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34 Abstract

35 The recent imperative by the National Institutes of Health to share scientific data publicly 

36 underscores a significant shift in academic research. Effective as of January 2023, it emphasizes 

37 that transparency in data collection and dedicated efforts towards data sharing are prerequisites 

38 for translational research, from the lab to the bedside. Given the role of data access in mitigating 

39 potential bias in clinical models, we hypothesize that researchers who leverage open-access 

40 datasets rather than privately-owned ones are more diverse. In this brief report, we proposed to 

41 test this hypothesis in the transdisciplinary and expanding field of artificial intelligence (AI) for 

42 critical care. 

43 Specifically, we compared the diversity among authors of publications leveraging open datasets, 

44 such as the commonly used MIMIC and eICU databases, with that among authors of publications 

45 relying exclusively on private datasets, unavailable to other research investigators (e.g., electronic 

46 health records from ICU patients accessible only to Mayo Clinic analysts). To measure the extent 

47 of author diversity, we characterized gender balance as well as the presence of researchers from 

48 low- and middle-income countries (LMIC) and minority-serving institutions (MSI). 

49 Our comparative analysis revealed a greater contribution of authors from LMICs and MSIs among 

50 researchers leveraging open critical care datasets than among those relying exclusively on private 

51 data resources. The participation of women was similar between the two groups, albeit slightly 

52 larger in the former. Notably, although over 70% of all articles included at least one author inferred 

53 to be a woman, less than 25% had a woman as a first or last author. Importantly, we found that 

54 the proportion of authors from LMICs was substantially higher in the treatment than in the control 

55 group (10.1% vs. 6.2%, p<0.001), including as first and last authors. Moreover, we found that the 

56 proportion of US-based authors affiliated with a MSI was 1.5 times higher among articles in the 

57 treatment than in the control group, suggesting that open data resources attract a larger pool of 

58 participants from minority groups (8.6% vs. 5.6%, p<0.001).
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59 Thus, our study highlights the valuable contribution of the Open Data strategy to 

60 underrepresented groups, while also quantifying persisting gender gaps in academic and clinical 

61 research at the intersection of computer science and healthcare. In doing so, we hope our work 

62 points to the importance of extending open data practices in deliberate and systematic ways.

63

64 Author Summary

65 In light of the significance of data access to the mitigation of bias in clinical models, we 

66 hypothesize that researchers who leverage existing open-access datasets rather than privately-

67 owned ones are more diverse. In this brief report, we propose to test this hypothesis in the 

68 transdisciplinary and expanding field of artificial intelligence for critical care. Specifically, we 

69 compare the diversity among authors of publications leveraging open datasets, such as the 

70 commonly used MIMIC and eICU databases, with that among authors of publications relying 

71 exclusively on private datasets, unavailable to other research investigators. To measure the 

72 extent of author diversity, we characterize gender balance, geographic diversity (i.e., the number 

73 of countries with which authors are affiliated and the income categories these countries map to), 

74 and the presence of researchers from minority-serving institutions located in the United States. 

75 Furthermore, we comment on the challenges of increasing the participation of researchers from 

76 underrepresented groups and suggest changes that can be made to the current Open Data 

77 strategy to enhance representation in authorship in the next decade. By evaluating the association 

78 between data accessibility and author diversity, our study pinpoints actionable steps that the 

79 broader field of clinical AI can take to foster inclusion in the scientific community and mitigate blind 

80 spots in data preparation and/or model development.

81

82
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83 Introduction

84 The rapidly expanding field of health data science integrates two established disciplines: 

85 computer science and healthcare. It promises to address the growing complexity of healthcare 

86 systems arising from (a) the multiplicity of care delivery settings (e.g., hospital, home), (b) the 

87 increasing number of data sources – both traditional (e.g., UK BioBank, NIH All Of Us) and non-

88 traditional (e.g., marker trajectories from wearables, social media traces of health-related 

89 behavior), and (c) their multi-modality (e.g., structured electronic health records (EHR), medical 

90 images, genome sequencing, clinical notes, voice recordings). In parallel with this ambitious 

91 endeavor, the emergence of health data science has increased the need for significant changes 

92 in the education of health professionals. Recent examples include courses in machine learning in 

93 healthcare and opportunities to shadow a team deploying clinical algorithms in hospitals. Such 

94 theoretical and practical trainings are foundational as data science plays an increasing role in the 

95 provision of healthcare. These combined skills are needed to retrospectively derive novel insights 

96 using statistical inference (e.g., estimating treatment effects using observational data), to build 

97 interpretable clinical models (e.g., predicting in-hospital mortality in a given time horizon), and to 

98 support their prospective implementation (e.g., conducting risk analysis and identifying potential 

99 errors that can be systematically addressed). Depending on the professional role, skills in one or 

100 more of these areas are becoming increasingly necessary to apprehend real-world data used in 

101 clinical models.

