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Abstract 89 

Genome-wide association studies (GWASs) may help inform treatments for infertility, whose 90 
causes remain unknown in many cases. Here we present GWAS meta-analyses across six 91 
cohorts for male and female infertility in up to 41,200 cases and 687,005 controls. We identified 92 
21 genetic risk loci for infertility (P≤5E-08), of which 12 have not been reported for any 93 
reproductive condition. We found positive genetic correlations between endometriosis and all-94 
cause female infertility (rg=0.585, P=8.98E-14), and between polycystic ovary syndrome and 95 
anovulatory infertility (rg=0.403, P=2.16E-03). The evolutionary persistence of female infertility-96 
risk alleles in EBAG9 may be explained by recent directional selection. We additionally identified 97 
up to 269 genetic loci associated with follicle-stimulating hormone (FSH), luteinising hormone, 98 
oestradiol, and testosterone through sex-specific GWAS meta-analyses (N=6,095-246,862). 99 
While hormone-associated variants near FSHB and ARL14EP colocalised with signals for 100 
anovulatory infertility, we found no rg between female infertility and reproductive hormones 101 
(P>0.05). Exome sequencing analyses in the UK Biobank (N=197,340) revealed that women 102 
carrying testosterone-lowering rare variants in GPC2 were at higher risk of infertility (OR=2.63, 103 
P=1.25E-03). Taken together, our results suggest that while individual genes associated with 104 
hormone regulation may be relevant for fertility, there is limited genetic evidence for correlation 105 
between reproductive hormones and infertility at the population level. We provide the first 106 
comprehensive view of the genetic architecture of infertility across multiple diagnostic criteria in 107 
men and women, and characterise its relationship to other health conditions.   108 
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Introduction 109 

Infertility, defined as the inability to achieve pregnancy within 12 months of regular unprotected 110 
sexual intercourse, affects one in six couples across the globe1. A range of demographic, 111 
environmental, and genetic factors may drive infertility, including the age-related decline of sperm 112 
and oocyte quality and quantity2,3, infectious diseases4–6, and rare Mendelian disorders such as 113 
cystic fibrosis7,8. However, the exact cause remains undetermined in up to 28% of couples and 114 
40% of women with infertility9,10. Given that current treatments such as in vitro fertilisation pose 115 
physical, emotional, and financial burdens on couples and healthcare systems11–14, a richer 116 
understanding of the biology and pathophysiology of infertility is urgently necessary. 117 
 118 
Heritable women’s reproductive health diseases, particularly endometriosis15 and polycystic ovary 119 
syndrome (PCOS)16, are thought to be responsible for a considerable proportion of female 120 
infertility, with PCOS in particular accounting for up to 80% of cases of anovulatory infertility17. It 121 
is hypothesised that sex-hormone dysregulation18,19 and obesity20, which often accompany 122 
reproductive diseases, may be involved in the aetiology of infertility. Yet little is known about the 123 
genetic basis of reproductive hormones and infertility, which are not well-phenotyped in men or 124 
women in large studies21,22. Moreover, negative selection against infertility naturally limits the 125 
frequency of risk alleles in the population23. Genome-wide association studies (GWASs) have 126 
thus typically queried proxy measures of fertility such as childlessness24,25, which may partly arise 127 
from socio-economic and behavioural factors.  128 
 129 
We aggregated data from a range of sources, including primary care and hospital electronic health 130 
records (EHRs) and self-report, across six cohorts with over 1 million participants, to perform the 131 
first reported GWAS meta-analyses for male infertility and five categories of female infertility. In 132 
addition, we report results from the largest sex-specific GWASs to date for five reproductive 133 
hormones. By aggregating this data with complementary rare variant genetic association testing 134 
from the UK Biobank, we catalogue the common and rare genetic contributions to infertility and 135 
reproductive hormone levels, quantify the extent of shared genetic architecture between these 136 
traits, and prioritise genes and cell types for further functional investigation of the hormonal and 137 
non-hormonal drivers of infertility.  138 

Results 139 

Genome-wide meta-analyses identify novel genetic loci for female 140 

and male infertility 141 

We identified female infertility of all causes (F-ALL), anatomical causes (F-ANAT), anovulation 142 
(F-ANOV), unknown causes, i.e., idiopathic infertility as defined by exclusion of known causes of 143 
infertility (anatomical or anovulatory causes, PCOS, endometriosis, or uterine leiomyomas) (F-144 
EXCL), or idiopathic infertility defined by inclusion of diagnostic codes for idiopathic infertility (F-145 
INCL), as well as male infertility of all causes (M-ALL) in six cohorts, primarily of European 146 
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ancestry (Figure 1 and Supp. Tables 1 and 2). The case-control ratio of all-cause female infertility 147 
ranged from 0.9% in the deCODE Genetics dataset26 to 11.7% in FinnGen27, whereas the case-148 
control ratio of male infertility was between 0.3% (UKBB) and 8.2% (Danish Biobank) (Figure 1 149 
and Supp. Table 2). Anatomical female infertility was the least common cause of infertility in three 150 
of six cohorts (prevalence in UKBB=0.01%, EstBB=2.0%, FinnGen=0.8%). Due to varying sample 151 
ascertainment, the case-control ratio does not necessarily reflect the population prevalence of 152 
infertility. 153 
 154 

 155 
Figure 1. Overview of study cohorts and analyses presented for infertility genetic association 156 
studies. (A) Case numbers in each cohort contributing cases to genome-wide association study (GWAS) 157 
meta-analyses (MA) for female (left) and male (right) infertility. The prevalence of all-cause infertility in each 158 
cohort (%) is noted on the barplots. EUR=European ancestry, SAS=South Asian ancestry. EstBB=Estonian 159 
Biobank, Danish=Danish Blood Donor Study/Copenhagen Hospital Biobank, UKBB=UK Biobank, 160 
G&H=Genes and Health cohort. Total case and control counts for each type of genetic analysis: all ancestry 161 
GWAS meta-analysis (dark rectangles), EUR-only GWAS meta-analysis (light rectangles), and UK Biobank 162 
whole exome sequencing (WES) analyses (black outlined rectangles) are displayed. Male infertility in 163 
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deCode, with <100 cases, was excluded from GWAS MA. Note the different Y-axis scales in each subplot. 164 
(B) Downstream analyses performed for each type of genetic analysis: lead variants were identified via 165 
distance-based pruning for all-ancestry and EUR-only GWAS meta-analyses; colocalisation, genetic 166 
correlation, and selection analyses were only performed for EUR meta-analyses due to the need for 167 
ancestry-matched linkage disequilibrium (LD) information; rare variant and gene burden tests were 168 
performed with WES data for the UK Biobank EUR-ancestry subset.  169 

