significant region, which FOCUS serves as a fine-mapping tool, estimates

credible sets of causal genes by integrating prediction eQTL weights, LD, and GWAS

summary statistics. We iteratively executed FOCUS across 44 GTEx v7 tissues, and

calculated the median of their posterior inclusion probabilities (PIP).

We prioritized genes according to predefined thresholds as follows: for MAGMA,

genes were prioritized if they exhibited a FDR < 0.05; for Pi and PoPS, the top 5% of

genes were selected based on descending gene scores; for DEPICT, a more inclusive

threshold of FDR < 0.2 was applied, as DEPICT calculates p-values exclusively for

genes within pre-featured target loci by default; and finally, genes were prioritized

from TWAS results if they demonstrated a PIP > 0.1.

Proteome-wide Mendelian randomization (MR) analysis

Summary-data-based Mendelian randomization (SMR) analysis was conducted to

estimated the causal associations between proteins and RA.67 We used the following

settings: --maf 0.01, --thread-num 10, --diff-freq 1. To control for genome-wide type I
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error, we conducted FDR correction.

To distinguish proteins that were related with RA risk owing to a shared variant rather

than genetic linkage, we further examine using the heterogeneity in dependent

instruments (HEIDI) test.41 The p value of the HEIDI test > 0.05 indicated that the

association of protein and RAwas not driven by linkage disequilibrium.

The“TwoSampleMR”RA package was employed to perform Replication MR analysis

on 18 proteins identified in SMR analysis. For any proteins with only one instrument,

the Wald ratio method was used to estimate the log odds change in RA risk for per

standard deviation (SD) increment of circulating protein levels as proxied by the

instrumental variables. The inverse-variance weighted (IVW) method was used to

obtain the MR effects estimates for proteins with more than one instrument. The

heterogeneity test was performed to assess the heterogeneity of the genetic

instruments based on the Q statistic. We also performed additional analyses including

MR-Egger to account for horizontal pleiotropy. Replication MR analysis was further

performed for the identified proteins based on RAGWAS summary data from Sakaue,

et al (2021) (ebi-a-GCST90038685) and Okada, et al (2014) (ieu-a-832), respectively.

Bonferroni correction was used for multiple testing correction, with P<0.0013

(0.05/2/18, two independent RA GWAS studies and 18 proteins for validation) as the

significance level.

Colocalization analysis

We employed a Bayesian colocalization approach to identify shared genetic variants
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between RAGWAS signals and cis-pQTL using“coloc” R package.30 We used the

default coloc priors for Bayesian colocalization analysis, with p1=1×10−4 (prior

probability a SNP is associated with protein), p2=1×10−4 (prior probability a SNP is

associated with RA), and p12=1×10−5 (prior probability a SNP is associated with both

protein and RA). For each protein (establishing causality with RA determined by our

SMR analysis), we extracted the region located within 1  Mb around the cis-pQTL.

Five posterior probabilities (PPs) were calculated for the colocalization analysis: PP0

(null model of no causal genetic variant); PP1 (probability that causal variants only

associated with protein); PP2 (probability that causal variants only associated with

RA); PP3 (probability that RA and proteins causal variants are distinct), and PP4

(probability that RA and proteins share same causal variants). The genes were defined

as high support for colocalization with cut-off of PP4≥ 0.8. The visualization of

colocalization is achieved through ezQTL website based tool.68

Function and network prediction

We utilized GeneMANIA to predict the biological network and functions of cis-genes

associated with RA-related proteins. Further details regarding the datasets

incorporated into GeneMANIA can be found elsewhere.69

To explore the potential interactions between identified candidate target and current

RA medication targets, a PPI network was constructed using the STRING database

(https://string-db.org/), we retained the protein-protein pairs with interaction scores

larger than 0.4.
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Clinical evidence evaluation

We undertook a systematic review focusing on RA-related clinical trials targeting

candidate targets. Our search encompassed studies across three databases: MEDLINE,

EMBASE, and the clinical trials registration database, with publications up to

February 30th, 2023. Trials that were not randomized controlled trials (RCTs) or not

conducted on human subjects were excluded from our analysis. Key information,

including the first author, year of study, National Clinical Trial number, patient

characteristics, sample size, intervention, trial phase, trial status, assessment of

efficacy, and adverse effects, were systematically extracted from eligible studies.