102

103 Bias in clinical models can emanate from multiple sources

104 The data underlying clinical models may contain biases that can be unknowingly propagated to 

105 downstream inference and prediction tasks [1,2]. Such biases can emanate from multiple sources 

106 – ranging from differences in how physicians report information in EHR and clinical notes to 

107 artifacts in images to the miscalibration of medical devices – but they can also reflect existing 
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108 social determinants of health. In other words, biases encountered in clinical data are often 

109 intersectional in nature, i.e., both social and technological [3]. For example, skin tone affects the 

110 accuracy of pulse oximetry but is rarely considered in trials measuring medical device 

111 performance [4,5,6,7]. Interrogating existing datasets and fully understanding the underlying 

112 biases requires a multidisciplinary examination involving more than a single data analyst or 

113 research group. Instead, the cooperation of clinicians, engineers, data scientists, social scientists, 

114 and industry partners is greatly needed. Indeed, studies have shown that research groups with 

115 more diverse expertise are more effective in identifying or addressing issues of bias [8]. 

116

117 Study hypothesis and contribution

118 In this study, we seek to understand the role of open data and diversity in research expertise 

119 towards mitigating biases affecting clinical models. We hypothesize that the groups of researchers 

120 who leverage existing open-access datasets are more diverse than those using privately-owned 

121 datasets. In what follows, we explain our rationale and motivation for analyzing the profile of 

122 researchers who use open vs private datasets.

123

124 Many existing approaches to mitigate bias occur downstream of model development

125 The timing of efforts to address bias may be critical. When, in the lifecycle of a clinical model, are 

126 interventions to mitigate bias most effective? Healthcare systems can deploy interventions either 

127 downstream or upstream of the model development phase to mitigate the repercussions of data 

128 biases. Researchers in the field of ethics in artificial intelligence (AI) for health have participated 

129 in this effort by exploring several downstream approaches. Notably, biases can be mitigated after 

130 model fitting and/or deployment [9] through the use of explainable AI (XAI) tools [10,11] that 

131 identify biased features contributing to discriminatory outcomes (e.g., by decomposing individual 

132 predicted risk scores). 
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133 The public release of datasets offers an alternative, upstream approach

134 In contrast to XAI tools and other technology-based solutions, the public release of datasets in 

135 science, medicine, and engineering offers an upstream solution. This human-centric approach, 

136 which focuses on better understanding biases in health data, maximizes the number of 

137 investigators involved and leverages their cognitive and social diversity to examine clinical data. 

138 There exist several examples throughout history whereby research necessitated multiple teams 

139 to examine the same dataset to ultimately reach an agreement. The case of right heart 

140 catheterization was notable: repeated analyses of the original dataset, collected by Connors et 

141 al. in 1996 [12], yielded conflicting results. This confusion left clinicians needing clarification about 

142 the effect of the procedure for years. Untangling the confounding factors to reach our current 

143 understanding took several teams of biostatisticians. In sum, the coordinated efforts of many 

144 investigators, in an iterative learning process, are required to achieve consensus in data analysis 

145 and interpretation. In recent years [13,14], additional upstream approaches such as the 

146 embedded ethics methodology have been proposed to ensure that interdisciplinary ethical inquiry 

147 and deliberation are integrated into AI and healthcare technology development processes starting 

148 at project ideation [15]. Others have advanced approaches such as algorithmic impact analysis, 

149 which seeks to develop robust public interest methodologies to better understand the impact of 

150 AI and automated decision-making systems on people’s lives and society at large [16]. 

151

152 The current landscape of clinical data science research

153 In the past five years, several organizations – including the National Institutes of Health (NIH), 

154 European Commission, and World Economic Forum [17] – have recommended a shift to Open 

155 Data, a movement whose goal is to increase the release of FAIR (Findable, Accessible, 

156 Interoperable, and Reusable) [18] datasets in scientific research. In particular, large investments 

157 have been made in the biomedical sciences [19,20]. However, the clinical data science landscape 
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158 remains highly siloed and opaque [21]. Expertise at the intersection of computer science and 

159 healthcare is currently concentrated among a few academic and industry research teams 

160 responsible for the preprocessing of data and the training of models [22,23]. Only researchers 

161 who are fortunate enough to be aware of a dataset’s existence, to be granted access to it, and to 

162 have sufficient funding to afford the associated licensing fees and computing infrastructure, can 

163 effectively leverage it in practice. Therefore, in far too many instances, datasets are often 

164 inaccessible to investigators outside the very research team that curated them. For example, 

165 researchers who are not clinicians (e.g., computer scientists at MIT working on diabetic 

166 retinopathy in Uganda) often have limited access to primary data. Thus, they must rely on second-

167 hand knowledge from clinical investigators at their institution or in their network (e.g., physicians 

168 at Harvard Medical School) but whose domain expertise may have been gained from datasets 

169 and practices originated in a different context. For example, datasets developed in North America 

170 may have significant limitations when used to train models to be implemented in East Africa and 

171 vice versa. Such secondary data analysis requires a deep understanding of the data curation 

172 process, including biases in data collection and artifacts in clinical measurements, which may vary 

173 locally by medical site or by region. Thus, knowledge transfer alone is insufficient to safeguard 

174 against the spread of biases. There are numerous reasons why bias occurs in clinical models. 