Novel genetic loci for infertility 170 

We performed GWAS meta-analyses, testing up to 28.4 million genetic variants for associations 171 
with each of the above categories of infertility, in up to 41,200 cases/687,005 controls in women, 172 
and 7,098 cases/428,364 controls in men (Figure 1 and Supp. Table 2). We identified 19 unique 173 
genome-wide significant (GWS, P<5E-8) loci associated with at least one category of female 174 
infertility and two loci for male infertility (minor allele frequency (MAF) range 0.24%-46%, lead 175 
variants reported in at least two cohorts) (Figure 2, Table 1, and Supp. Figure 1). There was no 176 
evidence for heterogeneity in lead variant effects across cohorts (Supp. Text). 177 
 178 
Among the variants associated with multiple subtypes of female infertility is rs1964514, an intronic 179 
variant in PKHD1L1 (OR (95% CI) for F-ALL=1.13 (1.09-1.16), F-EXCL=1.13 (1.09-1.17), F-180 
INCL=1.18 (1.11-1.25)). This variant is 76 kb upstream of EBAG9, an oestrogen-responsive gene 181 
previously reported to have a recessive association with female infertility28 and thought to 182 
suppress maternal immune response during pregnancy29,30. We also identified an intronic variant 183 
in WNT4, rs61768001, associated with three categories of female infertility (F-ALL=0.909 (0.891-184 
0.927), F-EXCL=0.923 (0.902-0.946), F-INCL=0.870 (0.839-0.903)). WNT4  is highly pleiotropic 185 
for female reproductive traits, as it is reported to associate with gestational length31, uterine 186 
fibroids32,33, endometriosis34,35, female genital prolapse27, and bilateral oophorectomy27. Such 187 
pleiotropy is expected, as WNT4 is a key regulator of female reproductive organ development in 188 
embryogenesis36–38.  189 
 190 
The nearest gene to the idiopathic infertility-associated variant rs111597692 (F-EXCL OR=1.16 191 
(1.10-1.22)) is TRHR, which encodes the thyrotropin-releasing hormone receptor. Mice with 192 
TRHR knockouts display a phenotype similar to primary ovarian insufficiency39,40. The F-ANOV 193 
associated variant rs72827480 (OR=0.905 (0.873-0.938)) colocalises with a testis-eQTL for 194 
INHBB in the GTEx Project41 (posterior probability (PP) of shared causal variant=91.6%) (Supp. 195 
Table 4). INHBB encodes the beta subunit of inhibin B, which regulates hypothalamic, pituitary, 196 
and gonadal hormone secretion42, and ovarian follicle and oocyte development43.  197 
 198 
Finally, an intronic variant in ENO4, which is expressed in the testis and may play a role in sperm 199 
motility44, is associated with male infertility (rs139862664, OR=0.388 (0.277-0.543)). Male mice 200 
with ENO4 knockouts display infertility, abnormal sperm morphology and physiology, and 201 
decreased testis weight, among other altered male reproductive tract phenotypes45.  202 
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 203 
Figure 2. Miami and Manhattan plots for selected infertility meta-analyses. (A) Genetic variants 204 
associated with female infertility of all causes (F-ALL) (top) and idiopathic infertility (unknown causes) 205 
defined by exclusion of known causes such as anatomical or anovulatory causes, PCOS, endometriosis, 206 
or uterine leiomyomas (bottom). (B) Genetic variants associated with male infertility of all causes (M-ALL). 207 
Each point depicts a single SNP, with genome-wide significant (GWS) SNPs (P<5E-08, dashed line) 208 
coloured in pink for common variants with minor allele frequency (MAF)>=1% and green for those with 209 
MAF<1%. SNPs are annotated with the mapped gene. * indicates that lead variant is reported in only one 210 
cohort.211 
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Table 1. Lead variants associated with infertility in GWAS meta-analyses. A1 is the effect allele. *lead variant is reported in only one cohort. 212 
 213 

RSID 
chr:pos:A1:A2 

(hg38) 
Mapped 

gene 

All ancestries EUR only 

Average 
MAF 

OR (95% CI) P-value 
Average 

MAF 
OR (95% CI) P-value 

Female infertility of all causes (F-ALL) 
rs61768001 chr1:22139327:T:C WNT4 0.166 0.909 (0.891-0.927) 2.25E-21 0.163 0.911 (0.893-0.93) 1.24E-19 
rs10200851 chr2:11581956:T:C GREB1 0.458 0.951 (0.937-0.965) 2.90E-11 0.456 0.951 (0.936-0.965) 5.84E-11 
rs6938404 chr6:151222906:T:C AKAP12 0.453 0.958 (0.943-0.973) 3.88E-08 0.453 0.958 (0.943-0.973) 3.88E-08 

rs17803970 chr6:152232583:A:T SYNE1 0.0836 1.09 (1.06-1.12) 1.91E-10 0.0836 1.10 (1.07-1.13) 7.50E-11 
rs1964514 chr8:109463457:C:G EBAG9 0.0595 1.13 (1.09-1.16) 3.01E-14 0.0597 1.13 (1.09-1.16) 6.68E-14 

Anatomical female infertility (F-ANAT) 
rs340879 chr1:213983171:T:C PROX1 0.418 0.906 (0.874-0.939) 4.95E-08 0.418 0.902 (0.869-0.936) 5.06E-08 

Anovulatory female infertility (F-ANOV) 
rs72665317 chr1:22040580:T:G CDC42 0.190 0.875 (0.839-0.913) 7.76E-10 0.18 0.886 (0.847-0.927) 1.45E-07 
rs72827480 chr2:120388925:T:C INHBB 0.401 0.905 (0.873-0.938) 4.20E-08 0.401 0.905 (0.873-0.938) 4.20E-08 
rs1852684 chr2:145068818:T:G ZEB2 0.367 1.12 (1.08-1.16) 9.25E-10 0.35 1.12 (1.08-1.17) 3.44E-10 

rs552953683 chr8:102898586:T:C AZIN1 0.0024 0.341 (0.234-0.498) 2.54E-08 0.0024 0.341 (0.234-0.498) 2.54E-08 
rs9696009 chr9:123856954:A:G DENND1A 0.0777 1.21 (1.14-1.29) 6.87E-10 0.0695 1.24 (1.16-1.32) 2.40E-10 
rs9902027 chr17:7537667:T:C TNFSF12 0.255 0.895 (0.86-0.931) 4.06E-08 0.255 0.895 (0.86-0.931) 4.06E-08 

rs143459581 chr22:28068862:T:C PITPNB 0.0419 1.30 (1.19-1.43) 1.21E-08 0.0419 1.30 (1.19-1.43) 1.21E-08 
rs17879961 chr22:28725099:A:G CHEK2 0.0389 0.739 (0.673-0.811) 1.55E-10 0.0389 0.739 (0.673-0.811) 1.55E-10 

Idiopathic female infertility, exclusion definition (F-EXCL) 
rs61768001 chr1:22139327:T:C WNT4 0.165 0.923 (0.902-0.946) 7.49E-11 0.162 0.928 (0.906-0.951) 2.48E-09 

rs111597692 chr8:109039973:T:C TRHR 0.0323 1.16 (1.10-1.22) 1.51E-08 0.0323 1.16 (1.1-1.22) 1.51E-08 
rs17378154 chr8:109568721:A:G EBAG9 0.059 1.13 (1.09-1.17) 1.64E-10 0.0593 1.13 (1.09-1.17) 3.36E-10 

Idiopathic female infertility, inclusion definition (F-INCL) 
rs61768001 chr1:22139327:T:C WNT4 0.170 0.87 (0.839-0.903) 6.87E-14 0.165 0.872 (0.840-0.905) 8.96E-13 
rs11692588 chr2:11544358:A:G GREB1 0.358 0.919 (0.892-0.947) 2.98E-08 0.358 0.919 (0.892-0.947) 2.98E-08 

rs190290095 chr4:39786858:A:G UBE2K 0.0022 0.227 (0.137-0.375) 7.60E-09 0.0022 0.227 (0.137-0.375) 7.60E-09 
rs851982 chr6:151703850:T:C ESR1 0.428 0.921 (0.895-0.947) 7.60E-09 0.437 0.922 (0.896-0.949) 2.86E-08 

rs17378154 chr8:109568721:A:G EBAG9 0.0565 1.18 (1.11-1.25) 2.47E-08 0.0569 1.18 (1.11-1.25) 4.97E-08 
rs74156208 chr10:61509370:A:G TMEM26 0.184 1.10 (1.06-1.14) 4.96E-08 0.187 1.10 (1.07-1.15) 5.44E-08 

Male infertility of all causes (M-ALL) 
rs1228269928* chr2:132923776:A:T NCKAP5 0.0006 0.0995 (0.0441-0.224) 2.72E-08 0.0006 0.0995 (0.0441-0.224) 2.72E-08 
rs150639836 chr10:53879806:T:C PCDH15 0.0109 0.505 (0.402-0.636) 5.72E-09 0.0109 0.505 (0.402-0.636) 5.72E-09 
rs139862664 chr10:116879589:C:G ENO4 0.0072 0.388 (0.277-0.543) 3.29E-08 0.0072 0.388 (0.277-0.543) 3.29E-08 

214 
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Genetic relationships between infertility and female reproductive conditions 215 