Single cell-type expression analysis

To disentangle the BRD2 expression pattern in the joint synovial tissues of RA

patients, we obtained 5,265 scRNA-seq profiles of 36 RA patients from Zhang, F. et

al study.34 from the Single-Cell Portal of the Broad Institute

(https://singlecell.broadinstitute.org/single_cell/) (accession ID SCP279).

We reanalyzed the data, focusing on BRD2 expression status. We analyzed the gene

expression matrix and the associated metadata using R v.4.1.2 and “Seurat” R

package (https://satijalab.org/seurat/). To cluster the cells, we adopted the clustering

annotation from the original study34. To test whether BRD2 expression was enriched

in specific cell types, we calculated the proportion of BRD2-expression cells in this

cell type. Subsequently, we permuted the cell type labels 1,000 times and obtained the

frequency (permutation P value) of the same cell type containing the same or a larger
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proportion of BRD2-expression cells. Additionally, we compared the BRD2

expression level between a target cell type and the other cell types using Wilcoxon

rank-sum test.

UK Biobank genotyping data and quality control

The genotypes of the UK Biobank participants were assayed using either of two

genotyping arrays, the Affymetrix UK BiLEVE Axiom (approximately 50,000

participants) or Affymetrix UKBiobank Axiom genotyping array (approximately

450,000 participants), there are 805,426 markers inthe released genotype data. These

arrays were augmented by imputation of approximately 90 milliongenetic variants

from the Haplotype Reference Consortium and the UK 10K projects. Details of the

array design, sample processing, and stringent quality control have been previously

described.35 we further excluded participants with sex mismatch, heterozygosity rate

outliers, and missing genotypes, with excess relatives and non-European ancestry

(non self-report British white or Caucasians ascertained by genetic principal

components analysis), as well as prevalent RA paticipants (ICD-9 codes: 714; ICD-10

codes: M05 and M06; Self report RA:1464 ), resulting in a final cohort of 424,282

individuals (including 4897 incident RA cases)

Quantification and statistical analysis

Enrichment analysis in medication categories

We used the prioritized gene list as the primary input to conduct a sequence of
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Fisher’s exact tests concerning ATC codes, aiming to assess the enrichment of

drug-target genes within specific codes. The drug-target database utilized in this

analysis was sourced from GREP,28 curated from two prominent drug repositories,

Drug Bank and TTD. The Anatomical Therapeutic Chemical (ATC) classification

system serves as a pivotal framework for categorizing drugs, where approved

medications can belong to multiple ATC codes. We selected the ATC code L as RA

relevant medication category: anti-tumor and immune modulator, characterized by the

highest count of approved drugs tailored for RA treatment in this ATC code

medication category.

Pathway enrichment analysis

We conducted one-sided hypergeometric tests utilizing the "ReactomePA" R package

to perform enrichment analysis on the prioritized genes within Reactome pathways.32

Following the default settings, we considered the pathways as significant if p-values <

0.05 after being adjusted by the Benjamini-Hochberg method.

Observational analysis at population level

We used Cox proportional hazard model to calculate hazard ratios and 95%

confidence intervals of incident RA associated with BRD2 genetype (rs206783).

Model adjusted for age, sex, assessment centers, genotyping arrays and the first 10

genetic PC. The time scale of the cox model is based on the follow-up time, this was

defined from the date of initial recruitment to the incident RA, date of death, loss of

follow-up, or end of follow-up (31 0ctober 2022), whichever came first.
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Data and code availability

The RAGWAS summary statistics and whole exome gene burden tests are publicly

available at https://www.ebi.ac.uk/gwas/summary-statistics. Plasma pQTL summary

statistics are obtained from deCODE study at https://www.decode.com/summarydata/ .