175 For instance, a decision-support model to prioritize screening for diabetic retinopathy that does 

176 not appropriately account for differences in the frequency of specialty visits among patients may 

177 result in selection bias. This example points to the need for familiarity with relevant socio-

178 demographics and patient care-seeking behavior. Bias also can manifest when analysts inherit 

179 datasets without any background about the underlying environment. In such situations, they risk 

180 not only using a training dataset that is ill-suited for the target population, but  also failing to 

181 understand the limitations of their model because local features have not been considered. 

182 Ideally, researchers will seek to interface with the team responsible for primary data collection. 
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183 Without such a dialogue, external teams run the risk of unsafely deploying algorithms that do not 

184 generalize well out-of-distribution, for the cohorts of patients they care for.

185

186 The promise of new NIH data-sharing policies

187 The recent imperative by the NIH to share scientific data publicly underscores a significant shift 

188 in academic research [24]. Effective as of January 2023, it emphasizes that transparency in data 

189 collection and dedicated efforts towards data sharing – with other investigators and the broader 

190 public, including citizen scientists – are prerequisites for translational research, from the lab to the 

191 bedside. Certain fields of healthcare have paved the way: workshops on data ethics, privacy, 

192 consent, and anonymization have been organized in radiology [25]; a common ontology has been 

193 developed for data standardization in radiation oncology [26]; multi-center data-sharing platforms 

194 have been designed for collaboration in sleep medicine [27]; and distributed learning networks 

195 have recently been proposed as a solution to preserve the privacy of patients’ EHR [28]. In the 

196 long run, requirements such as submitting a Data Management and Sharing Plan along with 

197 funding applications [29] will allow a more diverse population of researchers to interrogate both 

198 raw, unprocessed, and curated, pre-processed datasets. In light of the significance of data access 

199 to the mitigation of bias, we hypothesize that researchers who leverage existing open-access 

200 datasets rather than privately-owned ones are more diverse. We reason that the diversity of the 

201 backgrounds of open dataset users may in turn result into greater attention to equity in patient 

202 data collection and in a more compelling use of research data to address the pressing needs of 

203 the global population. This increased attention to issues of equity could also facilitate a more 

204 nuanced interpretation of study results and a stronger willingness to translate these results into 

205 practice. 

206

207

208
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209 Structure of this paper

210 In this brief report, we propose to test this hypothesis in the transdisciplinary and expanding field 

211 of AI for Critical Care. Specifically, we compare the diversity among authors of publications 

212 leveraging open datasets, such as the commonly used MIMIC [30] and eICU databases [31], with 

213 that among authors of publications relying exclusively on private datasets, unavailable to other 

214 research investigators. To measure the extent of author diversity, we characterize gender 

215 balance, geographic diversity (i.e., the number of countries with which authors are affiliated and 

216 the income categories these countries map to), and the presence of researchers from minority-

217 serving institutions. Furthermore, we comment on the challenges of increasing the participation 

218 of researchers from underrepresented groups and suggest changes that can be made to the 

219 current Open Data strategy to enhance representation in authorship in the next decade. By 

220 evaluating the association between data accessibility and author diversity, our study pinpoints 

221 actionable steps that the broader field of clinical AI can take to foster inclusion in the scientific 

222 community and mitigate blind spots in data preparation and/or model development. 

223

224 Methods

225 Our scripts and datasets are publicly available on GitHub:

226 https://github.com/anpetushkov/OpenVsPrivateDatasets  

227

228 Data

229 We leveraged PubMed [32] to select research studies at the intersection of AI and Critical Care 

230 published between 2010 and 2022. We created two separate queries to derive (1) a list of 

231 publications related to AI and (2) a list of publications addressing topics in critical care medicine. 