Genome-wide, we observed positive genetic correlation between endometriosis and F-ALL (rg 216 
(SE)=0.585 (0.0785), P=8.98E-14) and F-INCL (rg=0.710 (0.115), P=5.94E-10). We also 217 
observed positive correlation between F-ANOV and PCOS, the most common cause of 218 
anovulatory infertility (rg=0.403 (0.131), P=2.20E-3), and negative correlation between F-ANOV 219 
and spontaneous dizygotic twinning, a heritable metric of female fecundity that captures the 220 
propensity for multiple ovulation46 (rg=-0.740 (0.182), P=4.93E-05).  221 
 222 
Two loci associated with both endometriosis and female infertility - WNT4 and ESR1 - may share 223 
the same putative causal variant (PP>93.6%, Supp. Table 5). Variants in both these genes have 224 
previously been associated with endometriosis-related infertility47–50. While GREB1 and SYNE1 225 
also contain overlapping signals for infertility and endometriosis, there is strong evidence against 226 
shared causal variants (PP>75%, Supp. Table 5). Finally, three of eight loci for anovulatory 227 
infertility - INHBB, PITPNB, and CHEK2 - may share a causal variant with PCOS (PP>89.2%, 228 
Supp. Table 5).  229 
 230 

 231 
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Figure 3. Genetic correlations between female infertility and other phenotypes. SNP-based genetic 232 
correlations (rg) between significantly heritable phenotypes (Z>4) were estimated using LD-score 233 
regression, performed using the LDSC software51 on a subset of 1 million HapMap3 SNPs52. Points are 234 
coloured by rg estimate, scaled by significance (-log10(P)), and labelled with the associated rg estimate if 235 
nominally significant without correction for multiple testing (P<0.05). (A) Genetic correlations among the 236 
three significantly heritable definitions of female infertility (all cause=F-ALL, anovulatory=F-ANOV, and 237 
idiopathic infertility defined by inclusion=F-INCL). (B) Genetic correlations between female infertility traits 238 
and reproductive hormones: testosterone, follicle stimulating hormone (FSH), and anti-Mullerian hormone 239 
(AMH, publicly available summary statistics) in female-specific analyses, and thyroid stimulating hormone 240 
(TSH, publicly available summary statistics) from sex-combined analysis. (C) Genetic correlations between 241 
female infertility traits and female reproductive conditions, with summary statistics generated from the 242 
largest available European-ancestry studies for each trait (see Methods). PCOS=polycystic ovary 243 
syndrome. (D) Genetic correlations between female infertility traits and selected heritable phenotypes (Z>4) 244 
in the UK Biobank, as generated by the Neale lab53. Correlations with all heritable phenotypes can be found 245 
in Supp. Table 12. 246 

Selection pressure may explain the persistence of some infertility-247 

associated variants in the population 248 

The genome-wide SNP heritability estimates (on the liability scale, accounting for disease 249 
prevalence54) for all categories of infertility are <10% (lowest for M-ALL at 1.12% (SE=0.93) and 250 
highest for F-ANOV at 9.54% (2.16)) (Supp. Table 6). This is lower than heritability estimates of 251 
two-thirds of all heritable binary phenotypes in the UK Biobank with population prevalence similar 252 
to that of infertility (64 phenotypes with Z>4 and prevalence <5%)53. We hypothesised that 253 
infertility risk-increasing alleles are subject to negative selection55, so we tested whether there 254 
was evidence for: (i) variants associated with infertility in loci under historical or recent directional 255 
selection56–58, or (ii) recent directional selection (over the last 2,000 to 3,000 years) measured by 256 
singleton density scores (SDSs)56 and balancing selection measured by standardised BetaScan2 257 
scores (StdB2)59 at infertility loci.  258 
 259 
While we found no genome-wide signature of directional selection against infertility (Supp. Text), 260 
we observed extreme SDSs (in the highest 99.75th percentile (%ile) of SNPs within 10kb of a 261 
GWAS Catalog variant) at the EBAG9 locus associated with female infertility, indicating recent 262 
positive selection (Figure 4 and Supp. Table 7). EBAG9 is associated with infectious response 263 
phenotypes, suggesting that the locus may be under selection for its effects on the immune 264 
system. We additionally observed signatures of balancing selection, which maintains multiple 265 
alleles in the population through mechanisms such as heterozygote advantage or time-varying 266 
fitness60,61, at the female infertility loci GREB1 (StdB2 in the 98.6th-99.4th %ile of SNPs within 10kb 267 
of a GWAS Catalog variant) and INHBB (98.5th %ile), and the male infertility locus PCDH15 (98.7th 268 
%ile); however, variants at these loci with high probability of association with infertility did not 269 
have high balancing selection scores (Supp. Figure 2 and Supp. Table 7). 270 
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 271 
Figure 4. Directional selection scores at infertility-associated EBAG9 locus. Recent directional 272 
selection, as measured by trait-aligned Singleton Density Scores (tSDSs) at the EBAG9 locus. The window 273 
of +/- 10 kb around the lead variant associated with female infertility of all causes (F-ALL) is displayed, 274 
along with the location of nearest gene transcription start sites (TSSs). The tSDSs are aligned to the 275 
infertility-risk increasing allele, wherein a positive tSDS indicates positive selection for infertility-risk 276 
increasing allele at the locus. Dashed lines indicate 2.5th percentile (%ile) and 97.5th %ile of SDSs, and 277 
variants below or above this threshold respectively are coloured in pink. Left: Locus plots depicting genomic 278 
position on the x-axis and tSDS on the y-axis. The lead variant rs1964514 (open circle) is not present in 279 
the tSDS dataset and thus assigned a score of 0. Right: Scatter plots depicting relationship between -log10 280 
of the GWAS p-value for the variant association with F-ALL on the x-axis and tSDS on the y-axis.  281 

Genetic determinants of reproductive hormone levels 282 

Identification of novel reproductive hormone loci 283 

As hormone dysregulation is central to many infertility diagnoses18,19, we conducted sex-specific 284 
GWAS meta-analyses of five reproductive hormones - follicle-stimulating hormone (FSH) 285 
(Nfemale=57,890, Nmale=6,095), luteinising hormone (LH) (Nfemale=47,986, Nmale=6,769), oestradiol 286 
(Nfemale=97,887, Nmale=39,165), progesterone (Nfemale=18,368), and total testosterone 287 
(Nfemale=246,862, Nmale=243,951) - collected at assessment centre visits or identified through 288 
EHRs, in six cohorts and publicly available summary statistics (Supp. Table 9). We identified GWS 289 
loci associated with FSH (9 novel/2 previously known in females (F) and 0/1 in males (M)), LH 290 
(4/2 in F and 1/0 in M), oestradiol (1/1 in F and 2/4 in M), and testosterone (35/118 in F and 55/206 291 
in M), but found no genetic variants associated with progesterone (Figure 5, Supp. Figure 3, and 292 
Supp. Figure 4). Several of the reported signals we replicated are near genes encoding the 293 
hormone-specific subunits themselves, such as FSHB for FSH and LHB for LH, or enzymes for 294 
steroid hormone metabolism, such as CYP3A7 for oestradiol and HSD17B13 for testosterone 295 
(Supp. Text).  296 
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 297 
Figure 5. Number of novel and reported reproductive hormone associations. Each panel displays a 298 
different hormone (FSH=follicle-stimulating hormone, LH=luteinising hormone). Lead variants in each 299 
analysis stratum (F=female-specific, M=male-specific, all-anc=all ancestry meta-analysis, EUR=European-300 
only meta-analysis) are classified as: (1) novel (no hormone associations) if they are not in LD (r2<0.1) with, 301 
and conditionally independent of (conditional P-value Pcond<0.05), any variants within a 1Mb window of the 302 
lead variant that are associated with 28 reproductive hormones in the GWAS Catalog62, plotted in pink, (2) 303 
novel for this hormone if they are not in LD (r2<0.1) with, and conditionally independent of (Pcond<0.05), the 304 
respective hormone-associated variants within a 1Mb window of the lead variant, plotted in green, and (3) 305 
reported otherwise, plotted in grey. Note the different Y-axis scales in each subplot. assocns.=associations. 306 
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We further classified lead variants as entirely novel hormone associations by defining a protocol 307 
based on linkage disequilibrium (LD) and conditional independence from published SNPs 308 
associated with any of 28 reproductive hormones in the GWAS Catalog62 (see Methods for 309 
detailed classification protocol). 310 
 311 
We found 39 novel variants for testosterone in men, including those near SPOCK1 (rs1073917: 312 
β (SE)=-0.0160 (0.0029), P=4.69E-08), which is a target for the androgen receptor63, NR4A3 313 
(rs10988865: β=-0.0161 (0.0029), P=4.33E-08), which coordinates the cellular response to 314 
corticotropin-hormone and thyrotropin-hormone releasing stimuli64,65 and regulates 315 
adipogenesis66, and obesity-associated genes ANKS1B (rs144998814: β=0.133 (0.0162), 316 
P=2.34E-16) and ANO10 (rs6809522: β=0.016 (0.0029), P=3.00E-08)67 (Supp. Table 10). The 28 317 
novel reproductive hormone variants associated with testosterone in women include those near 318 
LAMTOR4 (rs17250196: β=-0.131 (0.0067), P=4.02E-86), associated with hyperthyroidism39 and 319 
age at menarche and menopause68, obesity-associated CCDC146 (rs138240474: β=-0.116 320 
(0.0207), P=2.03E-08)67, which is also expressed in the fallopian tubes and endometrium69,70, and 321 
SLC8A1 (rs12611602: β=0.0163 (0.003), P=3.79E-08), which causes increased pancreatic beta 322 
cell proliferation and insulin secretion in knockout mouse models71. Finally, we report lead SNPs 323 
independent of previously published hormone variants in the HELQ locus for FSH-F (rs4235062: 324 
β=-0.046 (0.0065), P=1.50E-12), TMEM150B locus for FSH-F (rs28875253: β=-0.0599 (0.0061), 325 
P=9.90E-23) and LH-F (rs11668309: β=0.0519 (0.0071), P=3.91E-13), and in the SOX15-SAT2 326 
locus for oestradiol-F (rs3933469: β=0.0363 (0.0051), P=1.02E-12) (Supp. Table 10). 327 
 328 
Our results were robust to the inclusion of summary statistics from publicly available datasets, 329 
and there was no evidence for heterogeneity in variant effects across cohorts (Supp. Text).  330 