The genetic and phenotypic UK Biobank data are available on application to the UK

Biobank to any researcher worldwide (www.ukbiobank.ac.uk).

The genomics-driven drug discovery analysis was conducted using the following

publicly available tools: MAGMA (https://ctg.cncr.nl/software/magma), DEPICT

(https://data.broadinstitute.org/mpg/depict/), PoPS

(https://github.com/FinucaneLab/pops), FOCUS (https://github.com/bogdanlab/focus),

GREP (https://github.com/saorisakaue/GREP), SMR

(https://yanglab.westlake.edu.cn/software/smr/), ezQTL

(https://analysistools.cancer.gov/ezqtl ), GeneMANIA (https://genemania.org/),

FUMA (https://fuma.ctglab.nl/), PheWAS (https://azphewas.com/) and the “Pi”,

“TwosampleMR” and “coloc” R packages.

https://www.decode.com/summarydata/
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Supplementary Information

Document S1. Figures S1-S8

Figure S1. Density histogram of p values in the rare variants burden tests from UKB exome

sequencing studies

Figure S2. Sensitive analyses on the identified 18 proteins using Wald ratio or inverse-variance

weighted two sample MR methods

Figure S3. Networks of three identified target genes (PPH4>0.8): H1FX (H1-10), HAPLN4 and

W1SP1 (CCN4) in the colocalization analysis

Figure S4. Protein-protein interactions between current rheumatoid arthritis medications targets

(JAK1, JAK2, JAK3, TNF, IL6R, CD20[MS4A1] and CD86) and identified potential drug targets

Figure S5. KEGG enrichment analysis on the candidate target genes that identified by three

genetic informative approaches

Figure S6. Gene expression heatmap for candidate target genes based on GTEx V8 54 tissue types

Figure S7. BRD2 differential expression between rheumatoid arthritis patients (n=315) and

healthy control (n=315) in CD14dim.CD16+ cell

Figure S8. Manhattan plot for PheWAS of BRD2 at gene level from AstraZeneca PheWAS Portal

Document S2. Table S1-S17

Table S1, Genes prioritized in MAGMA

Table S2, Genes prioritized in Pi

Table S3, Genes prioritized in PoPS

Table S4, Genes prioritized in DEPICT

Table S5, Genes prioritized in TWAS

Table S6, Gene intersections ascertained by the five gene priorization methods, Related to Figure

2A

Table S7, Enrichment of prioritized drug-target genes in the ATC codes, Related to Figure 2B

Table S8, Overlaps of these genes nominated by the omnibus gene prioritization (≥ 4 gene

priorization methods jointly idetified) with drug target genes, Related to Figure 2C
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Table S9, Top 5% significant genes associated with RA from rare variant burden test results

computed on WES data in UKB

Table S10, Enrichment of prioritized drug-target genes in the ATC codes, based on prioritized

genes from Table S9

Table S11, Associations of 1921 plasma proteins with the risk of rheumatoid arthritis using SMR

& HEIDI methods, Related to Figure 3

Table S12. Sensitive analyses on the identified 18 proteins using Wald ratio or inverse-variance

weighted two sample MR methods, Related to Figure S1

Table S13, Drug candidates for drug-target proteins with MR evidence, Related to Figure 4

Table S14, Overlaps of the prioritized genes or causal proteins with genes from the druggable

genome

Table S15, Pathways significantly enriched in the genes prioritized by three approaches, related to

Figure 5

Table S16, Phenotypes associated with BRD2 at variant level by PheWAS analysis, related to

Figure 6

Table S17, Phenotypes associated with rs206783 (cis-pQTL for BRD2) in FinnGen
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BRD2 rs206783 genetype (CC)

BRD2 rs206783 genetype (AC)

BRD2 rs206783 genetype (AA)

rs206783 genotype Incident RA cases / totoal
Incident RA cases

per 100 000 person-
years

OR (95% CI)  valueP

CC 1838/ 164 436 84.2 reference -

AC 2313/ 198 983 87.6 1.04 (0.98-1.11) 0.18

AA 746/ 60 863 92.5 1.10 (1.01-1.20) 0.03
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