232 We used the same process as Celi et al. [20] for the AI-specific query since the authors’ model 

233 identified AI-related publications with suitable performance for our task (AUROC=0.96).  Query 
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234 search terms specific to critical care were selected based on Van de Sande et al. [33] and vetted 

235 by two physician authors on our team, LAC and JG. Subsequently, we merged the two publication 

236 lists, thereby capturing only the studies related to both fields. Further, we split the resulting set of 

237 studies into two groups: “treatment”  and “control.” The treatment group comprised publications 

238 leveraging either of the two major critical care databases currently in open access, i.e., MIMIC 

239 and eICU. We used dataset-specific queries from Google Dataset Search [34] to derive a list of 

240 works leveraging MIMIC or eICU critical care databases. Conversely, the control group consisted 

241 of publications based on privately-owned datasets that are unavailable to researchers other than 

242 the primary investigators. To avoid leakage, we confirmed that the two groups were mutually 

243 exclusive, i.e., no publication belonged to both. For studies in the control group, we first 

244 downloaded their unique PMID identifiers from PubMed, owing to the large sample size. Then, 

245 we used the Dimensions AI platform, an interlinked research information system provided by 

246 Digital Science, to collect metadata pertaining to each research article [35]. For studies in the 

247 treatment group, we performed the query via Dimensions AI directly as the sample size was much 

248 smaller. The platform was accessed in June 2023. Finally, we manually filtered the initial set of 

249 papers in the treatment group to exclude outliers and include only relevant MIMIC and eICU 

250 manuscripts. Three team members (AP, CL, and GL) completed this manual validation task 

251 independently before reconvening and reaching a consensus. Details about the creation of the 

252 study dataset are available in Figure 1.a.

253

254 Labeling of author gender

255 Each author's first name was processed by the Genderize.io Application Programming Interface 

256 (API) (Figure 1.a). The API is based on a global collection of first names that have been manually 

257 annotated and linked to their most likely gender. Building on this international database of first 

258 names, the probability that an author is a woman or a man can be derived from the API. The API 
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259 returns an “unknown” label when the uncertainty is too high. We assigned the most probable 

260 gender label associated with each author’s first name (“female,” “male,” or “unknown”).

261

262 Labeling of minority-serving institutions

263 To measure the extent of the representation of minority-serving institutions (MSI) within the control 

264 and treatment groups, we developed our own fuzzy-matching pipeline between a pre-specified 

265 list of institutions and each author’s affiliation(s).  In particular, we built upon the fuzzy-match 

266 Python package [36], specifically the Levenshtein Partial Ratio Function with a matching threshold 

267 of 97 percent. The list of MSIs used in this study was obtained by combining two data sources: 

268 the 2020 list from [37] comprising 774 distinct MSIs and the 2022 list from [38] containing 865 

269 distinct MSIs (Figure 1.a). A total of 566 institutions were shared by the two sources (exact + 

270 fuzzy matching based on the institution’s name), while the remaining MSIs were unique to each 

271 list. The integration of these two data sources allowed for a more comprehensive set of MSIs. 

272 To confirm the accuracy of the mapping between institutional affiliations and their potential MSI 

273 status, we performed manual verification of outputs from the fuzzy-matching process for both the 

274 2020 and 2022 MSI datasets. In cases when an author’s institutional affiliation was incorrectly 

275 mapped to an MSI, we rectified the mistake manually. Verification was limited to reducing false 

276 positives, i.e., we only determined institutional affiliations that were erroneously linked with MSIs. 

277 However, our matching process was deemed comprehensive, since we selected a high threshold 

278 value of 97 percent to limit the number of false negatives. 

279

280 Labeling of institutions based in low- and middle-income countries

281 The 2022 World Bank country classification was used to map countries associated with 

282 researcher affiliations to the low- and middle-income category (LMIC) or the high-income category 

283 (HIC) (Figure 1.a). Countries are ranked according to the gross national income. For authors with 
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284 multiple affiliations, each was considered separately and mapped to the corresponding income 

285 category.

286
287 Diversity metrics

288 A total of three diversity metrics were considered. First, for each paper, we quantified the overall 

289 number of authors, the number of probable women among the authors, and whether the first/last 

290 author was likely a woman. For both the control and treatment groups, we derived the proportion 

291 of probable women by article and the overall percentage of articles featuring an author who was 

292 likely a woman as the first and/or last author. Second, for each paper, we measured the number 

293 of authors affiliated with an institution based in an LMIC and whether the first/last author was 

294 based in an LMIC. For both groups, we derived the proportion of LMIC authors by article and the 

295 overall percentage of articles featuring an LMIC author in a leading role. Third, for each article, 

296 we quantified the number of authors affiliated with an MSI and the MSI status of the first and/or 

297 last author’s affiliation. For both groups, we similarly derived the proportion of MSI authors by 

298 article and the overall percentage of articles featuring MSI authors. Note that papers whose first 

299 or last author had an unknown gender or unidentifiable LMIC or MSI status based on their 

300 affiliation were excluded from the corresponding analyses.