Sex-specific genetic architecture of testosterone 331 

Only 9.80% (of 153 total) lead variants for testosterone in females and 5.75% (of 261 total) lead 332 
variants for testosterone in males reach GWS in both sexes; and 45.9% of variants have opposing 333 
directions of effect in men and women (Supp. Figure 6). Indeed, we found no significant genetic 334 
correlation between testosterone in men and women (rg (SE)=0.0361 (0.0428), P=0.399). The 335 
heritability of testosterone in women is enriched in the adrenal gland (P=1.03E-03) and 336 
hepatocytes (P=9.36E-04); but only the latter is enriched for the heritability of testosterone in men 337 
(P=3.61E-04), as is the liver more broadly (P=1.16E-06) (Supp. Figure 10, stratified LD-score 338 
regression performed across 205 tissues and cell-types from the Genotype Tissue Expression 339 
(GTEx) Project database41 and the Franke lab single-cell database72). Finally, although 340 
testosterone regulates several traits hypothesised to be under sexual selection and may be under 341 
selection itself73, we do not find significant genome-wide directional selection for testosterone in 342 
men or women (mean genome-wide trait-SDS is not significantly different from 0, both P>0.05) 343 
(Supp. Text). 344 
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Genetic relationships between female infertility, reproductive 345 

hormones, and obesity 346 

We observed no genome-wide genetic correlations between any category of female infertility and: 347 
(i) any reproductive hormone in this study, or (ii) thyroid stimulating hormone (TSH), or (iii) anti-348 
Mullerian hormone (AMH), the latter two based on publicly available summary statistics74,75 (all 349 
P>0.05, Figure 3B). Mendelian randomisation (MR) analyses indicated a genetically causal 350 
protective effect of FSH on risk of F-ALL (OR (95% CI)=0.776 (0.678-0.888), P=2.15E-04) and F-351 
EXCL (0.716 (0.604-0.850), P=1.26E-04) (Supp. Table 11). 352 
 353 
We found evidence for shared variants between hormones and infertility at the FSHB locus 354 
associated with FSH, LH, and testosterone (PP>84.8% for colocalisation with F-ANOV), and the 355 
ARL14EP locus associated with LH (PP=89.3% for colocalisation with F-ANOV) (Supp. Table 12). 356 
There was no evidence for colocalisation at any of the >300 other GWS loci associated with 357 
infertility or reproductive hormones in our study (Supp. Table 12). Our results suggest that while 358 
these traits are not significantly correlated at a genome-wide level, a small number of genes may 359 
drive infertility linked to hormone dysregulation. 360 
 361 
Across 703 heritable phenotypes in the UK Biobank, we found 15 traits to be genetically correlated 362 
with female infertility, which we broadly group into: female reproductive conditions (such as having 363 
had a hysterectomy, rg (SE)=0.481 (0.0963)), general illness (such as number of operations, 364 
rg=0.266 (0.0588)), and cognitive test results (overall prospective memory test rg=0.345 (0.0736), 365 
overall fluid intelligence rg=-0.276 (0.0502)) (Figure 3D and Supp. Table 13). 24 obesity-related 366 
traits, including body mass index (BMI), waist-to-hip ratio (WHR), and body fat percentage, are 367 
correlated with testosterone and FSH, but are not genetically correlated with  any category of 368 
female infertility (all P>0.05, Figure 3D, Supp. Figure 7, and Supp. Table 13). However, MR 369 
analyses using genetic instruments for BMI, WHR, and WHR adjusted for BMI (WHRadjBMI)67 370 
indicated evidence for bi-directional causal relationships between infertility and abdominal obesity 371 
independent of overall obesity. While genetically predicted WHRadjBMI is a risk factor for F-ALL 372 
(OR (95% CI)=1.10 (1.05-1.16), P=1.71E-04) and F-ANOV (1.29 (1.16-1.45), P=4.66E-06), the 373 
latter is itself causal for increased WHRadjBMI (β (SE)=0.0547 (0.0133), P=3.74E-05) (Supp. 374 
Table 11).  375 
 376 
Variants associated with all-cause female infertility are in genes enriched for expression in ovarian 377 
stromal cells (partitioned heritability P=2.52E-03). We did not find significant enrichment of 378 
infertility heritability in any of the 205 tissues and cell-types from the GTEx project database41 and 379 
the Franke lab single-cell database72. 380 

Rare variant contribution to reproductive-hormone and infertility 381 

genetics 382 

We analysed the 450k UK Biobank exome sequencing dataset to characterise the association 383 
between rare coding variation (MAF<1%) and binary traits with >100 cases (F-ALL (3,746 cases, 384 
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260,413 controls), F-EXCL (3,012 cases, 261,147 controls), and M-ALL (650 cases, 222,393 385 
controls)), and quantitative traits with >10,000 participants (FSH-F (N=20,800), LH-F (N=16,391), 386 
oestradiol-F (N=54,609), and testosterone (Nfemale=197,038, Nmale=197,340) (Figure 1)). Gene-387 
burden analyses implicate the PLEKHG4 gene, which is highly expressed in the testis and ovary, 388 
for F-EXCL (burden test OR (95% CI)=1.04 (1.02-1.06) when aggregated across all variant 389 
annotations with MAF<1%, Cauchy P=1.37E-08) (Supp. Table 14). Rare variants in PLEKHG4 390 
cause cerebellar ataxia76, which is a feature of some syndromes that also cause steroid hormone 391 
deficiency and hypogonadism77,78. 392 

Novel genes for testosterone implicated by gene burden analyses 393 

Gene-based analyses identify 27 genes associated with testosterone-F and 24 genes for 394 
testosterone-M (P<5E-06), of which eleven have not previously been implicated in GWASs (Supp. 395 
Text). We report the first known association of HSD11B1 with testosterone-F (burden test 396 
P=1.93E-06 when aggregated across missense variants with MAF<0.01%); pathogenic variants 397 
in this gene are reported to cause hyperandrogenism due to cortisone reductase deficiency79,80 398 
(Supp. Figure 11 and Supp. Table 14). We also report the association of testosterone-M with 399 
HSD17B2 (burden test P=1.33E-11 when aggregated across pLoF variants with MAF<0.1%), 400 
which encodes the enzyme hydroxysteroid 17β-dehydrogenase 2 that catalyses the oxidation of 401 
oestradiol, testosterone, and dihydrotestosterone to less active forms and thus regulates the 402 
biological potency of steroid hormones81,82 (Supp. Figure 11 and Supp. Table 14).   403 

Increased risk of infertility in individuals carrying rare testosterone-404 

associated variants 405 

Two genes associated with testosterone in female UK Biobank participants are also associated 406 
with infertility risk (P<1.00E-03, Bonferroni adjustment for 50 unique genes): TRIM4 (F-ALL, 407 
burden test OR=1.03 (1.01-1.05), P=4.05E-04 across all variants with MAF<0.1%) and CYP3A43 408 
(F-EXCL, burden test OR=1.02 (1.01-1.03), P=4.84E-04 across all variants with MAF<1%). The 409 
latter encodes the steroid hormone metabolic enzyme testosterone 6-beta-hydroxylase; but 410 
neither gene has previously been implicated in infertility.  411 
 412 
Finally, we identified 29 unique genes carrying rare variants (MAF<1%) associated with 413 
testosterone in male or female participants in the UK Biobank. Eighteen of the 29 genes also 414 
contain common testosterone-associated variants from GWASs (MAF>1%), but the rare variant 415 
has a larger absolute effect size in the majority (83%) of these (Figure 6A, Supp. Table 15, and 416 
Supp. Text).  417 
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 418 
 419 
Figure 6. Rare variants associated with testosterone and infertility in UK Biobank whole exome 420 
sequencing (WES) analyses. (A) Effect size versus allele frequency of genetic variants associated with 421 
total testosterone. Variants discovered at genome-wide significance (P<5E-08) in GWAS meta-analyses 422 
(coloured in grey) and exome-wide significance in the UK Biobank WES analyses (coloured in black) are 423 
plotted, sized by the absolute value of their effect size. Effect sizes are aligned to the minor allele, plotted 424 
against MAF on the log x-axis. (B) Effects of testosterone-associated rare variants on infertility in females 425 
(left) and males (right). Per gene, the variant with lowest P-value of all variants that reach exome-wide 426 
significance (P<1E-07) in UK Biobank WES analyses for testosterone is displayed, for all variants with 427 
nominally significant effects on infertility. Effect sizes (β and 95% confidence intervals (CIs) for the variant 428 
effect on testosterone are to the left of each plot, and effect sizes (odds ratios (ORs) and 95% CIs) for the 429 
variant effect on infertility are to the right of each plot. Variants that reach nominal significance (P<0.05) are 430 
coloured in solid shapes. 431 
 432 
The eleven novel testosterone associations include a female testosterone-lowering missense 433 
variant in STAG3 (chr7:100204708:C:T, β=-0.284, P=2.31E-08); STAG3 is also associated with 434 
primary ovarian insufficiency in women83,84, and induces female infertility through the absence of 435 
oocytes in knockout mouse models39. While we did not find significant association between the 436 
STAG3 variant and female infertility in the UK Biobank (P>0.05), we observed increased risk of 437 
idiopathic infertility in women carrying a novel testosterone-lowering variant in GPC2 438 
(chr7:100171569:G:A, F-EXCL OR=2.63 (1.40-4.92), P=1.25E-03) (Figure 6B). GPC2 is highly 439 
expressed in the testis, and GPC2-knockout mouse models display reduced adrenal gland size39. 440 
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The gene has not previously been reported to be associated with testosterone or infertility. Taken 441 
together, our results indicate a potential role for infertility driven by rare hormone-disrupting 442 
variants. 443 

Discussion 444 

Our large-scale genetic investigation of infertility and related reproductive phenotypes in over 1 445 
million individuals identified 19 genetic loci associated with female infertility, two with male 446 
infertility, and novel variants for the reproductive hormones FSH (3 novel variants), LH (1), 447 
oestradiol (1), and total testosterone (28) in women and for total testosterone in men (39). Through 448 
rare-variant and gene-based analyses in the UK Biobank, we additionally identified PLEKHG4 449 
associated with female infertility and 50 genes for testosterone, including the first reported 450 
hormone-associated variants in some members of the hydroxysteroid dehydrogenase enzyme 451 
family. We found evidence at non-hormonal, pleiotropic, infertility loci for recent directional 452 
selection (EBAG9) and balancing selection (GREB1, INHBB, PCDH15). Although there was 453 
evidence for distinct genetic architectures of infertility and reproductive hormones, we showed 454 
that individual genes containing rare protein-coding variants associated with testosterone (GPC2, 455 
CYP3A43, TRIM4) were also associated with higher risk of infertility in the UK Biobank.  456 
 457 
Previous efforts to catalogue the genome-wide architecture of infertility have relied on proxy 458 
measures such as childlessness and number of children ever born24,25, which may be confounded 459 
by behavioural, socio-economic, and lifestyle factors. While we did find modest genetic correlation 460 
between female infertility and age at first sexual intercourse (-18.8%), indicating that the latter 461 
captures some shared biology with fertility, our meta-analyses did not replicate the associations 462 
of infertility proxy variables with putative behavioural loci for risk-taking85,86 or educational 463 
attainment85,87–89. Instead, we nominate genes with putative roles in both male and female 464 
gonads, such as TRHR for ovarian insufficiency39,40 and ENO4 for sperm motility44. 465 
 466 
The strong genetic correlation of 71% between idiopathic infertility and endometriosis may 467 
indicate that some proportion of idiopathic cases are due to under-diagnosis of endometriosis, 468 
whose early treatment may prevent future infertility15,90.  Our subtype-specific analyses highlight 469 
the value in dissecting heterogeneous causes of infertility. For example, PCOS is a heritable 470 
cause of up to 80% of anovulatory infertility cases that may be treated through induced 471 
ovulation17,91,92. However, as only three of eight loci for anovulatory infertility colocalise with known 472 
PCOS signals and the genetic correlation between these traits is only 40%, other hypothalamic-473 
pituitary-ovarian disorders, endocrinopathies (hypothyroidism, hyperprolactinaemia, etc.) and 474 
ovarian insufficiency may also contribute significantly to the genetic aetiology of anovulatory 475 
infertility and require treatments different from those for PCOS-associated infertility93. Weight loss 476 
for overweight patients is often recommended as beneficial for fertility94,95, but we did not find 477 
substantial genetic correlation between obesity and infertility. Our findings add genetic support to 478 
evidence from randomised controlled trials demonstrating no fertility benefits from short-term 479 
weight loss in overweight and obese women96. Instead, we observed bi-directional causal 480 
relationships between abdominal obesity and anovulatory infertility, suggesting physiological 481 
feedback mechanisms whose complex interplay requires deeper study. Taken together, these 482 
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results suggest a critical need for a richer understanding of the genetic and non-genetic 483 
contributions to infertility. 484 
 485 
The testes and ovaries were not significantly enriched for the heritability of infertility or 486 
testosterone, despite being reproductive organs that are major sites for testosterone 487 
production97,98. However, neither organ is disaggregated into tissues or cell types in the GTEx 488 
database, so gene expression profiles may not capture cell-type specific effects. Indeed, we found 489 
enrichment of testosterone heritability in the androgen-secreting thecal cells and androgen-490 
responsive granulosa cells of the ovary99–101, and female infertility in ovarian stromal cells. 491 
Although there are several causal roles hypothesised for stromal dysfunction in infertility, such as 492 
impaired folliculogenesis102, restricted blood flow103, and ovarian scarring104, more work is needed 493 
to robustly replicate these findings. In general, more functional studies of gonadal cell types, in 494 
both men and women, are needed to enable a mechanistic understanding of the genetic variation 495 
associated with reproductive hormones and infertility.  496 
 497 
We employed a broad search strategy to maximise sample sizes for cases of infertility and 498 
reproductive hormone levels in our meta-analyses. Diagnostic criteria for infertility vary by country 499 
and have changed over time1, which may explain the wide spread in the prevalence of infertility 500 
across cohorts. Reproductive hormone values in this study were assayed using different 501 
methodologies, in primary care or hospital EHRs, and at different ages and stages of the 502 
menstrual cycle in women. A majority of samples in our study were derived from the UK Biobank 503 
and measured during and post-menopause (ages 40-69), whereas infertility occurs pre-504 
menopause, so we urge caution in interpreting the lack of correlation between these traits. 505 
Although we were able to adjust for covariates such as age, which can account for some of the 506 
effect of menopause on hormone levels, we did not have the data granularity to account for 507 
hormonal fluctuations during the menstrual cycle and pregnancy. In the future, longitudinal 508 
GWASs that can incorporate mean and variance of hormone levels over the menstrual cycle, or 509 
phenotypes that calculate ratios between various hormones over time, will likely reveal 510 
fundamental biology that is missed by the broad-stroke assessments in this study.  511 
 512 
Our results indicate that balancing selection and recent positive selection at pleiotropic loci may 513 
explain the persistence of genetic factors for infertility. For example, the EBAG9 locus associated 514 
with female infertility is under directional selection, perhaps because EBAG9, which is highly 515 
expressed in CD34-/CD41+/CD42+ megakaryocytes69,70, plays a role in T-cell mediated 516 
cytotoxicity as part of the adaptive immune memory response to infection105. However, a 517 
complementary role for EBAG9 may be in the placenta during early pregnancy, where reduction 518 
of EBAG9 levels is associated with inappropriate activation of the maternal immune system and 519 
results in foetal rejection106.  520 
 521 
In conclusion, in this comprehensive large-scale investigation of the genetic determinants of 522 
infertility and reproductive hormones across men and women, we identified several genes 523 
associated with infertility and analysed their effects on reproductive disease and selection 524 
pressures. We did not find evidence that reproductive hormone dysregulation and obesity are 525 
strongly correlated with infertility at the population level, but instead nominate individual hormone-526 
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associated genes with effects on fertility. Other genetic and non-genetic avenues must be 527 
explored to treat complex and heterogeneous fertility disorders that impact the physical, 528 
emotional, and financial well-being of millions of individuals across the globe. 529 