301

302 Statistical analysis

303 For each of the three diversity metrics of interest (i.e., gender representation, geographic diversity, 

304 and MSI status), we performed a one-sided proportional Chi-squared test of independence to 

305 determine if there was a significant difference between the control and treatment groups. We set 

306 the threshold for statistical significance to 0.05, following common practice. A p-value less than 

307 0.05 would thus indicate a statistically significant difference between the control and treatment 

308 groups (e.g., in terms of the representation of women, LMIC, or MSI authors), in favor of the latter. 

309 We conducted three sensitivity analyses to assess the impact of missing data and to test the 
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310 robustness of our results. In the first counterfactual scenario, we assumed that none of the papers 

311 with missing author affiliation had any authors from LMICs. Conversely, in the second 

312 counterfactual scenario, we assumed that all of these papers had at least one author affiliated 

313 with an institution based in an LMIC. Lastly, in the third counterfactual scenario, we assumed that 

314 missing income category labels could be imputed via dataset-specific distributions derived from 

315 labeled data, i.e., using either that of the control or treatment group, depending on the group the 

316 article belonged to (Figure 1.b).

317
318 Results

319 Overall, we identified 5,219 Critical Care AI papers, including 2,912 studies in the control group 

320 (i.e., 55.8%) and 2,307 studies in the treatment group (i.e., 44.2%). The control and treatment 

321 groups comprised 17,999 and 9,959 distinct authors, respectively; among them, 16,743 (93.0% 

322 of the control group) and 8,210 (82.4% of the treatment group) had available research affiliation 

323 information. A total of 562 authors appeared in both groups, representing 3.4% of the control 

324 group and 6.8% of the treatment group. In the treatment group, the three leading venues were all 

325 preprint servers, accounting for 29.3% of all articles: arXiv (20.6%), Research Square (6.4%), and 

326 medRxiv (2.3%). Following these, the next three most popular venues were journals, accounting 

327 for 4.4% of all articles: Frontiers in Medicine (1.8%), Scientific Reports (1.3%), and, notably, 

328 Critical Care Medicine (1.3%), the flagship journal in the field. Together, these six venues 

329 accounted for 778 (33.7%) of all articles in the treatment group, suggesting that authors 

330 leveraging open datasets publish their work in a great diversity of outlets. In contrast, in the control 

331 group, the top venue was the IEEE Engineering in Medicine and Biology Society Conference 

332 (EMBC, 3.4%), followed by two journals, PLOS One (2.4%) and Scientific Reports (2.3%). 

333 Collectively, the top three forums represented 238 (8.2%) of all articles in the control group. 

334 Beyond the journal Critical Care Medicine, which accounts for 68 articles (2.3%), other popular 

335 venues included the Journal of Clinical Monitoring and Computing (1.5%) and Computers in 
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336 Biology and Medicine (1.2%). Overall, the six main venues accounted for 385 (13%) of all articles 

337 in the control group, underscoring the heterogeneity of outlets in which authors leveraging private 

338 datasets publish their work as well. The comprehensive breakdown of author characteristics for 

339 each group is detailed in Table 1, while the full distribution of conference venues and journals is 

340 available in our GitHub repository. For each group, the distribution of papers among the top 10 

341 venues is available in Supplementary Figure 1 (treatment) and Supplementary Figure 2 

342 (control).

Table 1a. Characteristics of authors in the treatment and control groups.

Diversity metric and author role
Treatment group

MIMIC/eICU
(n / non-missing)

Control group
(n / non-missing)

Probable 
woman 
(inferred 
gender)

Any author 27.8% (2438 / 8758) 30.8% (4710 / 15285)

LMIC* Any author 6.7% (547 / 8210) 3.5% (590 / 16743)
MSI* Any author 8.6% (190 / 2207) 5.6% (277 / 4914)

Table 1b. Characteristics of papers in the treatment and control groups.

Diversity metric and author role
Treatment group

MIMIC/eICU
(n / non-missing)

Control group
(n / non-missing)

Any Author 71.8% (1024 / 1426) 73.0% (1330 / 1823)

First Author 28.1% (401 / 1426) 30.9% (564 / 1823)

Probable 
woman 
(inferred 
gender)

Last Author 23.6% (336 / 1426) 21.7% (395 / 1823)

Any Author 10.1% (150/ 1487) 6.2% (168 / 2694)
First Author 7.9% (117 / 1487) 4.8% (130 /2694)

LMIC*

Last Author 7.8% (116 / 1487) 4.6% (123 / 2694)
Any Author 27.6% (126 / 456) 17.7% (175 / 991)
First Author 7.9% (36 / 456) 4.7% (47 / 991)

MSI*

Last Author 6.1% (28 / 456) 5.5% (55 / 991)
LMIC* & 
woman 
(inferred 
gender) 

Any Author 6.2% (59 / 945) 3.8% (64 / 1698) 

MSI* & 
woman 
(inferred 
gender)

Any Author 20.6% (35 / 170) 34.5% (86 / 249)

*LMIC: Low- and Middle-Income Country, *MSI: Minority Serving Institution.
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343 Note 1: LMIC-related statistics were determined based on papers with non-missing affiliation and 

344 hence non-missing country information. Note that 368 (8%) of all papers had at least one author 

345 with missing country information. This missing data pattern affected 185 (11.1%) and 183 (6.4%) 

346 papers from the treatment and control groups, respectively. 