Methods 530 

Study populations and phenotype identification 531 

Binary traits (infertility) 532 

Cases were identified in UK Biobank, Copenhagen Hospital Biobank and Danish Blood Donor 533 
Study, deCode, Estonian Biobank, FinnGen, and Genes and Health (Supp. Text). We defined five 534 
categories of female infertility: all causes (F-ALL), anovulatory (F-ANOV), anatomical (F-ANAT, 535 
including tubal, uterine, and cervical origins), idiopathic infertility by exclusion of known causes 536 
(anatomical and anovulatory infertility, PCOS, endometriosis, and uterine leiomyoma) (F-EXCL), 537 
and idiopathic infertility by inclusion of a diagnosis code for idiopathic infertility (F-INCL), and male 538 
infertility of all causes (M-ALL). Cases were identified through self-report (F-ALL, F-EXCL, M-ALL) 539 
and through primary- and secondary-care codes (Supp. Table 1). Within each subtype, sex-540 
matched controls were defined as individuals not identified as cases for that subtype.  541 

Quantitative traits (reproductive hormones) 542 

Hormones were included from  UK Biobank, Avon Longitudinal Study of Parents and Children 543 
(ALSPAC), deCode, Estonian Biobank, and Genes and Health (Supp. Text). We extracted 544 
measurements of FSH, LH, oestradiol, progesterone, and testosterone from biobank assessment 545 
centres or primary- and secondary-care records (Supp. Table 16). If repeated measurements 546 
were available for an individual, we retained the recorded hormone value closest to the individual's 547 
median hormone value over time. Each hormone was regressed on age, age2, and cohort-specific 548 
covariates specified below; the residuals from this regression were rank-based inverse normally 549 
transformed (RINTed) prior to GWAS.  550 

Meta-analysis of GWAS summary statistics 551 

Genome-wide association testing 552 

Association analyses were performed separately within each ancestry and sex stratum for all 553 
strata with at least 100 cases (binary traits) or 1,000 individuals (quantitative traits). For binary 554 
traits, each variant passing QC was tested for association under an additive model using 555 
REGENIE107 or SAIGE108, with adjustments for age, age2, and cohort-specific covariates, with the 556 
Firth correction applied to control for inflation at rare variants and traits with low case-control 557 
ratios107,108. For quantitative traits, the RINTed hormone value was tested for association under 558 
an additive model using REGENIE107 or SAIGE108, with adjustments for cohort-specific genetic 559 
covariates. Any deviations from this GWAS protocol are noted in the Supplementary Text.  560 
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Meta-analysis 561 

Prior to meta-analysis, summary statistics from all studies underwent thorough quality control to 562 
retain variants that met the following criteria: (1) on the autosomes or X chromosome, (2) with 563 
imputation information score >0.8 (where available), (3) bi-allelic variants with A, C, G, T alleles, 564 
(4) with standard errors <10 and P-values in [0,1], and (5) without duplicate entries. Fixed-effects 565 
inverse-variance weighted meta-analysis was performed using METAL109. We report results from 566 
European-ancestry and all-ancestry meta-analyses for each trait. Genome-wide significance was 567 
established at P<5E-08. 568 

Identification and classification of lead variants 569 

Distance-based pruning was used to identify lead variants as the SNP with the lowest P-value 570 
within each 1Mb window at all loci with at least one GWS variant with P<5E-08. 571 
 572 
Hormone-associated variants were classified based on conditional analysis as (1) previously 573 
reported for the hormone of interest, (2) previously reported for any of 28 reproductive hormones, 574 
or (3) novel, based on SNP associations published in the GWAS Catalog as of 27 March 202362 575 
(Supp. Table 17). We adapted criteria developed by Benonisdottir et al. (2016)110 to classify novel 576 
variants as those that are not in LD with (r2<0.1), and conditionally independent of 577 
(Pconditional<0.05), all published hormone-associated variants within 1 Mb; all other variants are 578 
considered to be previously reported. Conditional analysis was performed in GCTA-COJO111, with 579 
LD information for European-ancestry individuals derived from the 1000 Genomes dataset112.  580 
 581 
For lead variants on the X chromosome and those from multi-ancestry analyses, for which 582 
estimating LD is more difficult due to differences in recombination rates and selection pressures 583 
between sexes and populations113–115, we did not use the above LD-based classification system. 584 
Instead, a lead SNP was considered novel if it was not within 1 Mb of a published hormone-585 
associated variant or if its effect was independent of published variants within a 1 Mb window 586 
(Pconditional<0.05), and reported if not.  587 

SNP-based heritability 588 

The following analyses, which rely on population-specific LD patterns, were restricted to 589 
European-ancestry summary statistics with pre-computed LD-scores based on European-590 
ancestry individuals in the 1000 Genomes dataset112, restricted to HapMap3 SNPs52. We 591 
estimated the SNP-based heritability (hG

2) of a trait from GWAS summary statistics using LD-592 
score regression as implemented in the LDSC software51. For infertility traits, the observed-scale 593 
heritability (hobs

2) was converted to liability-scale heritability (hliab
2), which accounts for the disease 594 

prevalence in the sample (k) and population (K), under the assumption that sample prevalence 595 
equals the population prevalence54. 596 
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Genetic correlations 597 

LDSC was used to estimate genetic correlations between infertility traits, hormone levels, and a 598 
collection of other phenotypes in the UK Biobank in European-ancestry individuals. To simplify 599 
computation of rg across a large number of traits, we used an extension of the LDSC software 600 
which allows for simultaneous estimation of multiple genetic correlations116. 601 
 602 
We estimated genetic correlations among the three categories of female infertility with significant 603 
heritability (Z>4)51: F-ALL, F-ANOV, and F-INCL, as well as among heritable female reproductive 604 
hormones (FSH and testosterone in females). We additionally obtained summary statistics from 605 
GWASs of thyroid stimulating hormone (TSH)75 (sex-combined analysis, N=247,107 participants) 606 
and anti-Mullerian hormone (N=7,049 pre-menopausal participants)74 from the largest publicly 607 
available European-ancestry studies to date. We also tested for genetic correlations between 608 
infertility and reproductive hormones. Significant rg after multiple testing was established at 2.38E-609 
03 (FWER controlled at 5% across 21 tests using the Bonferroni method). 610 
 611 
We collated European-ancestry GWAS summary statistics for four female reproductive disorders: 612 
(1) endometriosis from Rahmioglu et al. (2023)35, (57,248 cases and 698,764 controls), (2) heavy 613 
menstrual bleeding by meta-analysing GWAS data from Gallagher et al. (2019)117 and FinnGen 614 
data freeze 927 (31,309 cases and 318,510 controls), (3) PCOS by meta-analysing GWAS data 615 
from Tyrmi et al. (2022)92 and a UKBB-based GWAS (14,467 cases and 430,267 controls), and 616 
(4) uterine fibroids by meta-analysing GWAS data generated by the Neale lab53 and FinnGen data 617 
freeze 9 27, (42,446 cases and 588,955 controls). We additionally obtained summary statistics 618 
from a GWAS of spontaneous dizygotic (DZ) twinning (8,265 cases (mothers of DZ twins) and 619 
264,567 controls; plus 26252 DZ twins and 417,433 additional controls) from Mbarek et al. (2024), 620 
the largest European-ancestry study of female fecundity to date46. Significant rg after multiple 621 
testing was established at 2.00E-03 (FWER controlled at 5% across 25 tests using the Bonferroni 622 
method). 623 
 624 
We downloaded LD-score formatted summary statistics for European-ancestry individuals across 625 
703 heritable phenotypes (Z>4) from the Neale lab round 2 collection53. The number of effectively 626 
independent phenotypes estimated by the Neale lab (Meff=340) was used to establish significant 627 
rg after multiple testing at 2.45E-05 (FWER controlled at 5% across 2,040 tests using the 628 
Bonferroni method). 629 