347 Note 2: In the treatment group, 104 papers (7.0%) had only one author. In the control group, 178 

348 papers (6.6%) had only one author.

349

350 Gender

351 The proportion of papers with at least one author inferred to be a woman was qualitatively 

352 comparable between the two groups, albeit slightly higher in the control group (73.0% vs. 71.8%, 

353 z=-0.726, p=0.468). The representation of women among the first and the last authors was similar 

354 between the two groups (28.1% vs. 30.9%, z=-1.74, p=0.0811; 23.6% vs. 21.7%, z=1.28, 

355 p=0.199, respectively). Importantly, in both groups, the proportion of women serving as a last 

356 author (overall average of 22.5%), often reflecting a senior research leadership role, was lower 

357 than that of women serving as a first author (overall average of 29.7%), generally awarded to the 

358 person leading study design and analysis. This difference was more pronounced (9.2 vs. 4.5 

359 percentage points) in the control than in the treatment group.    

360

361 Low- and middle-income countries (LMIC)

362 Overall, out of the 4,181 articles with non-missing affiliations included in our study, 318 (i.e., 7.6%) 

363 had at least one LMIC author. The proportion of authors from LMICs was substantially higher in 

364 the treatment than in the control group (10.1% vs. 6.2%, z=4.5, p<0.001). Moreover, we found 

365 that the diversity of first and last authors in terms of country of affiliation was greater in the 

366 treatment group, i.e., among studies leveraging MIMIC and eICU open critical care datasets. 

367 Indeed, 7.9% (vs 4.8%, z=4.30, p<0.001) of papers in the treatment group had their first author 

368 affiliated with an LMIC country. Furthermore, 7.8% (vs 4.5% z=3.14, p<0.001) had their last author 
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369 affiliated with an LMIC country. The first sensitivity analysis, imputing missing data using the 

370 distribution based on labeled samples, also led to the conclusion of a greater representation of 

371 LMIC authors among researchers leveraging open datasets (overall: 10.1 % vs 8.3%, z=4.5, 

372 p<0.001). The second sensitivity analysis, which made the optimistic assumption that all papers 

373 with missing affiliation information had authors from LMICs, confirmed the robustness of our 

374 results (overall: 42.0% vs 16.7%, z=23.5, p<0.001). The third sensitivity analysis, which made the 

375 pessimistic assumption that none of the papers with missing country information had authors from 

376 LMICs, yielded results qualitatively similar to the main analysis, albeit not statistically significant 

377 (overall: 6.5% vs 7.3%, z=1.1, p=0.14; first: 4.6% vs. 4.9%, z=1.3, p=0.10; last: 4.6% vs 5.2%, 

378 z=0.77, p=0.22). 

379

380 Minority-serving institutions (MSI)

381 Our analysis of authorship among MSIs was restricted to the United States (US). The control 

382 group comprised 4,914 distinct authors with institutional affiliations within the US for a total of 

383 16,743 distinct authors with an affiliation worldwide (i.e., 29.3%). Among them, 277 different 

384 authors were affiliated with MSIs, accounting for approximately 5.6% of the total. In contrast, the 

385 treatment group comprised 2,207 authors with institutional affiliations within the US, for a total of 

386 8,210 distinct authors with non-missing affiliations worldwide (i.e., 26.9%). Among them, 190 

387 different authors were affiliated with MSIs, accounting for approximately 8.6% of the total. Thus, 

388 the proportion of US-based authors affiliated with an MSI was 1.5 times higher among articles in 

389 the treatment than in the control group; this difference was statistically significant, suggesting that 

390 open data resources attract a larger pool of participants from minority groups (z=4.69, p<0.001).

391 In addition to overall statistics, we characterized the involvement of MSI researchers at the team 

392 level, i.e., per paper. The control (resp. treatment) group consisted of 991 (resp. 456) distinct 

393 papers with at least one author having an institutional affiliation in the US, out of 2,877 (resp. 
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394 1,672) papers worldwide (i.e., 34.4% and 27.3%, respectively). Among these papers, 175 (resp. 

395 126) had at least one author affiliated with an MSI, representing approximately 17.7% (resp. 