Mendelian randomisation 630 

The following analyses were all performed with summary statistics from European-ancestry 631 
GWASs, using the TwoSampleMR v0.5.7 package118.  632 
 633 
We constructed genetic instruments for BMI, WHR, and WHRadjBMI with female-specific lead 634 
variants from a recent European-ancestry GWAS meta-analysis with a maximum sample size of 635 
434,785 female participants67. SNPs were weighted by their female-specific effect sizes. The 636 
mean F-statistic across all SNPs in each instrument indicated sufficient strength for MR 637 
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(BMI=61.3, WHR=74.8, WHRadjBMI=84.7, recommended>10119). As the instrument GWASs 638 
included participants from UK Biobank, we conducted a sensitivity analysis to avoid bias from 639 
sample overlap between instrument and outcome GWASs by constructing obesity-trait 640 
instruments from an earlier release of summary statistics from the GIANT Consortium without 641 
UKBB participants120 (Supp. Table 11). As the WHRadjBMI instrument may be confounded due 642 
to adjustment for a correlated variable121, i.e. adjustment for BMI in the WHR GWAS, we 643 
performed multivariable MR with a joint instrument for BMI and WHR to estimate the BMI-adjusted 644 
causal effect of WHR on reproductive outcomes. We found no difference in effect estimates from 645 
MR conducted using an instrument for WHRadjBMI and multivariable MR (Supp. Table 19). 646 
 647 
Hormone instruments were constructed for reproductive hormones in this study with F-statistic>10 648 
(FSH-F=38.7, testosterone-F=66.1), using GWAS summary statistics from European-ancestry 649 
GWASs excluding UK Biobank participants to avoid sample overlap with outcome GWASs.  650 
 651 
We also performed reciprocal MR to test the genetically predicted causal effects of infertility on 652 
obesity and reproductive hormone levels. Genetic instruments were constructed for subtypes of 653 
infertility with F-statistic>10 (F-ALL=51.0, F-ANOV=36.2), using GWAS summary statistics from 654 
European-ancestry GWASs excluding UK Biobank participants to avoid sample overlap with 655 
outcome GWASs. We assessed the causal direction between each pair of traits tested with 656 
Steiger filtering of instruments and the Steiger directionality test. 657 
 658 
We report results from the inverse-variance weighted (IVW) method, the MR-Egger method which 659 
is robust to horizontal pleiotropy122, and the  weighted median method which protects against 660 
outlier variants123 (Supp Table 11).   661 

Colocalisation 662 

The following analyses were all performed with summary statistics from European-ancestry 663 
GWASs, using the Bayesian framework implemented in the coloc v5.1.0 package124 under a 664 
single causal variant assumption125. Only common variants (MAF>1%) within windows of +/- 50 665 
kb around each lead variant for an infertility or reproductive hormone trait were retained. For each 666 
pair of traits tested for colocalisation, we set the prior probabilities of variants in a locus being 667 
causally associated with trait 1 (p1) and trait 2 (p2) to 1E-04 (99% confidence in a true association), 668 
and the prior for joint association p12 to 1E-06 (assuming equal likelihood of shared and non-669 
shared causal variants for each trait in a locus) as recommended by the developers of coloc125. 670 
We tested five hypotheses: H0=no association with either trait in region, H1=association with trait 671 
1 in region, but not trait 2, H2=association with trait 2 in region, but not trait 1, H3=association 672 
with both traits in region, but different causal variants, and H4=association with both traits in 673 
region, and a shared causal variant. A pair of traits were considered to colocalise if posterior 674 
probability of H4>50% and the ratio of posterior probabilities of H4/H3>5124,126. 675 
 676 
We tested for colocalisation between each female infertility category and each female-specific 677 
hormone (FSH, LH, oestradiol, and testosterone) at all genetic loci associated with at least one 678 
of the pair of traits tested. The single male infertility locus with common variants (MAF>1%) in the 679 
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European-ancestry analysis did not contain enough significant associations (only 12 common 680 
variants with P<1E-06) for colocalisation analyses. 681 
 682 
Because we noticed that some lead variants for female infertility had previously been reported as 683 
associated with endometriosis and PCOS, we estimated the posterior probability (PP) of 684 
colocalisation of genetic signals between each category of female infertility and each of these two 685 
reproductive disorders. European-ancestry summary statistics for endometriosis and PCOS were 686 
obtained as described in the genetic correlations section above. 687 
 688 
We assessed colocalisation of genetic signals for female infertility with eQTLs for all proximal 689 
genes with transcription start sites (TSSs) within 1 Mb of an infertility lead variant. Publicly 690 
available eQTL data was downloaded from the GTEx project41.  691 

Tissue and cell-type prioritisation 692 

We estimated the polygenic contributions of genes with tissue-specific expression profiles to the 693 
heritability of infertility and hormones using stratified LD-score regression (partitioned heritability 694 
analyses)51. We restricted these analyses to traits with highly significant heritability in European-695 
ancestry analyses (Z>7) (F-ALL, testosterone-F, and testosterone-M), as recommended by the 696 
developers, Finucane et al. (2015)127.  697 
 698 
Gene sets and LD scores for 205 tissues and cell-types from the GTEx Project database41 and 699 
the Franke lab single-cell database72 were downloaded from Finucane et al. (2018)128. We 700 
established tissue-wide significance at -log10(P)>2.75, which corresponds to FDR<5%. 701 

Ovarian cell types 702 

As the ovary, a reproductive tissue of interest, is not well characterised in the GTEx project, we 703 
identified two publicly available single-cell gene expression datasets for ovarian cell types: (1) 704 
from Fan et al. (2019), who performed single-cell RNA sequencing on ovarian tissue from five 705 
adult women undergoing fertility preservation procedures with 20,676 cells across 19 identified 706 
cell types129, and (2) from Jin et al. (2022), who performed single-nucleus RNA sequencing on 707 
autopsy samples from four women (aged 49-54 years, with normal ovarian histology) with 42,568 708 
cells across 8 identified cell types130. The datasets were aligned and filtered using the QC 709 
pipelines provided by the authors of each study, and clustered with identical parameters to 710 
replicate the results of each individual study. Gene sets for each cluster were identified as 711 
recommended by Finucane et al. (2018)128 - briefly, we identified differential expression between 712 
the cells in each cluster and all other clusters by using the Wilcoxon rank sum test implemented 713 
in Seurat v3.0131–133, and returned the top 10% of genes that are specifically expressed in each 714 
cluster (positive average log-fold-change values), ranked by differential expression P-value. We 715 
computed annotation-specific LD scores for these gene sets using hg38 coordinates for gene 716 
TSSs and TESs obtained from Ensembl134, across 1 million HapMap3 variants52 with LD 717 
information from European-ancestry individuals in the 1000 Genomes phase 3 dataset112.  718 
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Overlaps with genetic regions under selection 719 

To avoid confounding by population stratification, selection look-ups were restricted to GWAS 720 
summary statistics from European-ancestry individuals. 721 

Directional selection 722 

Following guidelines described by Mathieson et al. (2023)25, we identified 54 genomic regions 723 
under directional selection from three previously reported genome-wide scans: (1) 39 regions 724 
from the Composite of Multiple Signals (CMS) test, which infers historical selection on the order 725 
of the past 50,000 years58, (2) 12 regions from an ancient DNA scan that uses inferences of allele 726 
frequency from ancient genomes to determine selection over the past 10,000 years57, and (3) 727 
three regions from Singleton Density Scores (SDSs), which use the pattern of singleton variants 728 
to identify recent selection in the past 2,000 to 3,000 years56. For each genomic window under 729 
directional selection, we report the infertility-associated variants with the lowest P-value. 730 