396 27.6%) of the total US research output in critical care AI involving the use of private (resp. open) 

397 databases. Thus, the proportion of papers featuring US-based authors affiliated with an MSI was 

398 1.6 times higher in the treatment than in the control group; this difference was statistically 

399 significant, suggesting that MSI researchers effectively benefit from open data resources, which 

400 further translates into publications and preprints (z=4.34, p<0.001).

401 Out of the 991 distinct papers in the control group, the percentage of papers with an MSI-affiliated 

402 first author reached only 4.7% (47 / 991). The proportion of MSI researchers serving as first 

403 authors was significantly greater (z=2.40, p=0.008) in the treatment group, reaching 7.9% (36 / 

404 456). This result suggests that barriers remain for MSI-affiliated authors to lead research studies 

405 when the underlying datasets are inaccessible to the broader public. In contrast, opening critical 

406 care datasets can bolster the participation of MSI researchers as first authors. Of note, the 

407 percentage of papers with an MSI-affiliated last author was larger (z=0.45, p=0.327) in the 

408 treatment group (28 / 456, i.e., 6.1%) than in the control group (55 / 991, i.e., 5.5%), but this 

409 difference was statistically insignificant owing to a reduced sample size in the analysis focused 

410 on MSI representation. 

411 Intersectionality

412 Gender and LMIC

413 Of the 2,643 papers with complete author data regarding both gender and LMIC status, a clear 

414 difference emerged between the control and treatment groups, with respect to the intersectional 

415 representation of researchers. In the treatment group comprising 945 papers, 59 (i.e., 6.2%) 

416 featured at least one woman and at least one LMIC-based researcher among the authors. In 

417 contrast, in the control group comprising 1,698 papers, only 64 (i.e., 3.8%) included both a woman 

418 and an LMIC-based researcher. This difference was statistically significant (z=2.78,  p=0.003), 
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419 underscoring greater intersectional diversity among authors who leveraged the publicly available 

420 MIMIC and eICU databases than among authors in the control group, who relied exclusively on 

421 private datasets.

422 Gender and MSI

423 Among the 277 authors in the control group affiliated with an MSI, 249 authors had non-missing 

424 gender information and 86 (i.e., 35%) were women. In contrast, among the 190 authors in the 

425 treatment group, 170 authors had non-missing gender, and 35 were women (i.e., 21%). The 

426 difference was statistically insignificant (z=-3.09, p=0.999); hence there was no evidence of 

427 greater intersectional diversity, by gender and MSI, in the treatment group. Nonetheless, the 

428 sample sizes resulting from multiple stratifications were quite small, therefore limiting statistical 

429 power. Thus, future efforts should focus on monitoring trends over time to gather more evidence 

430 about differences in the representation of authors, with a focus on the intersectionality of their 

431 identities.

432

433 Discussion

434 Our comparative analysis revealed a greater contribution of authors from LMICs and MSIs among 

435 researchers leveraging open critical care datasets than among those relying exclusively on private 

436 data resources. The participation of women was similar between the two groups, albeit slightly 

437 larger in the treatment group. Notably, although over 70% of all articles included at least one 

438 author likely to be a woman, they served as a first or last author in less than 25% of those articles. 

439 Thus, our study highlights the value of the Open Data strategy for underrepresented groups, while 

440 also quantifying persisting gender gaps in academic and clinical research at the intersection of 

441 computer science and healthcare. In doing so, we hope our work points to the importance of 

442 extending open data practices in deliberate and systematic ways.

443

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 18, 2024. ; https://doi.org/10.1101/2024.03.17.24304443doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.17.24304443
http://creativecommons.org/licenses/by/4.0/


19

444 While incorporating AI into healthcare is a technically challenging endeavor, its success depends 

445 not only on the performance of clinical models but also on the humans interfacing with them. 

446 Clinical models are a reflection of the patient data they are trained upon. The people collecting, 

447 processing, and analyzing the data all play a role in rendering the final representation of patients 

448 underlying inference and prediction tasks. Therefore, cognitive diversity among researchers 

449 responsible for study design and data examination will facilitate a more thoughtful investigation of 

450 potential pitfalls encoded within clinical data. 

451 Critical care research is still highly imbalanced. For example, while the incidence and mortality of 

452 sepsis is the highest in sub-Saharan Africa and other low- and middle-income countries, over 

453 75% of clinical studies underlying the 2021 sepsis guidelines were conducted in high-income 

454 countries [39]. As the complexity of critical care data has increased, so has the complexity of the 

455 biases introduced: because of pronounced imbalances in the patient populations featured in 

456 research datasets [40], their identification can be difficult. Our research shows that open access 

457 to critical care data can change the status quo. With the public release of datasets such as MIMIC 

458 and eICU, we found that participation from authors based in LMICs or affiliated with MSIs can be 

459 greatly improved. 