Singleton density scores  731 

We downloaded publicly available SDSs for SNPs in the UK10K dataset56 to report the highest 732 
SDS (positive selection of derived allele over ancestral allele in the past 2,000 to 3,000 years) 733 
and lowest SDS (negative selection) within the +/-10kb window around each infertility or hormone 734 
lead SNP. To calculate trait-SDS for each phenotype, we aligned each SDS to the trait-increasing 735 
allele rather than the derived allele56. For each lead variant window containing variants with 736 
extreme SDSs (top 97.5th %ile or bottom 2.5th %ile), we report the direction of selection with 737 
respect to the trait-increasing allele. Percentiles of SDSs were evaluated only on a subset of 738 
variants within 10kb of any variant reported in the GWAS Catalog to account for genomic context. 739 
Further, as variants that are sub-GWS for a trait may nonetheless be under selection, we 740 
calculated the genome-wide mean trait-SDS in each bin of 1000 variants, ranked by P-value for 741 
the trait association, following the protocol outlined by Field et al. (2016)56. 742 

Balancing selection 743 

We accessed publicly available standardised BetaScan2 scores, which detect balancing selection 744 
using polymorphism and substitution data, for all SNPs in the 1000 Genomes dataset59. We tested 745 
whether the +/-10kb window around each infertility or hormone lead variant contained SNPs with 746 
scores in the 99th %ile of standardised BetaScan2 scores. Percentiles of SDSs were evaluated 747 
only on a subset of variants within 10kb of any variant reported in the GWAS Catalog to account 748 
for genomic context. For each lead variant window, we report the highest standardised BetaScan2 749 
score and its percentile. 750 



25 

Whole exome sequencing analyses in the UK Biobank 751 

Exome sequencing quality control 752 

Quality control outline 753 

We first considered an initial set of “high quality” variants to evaluate the mean call rate and depth 754 
of coverage for each sample. We then ran a sample and variant level pre-filtering step and 755 
calculated sample-level QC metrics. Using these metrics, we removed sample outliers based on 756 
median absolute deviation (MAD) thresholds, and excluded sites which did not pass variant QC 757 
according to Karzcewski et al. (2022)135. We then applied a genotype-level filter using genotype 758 
quality (GQ), depth (DP), and heterozygote allele balance (AB). The resultant high-quality 759 
European call set consisted of 402,375 samples and 25,229,669 variants.  For details see 760 
Supplementary Text.  761 

Variant annotation 762 

We annotated variants using Variant Effect Predictor (VEP) v105 (corresponding to gencode 763 
v39)136 with the LOFTEE v1.04_GRCh38137 and dbNSFP138 plugins, annotating variants with 764 
CADD v1.6139, and REVEL using dbNSFP4.3140 and loss of function confidence using LOFTEE. 765 
Complete instructions and code for this step are provided in our VEP_105_LOFTEE repository141, 766 
which contains a docker/singularity container to ensure reproducibility of annotations. We then 767 
ran SpliceAI v1.3142 using the gencode v39 gene annotation file to ensure alignment between 768 
VEP and SpliceAI transcript annotations. We defined ‘canonical’ transcripts to be used for variant-769 
specific annotations as follows: set MANE Select143 as the canonical, where available, and if a 770 
MANE Select transcript is not present, set canonical and restrict to protein coding genes. Note 771 
that for VEP 105, this is equivalent to selecting the ‘canonical’ transcript in protein coding genes. 772 
Then, using the collection of missense, pLoF, splice metrics, and annotations of variant 773 
consequence on the ‘canonical’ transcript, we determine a set of variant categories for gene-774 
based testing. 775 

Variant categories for gene-based tests 776 

1. High confidence pLoF: high-confidence LoF variants, as defined by LOFTEE 137 777 
(LOFTEE HC). 778 

2. Damaging missense/protein-altering: at least one of: 779 
a. Variant annotated as missense/start-loss/stop-loss/in-frame indel and 780 

(REVEL≥0.773 or CADD≥28.1 (or both)). 781 
b. Any variant with SpliceAI delta score (DS)≥0.2 where SpliceAI DS the maximum 782 

of the set {DS_AG, DS_AL, DS_DG, DS_DL} for each annotated variant (where 783 
DS_AG, DS_AL, DS_DG and DS_DL are delta score (acceptor gain), delta score 784 
(acceptor loss), delta score (donor gain), and delta score (donor loss), 785 
respectively). 786 

c. Low-confidence LoF variants, as defined by LOFTEE (LOFTEE LC) 787 
3. Other missense/protein-altering: 788 
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Missense/start-loss/stop-loss/in-frame indel not categorised in (2) (Damaging 789 
missense/protein-altering). 790 

4. Synonymous: synonymous variants with SpliceAI DS<0.2 in the gene (our ‘control’ set). 791 
 792 
REVEL and CADD score cut-offs are chosen to reflect the supporting level for pathogenicity (PP3) 793 
from the American College of Medical Genetics and Genomics and the Association for Molecular 794 
Pathology (ACMG/AMP) criteria144. 795 
 796 
Variant counts and average allele counts for each annotation, split by population label and binned 797 
by MAF are displayed in Supp. Figure 13 and Supp. Figure 14, respectively. 798 

Genetic association testing 799 

We carried out rare variant genetic association testing in the European-ancestry subset of the UK 800 
Biobank using Scalable and Accurate Implementation of GEneralized mixed model (SAIGE) 108, 801 
a mixed model framework that accounts for sample relatedness and case-control imbalance 802 
through a saddle-point approximation in binary traits. All rare-variant analysis was carried out on 803 
the UK Biobank Research Analysis Platform (RAP) using SAIGE version wzhou88/saige:1.1.9108. 804 
In the sex-combined analyses, we account for age, sex, age2, age × sex, age2 × sex, and the first 805 
10 genetic principal components as fixed effects; and age, age2, and the first 10 principal 806 
components in sex-specific analyses. All continuous traits were inverse rank normalised prior to 807 
association testing.  808 
 809 
For SAIGE step 0, we constructed a genetic relatedness matrix (GRM) using the UK Biobank 810 
genotyping array data. We LD pruned the genotyped data using PLINK (--indep-pairwise 811 

50 5 0.05)145, and created a sparse GRM using 5000 randomly selected markers, with 812 

relatedness cutoff of 0.05, using the createSparseGRM.R function within SAIGE. To generate 813 

a variance ratio file for subsequent steps in SAIGE, we extracted 1000 variants each with MAC<20 814 
and MAC>20, and combined these markers to define a PLINK file for the variance ratio 815 
determination. 816 
 817 
In SAIGE step 1 for each trait, the curated phenotype data and sparse GRM were used to fit a 818 
null model with no genetic contribution. All parameters were set at the defaults in SAIGE, except 819 
--relatednessCutoff 0.05, --useSparseGRMtoFitNULL TRUE and --820 

isCateVarianceRatio TRUE. Tolerance for fitting the null generalised linear mixed model 821 

was set to 0.00001.  822 

Rare variant and gene based testing 823 

Following null model fitting, we carried out variant and gene-based testing in SAIGE step 2 using 824 
the variant categories described above, with the --is_single_in_groupTest TRUE flag. All 825 

other parameters were set to default, except --826 

maxMAF_in_groupTest=0.0001,0.001,0.01, --is_Firth_beta TRUE, --827 

pCutoffforFirth=0.1, and --is_fastTest TRUE. We included the following collection of 828 
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group tests, using the annotations defined in methods: variant annotation. 829 
 830 

● High confidence pLoF 831 
● Damaging missense/protein-altering 832 
● Other missense/protein-altering 833 
● Synonymous 834 
● High confidence pLoF or Damaging missense/protein-altering 835 
● High confidence pLoF or Damaging missense/protein-altering or Other missense/protein-836 

altering or Synonymous 837 
 838 

We then carried out Cauchy combination tests146 across these annotations for each gene. 839 

Data and code availability 840 

Cohorts may be contacted individually for access to raw data. Summary statistics for all 841 
phenotypes will be made available through the GWAS Catalog upon publication. All code used in 842 
this study will be made available through GitHub upon publication. 843 
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