460 Open data offers a resource for data scientists and healthcare specialists to develop skills that 

461 are essential to patient care in the digital health era. However, the transparent release of datasets 

462 on freely-accessible cloud platforms is not sufficient in itself to generate meaningful knowledge in 

463 the biomedical sciences. Beyond data sharing and collaboration across institutions, 

464 improvements in education and research should be sought at multiple stages, starting with 

465 outreach programs aimed at diversifying teams of clinicians and engineers as well as continued 

466 education to raise awareness about both persisting and evolving health disparities. For instance, 

467 the INFORMED fellowship in oncology data science offered by the National Cancer Institute (NCI) 

468 constitutes an excellent model to be replicated elsewhere [41,42]. To sustain LMIC participation 
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469 in critical care research, reducing the barrier to learning, engaging with, and publishing in, the 

470 digital health field is vital. Models are often built in one site but deployed in others. Therefore, it is 

471 crucial to enable teams serving at medical centers with fewer resources to examine distributional 

472 shifts between their local data and the data originally used for training and validation and to 

473 evaluate model performance locally [43]. Furthermore, temporal evaluations of subpopulation 

474 shifts (i.e., related to variation in patient sociodemographics and/or clinical profiles) and calibration 

475 drifts (possibly related to the former or to changes in clinical practice, outcome detection tools 

476 etc.) must be continuously performed.  These checks can help detect the emergence of new 

477 disparities and measure the effectiveness of interventions aiming to correct for those that were 

478 previously identified [44]. With the increasing digitization of medical records, the hope is that the 

479 community of health informatics researchers will broaden and help break institutional silos at each 

480 site. While continuing to advocate for the collection of comprehensive clinical datasets 

481 appropriately reflecting the target populations, investing in implementation science and striving to 

482 integrate clinical models into healthcare systems should also be prioritized.

483 Although the differences observed between works leveraging open vs. private datasets are 

484 striking, we acknowledge three key limitations that affect the precision of the prevalences reported 

485 in our study. First, the algorithm that classified an author's likely gender was trained using binary 

486 gender labels on a researcher’s first name, which provides an imperfect proxy for a complex 

487 attribute such as gender identity. While common in bibliometric analyses, this method overlooks 

488 nuances in how individuals self-identify and excludes those who do not fit into binary gender 

489 categories. Going forward, integrating survey data from individual researchers could enable a 

490 more accurate categorization, especially as gender model performance varies across languages 

491 and cultures. Second, representation was assessed only in terms of the three following 

492 dimensions: gender, country income level, and minority-serving status of the author’s institutions. 

493 Future work should move beyond such unidimensional definitions of diversity to capture the 

494 intersectional relationships that shape experiences in academia and clinical research. Third, the 
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495 definition of minority-serving institutions was based on a US-centric designation. Future research 

496 should seek to assess geographic diversity more comprehensively, extending the analysis to 

497 countries outside the US; a globally inclusive framework is needed to understand how researchers 

498 from under-resourced institutions worldwide engage with open data within and across nations.

499 Conclusion 

500 Without a concerted commitment to diversifying authorship, clinical AI research risks being 

501 confined to a limited group of institutions and individuals. Such homogeneity may introduce and 

502 perpetuate biases within AI systems, potentially exacerbating health disparities and reinforcing 

503 existing inequities in healthcare delivery. In response, we must actively promote gender 

504 representation and include voices from institutions that serve underrepresented populations, 

505 thereby incorporating essential perspectives that address the multifaceted dimensions of 

506 inequality. 

507 The rise of open data platforms adhering to FAIR (Findable, Accessible, Interoperable, and 

508 Reusable) principles brings new opportunities for investigators worldwide to participate in 

509 biomedical research and knowledge creation. Future policy interventions, including by institutions 

510 and editorial boards, should consider the complex associations among access to open data, bias 

511 in the development and use of clinical models, and diversity in research groups. Going forward, it 

512 will be key to monitor progress frequently, particularly with respect to the intersectional 

513 representation of authors – not only by gender, geography, and MSI status, but across the multiple 

514 dimensions that constitute a scientist’s identity. Despite recent advances, sustaining an open and 

515 inclusive clinical AI ecosystem will require the retention of diverse talent, across geographies and 

516 career stages, in part through the provision of dedicated training. Policy and technology 

517 innovations must continue lowering barriers that prevent the broader, collaborative engagement 

518 of researchers with clinical data resources. 

519
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521 Figures 

522 Figure 1. Flow diagram illustrating a) the methodology for the analysis of authorship diversity in 

523 scientific publications at the intersection of AI and Critical care and b) the number of 

524 publications considered.  
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