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Abstract

Artificial intelligence (AI) techniques such as deep learning hold tremendous
potential for improving clinical practice. However, clinical data complexity and
the need for extensive specialized knowledge represent major challenges in the
current, human-driven model design. Moreover, as human interpretation of a
clinical problem is inherently encoded in the model, the conventional single
model paradigm is subjective and cannot fully capture the prediction uncertainty.
Here, we present a fast and accurate framework for automated clinical deep
learning, TEACUP (training-free assembly as clinical uncertainty predictor). The
core of TEACUP is a newly developed metric that faithfully characterizes the
quality of deep networks without incurring any cost for training of these networks.
When compared to conventional, training-based approaches, TEACUP reduces
computation costs by more than 90% while achieving improved performance across
distinct clinical tasks. This efficiency allows TEACUP to create ensembles of expert
AI models, mimicking the recommended clinical practice of using multiple human
experts when interpreting medical data. By combining multiple perspectives,
TEACUP provides more robust predictions and uncertainty quantification, paving
the way for more reliable clinical AI.

Keywords: clinical artificial intelligence, deep learning, neural network architecture,
automated machine learning, uncertainty quantification
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1 Introduction

Deep neural networks (DNNs) have provided state-of-the-art tools for many machine
learning tasks in clinical and biomedical applications, including disease classification [1,
2], medical imaging segmentation [3], medical device signal processing [4, 5], and
genetic variant pathogenicity prediction [6, 7]. These clinical data modalities vastly
differ from each other, making the construction of DNN models handling specific
clinical datasets expertise-dependent. In routine clinical care, computed tomography
(CT) scans, capturing detailed internal body structures in 3D, are typically modeled
using 3D-convolutions, whereas electrocardiogram (ECG) recordings, which represent
temporal dynamics of heart electrical activity in 1D, necessitate 1D-convolution models.
Furthermore, the design of high-quality DNN models, even for the same clinical
data modality, can vary significantly. For instance, different DNNs were designed to
analyze and interpret ECG data to aid in the diagnosis of abnormal heart rhythms [4]
versus asymptomatic left ventricular dysfunction[8]. Overall, designing clinical DNN
models currently requires a deep knowledge of medicine, an expertise in deep learning
techniques, and time to manually perform many trial and error analyses. Therefore,
developing DNN design strategies that don’t depend on empirics-driven model design
would eliminate these limitations and offer more scalable and data-driven solutions for
clinical artificial intelligence (AI).

Automated machine learning (AutoML) algorithms, unlike conventional machine
learning [9–11], can overcome the dependence on empirics-driven expertise by automat-
ing the design of high-quality models. Conventionally, AutoML methods aim to provide
a one-size-fits-all solution that can be applied to various datasets and prediction tasks,
and are designed to work with both conventional machine learning and deep learning
models. TPOT, a popular tool in this category, is a tree-based pipeline optimization
tool that leverages feature preprocessors and model architectures to achieve optimal
performance [12, 13]. AutoML methods tailored to DNNs have recently been used to
design DNNs in specific domains, tasks, or types of data. For example, the Automated
Modelling for Biological Evidence-based Research (AMBER) framework uses AutoML
algorithms and Neural Architecture Search (NAS) to design DNN models that classify
genomic sequences and identify disease-relevant genetic variants [14, 15].

However, all these AutoML strategies require model training to estimate the quality
of the designed networks [16], which can compromise the efficiency and accuracy of the
model search [17, 18]. DNN training is too time-consuming and computationally costly,
routinely requiring hundreds [19] to dozens of thousands [20] of GPU hours; thus,
the use of AutoML methods for clinical DNNs in the broader clinical and biomedical
community has been prohibitive.

To overcome these obstacles, we present TEACUP (Training-free Assembly as
Clinical Uncertainty Predictors), an automated deep learning framework for the rapid
and accurate design of DNNs that tackle clinical tasks. TEACUP is modular and
effectively separates the automated DNN design into evaluation and search phases
(Fig. 1). During the evaluation phase, TEACUP leverages a novel composite training-
free metric that characterizes a model’s performance without any model training.
TEACUP then optimizes the composite training-free metric to search for high-quality,
task-specific DNN architectures, compatible with a wide range of searching algorithms.
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Fig. 1: TEACUP enables fast model evaluation on diverse clinical tasks with training-free
metrics. (A) The workflow of the TEACUP framework. Instead of relying on traditional
model training for DNN design, the reward of each sampled architecture is generated from the
TEACUP metric, a weighted combination of calculated training-free metrics. Then, search
algorithms optimize architectures based on rewards. (B) Illustration of the conventional single
model architecture prediction and an ensemble of distinct models designed by our TEACUP.
Compared to deep ensemble of AI experts, the single model often cannot fully capture the
prediction uncertainty, posing potential risk of bias.

Importantly, the TEACUP architecture ensemble quantifies prediction uncertainty
(Fig. 1B), which is not feasible in the human-expert design or training-based AutoML
design of neural networks, due to prohibitive computation costs. In clinical applica-
tions, uncertainty quantification can help clinicians make more informed and accurate
decisions. For example, uncertain AI predictions can serve as a trigger for additional
clinical investigations and more comprehensive, orthogonal clinical tests. On the con-
trary, highly confident AI predictions may reduce unnecessary testing or interventions.
Indeed, multiple computational methods must agree on the same prediction before
they can be considered clinically [21]. Thus, TEACUP uniquely allows clinicians to
prioritize high-confidence AI predictions and to flag uncertain predictions for further
clinical investigation. This key distinction leads to more accurate diagnoses, fewer
unnecessary interventions, and improved patient outcomes [22].

2 Results

TEACUP characterizes model performance across clinical tasks
without training.

The core innovation of TEACUP is to develop and apply training-free methods that
can faithfully evaluate a DNN’s quality, without actually training the model. This is
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ECG

CT

Fig. 2: Spearman correlation between the test reward and training-free metrics. A composite
TEACUP metric (left) is derived by combining all four metrics: Length, NTK, SynFlow, and
ZiCo.

facilitated by previous extensive theoretical and empirical studies on natural images
(e.g. CIFAR-100). However, clinical tasks harbor distinct challenges compared to
natural images. We systematically introduced four training-free metrics: (1) Length
distortion (Length), which measures the extent to which the network distorts an input
curve [23–25]; (2) condition number of Neural Tangent Kernel (NTK), which indicates
the trainability of a neural network [26–28]; (3) Synaptic flow (SynFlow), which is
based on DNN parameter pruning and measures the sensitivity to changes in a specific
parameter [29, 30]; and (4) Zero-shot Inverse Coefficient (ZiCo), which jointly considers
the mean and standard deviation of a DNN’s sample-wise gradients for high training
convergence speed and generalization capacity [31] (Methods 7.2). Therefore, these
four training-free metrics characterize the properties of a DNN in a complementary
fashion and, taken together, provide a promising way of evaluating a DNN.

To rigorously evaluate the quality of these training-free metrics, we designed a
comprehensive benchmark from clinical task and model architecture perspectives. First,
from clinical task perspective, we performed two distinct clinical tasks with disparate
application and data dimensions. Specifically, we used TEACUP to generate models
from 1D ECG recordings for multi-classification of atrial fibrillation [15] and from 3D
CT scan images to classify cancerous lung nodules [32] (see Methods 7.1 for details).
Second, from model architecture perspective, we diversely sampled n = 150 models from
the NAS-Bench-201 model space, one of the most popular and powerful deep residual
convolutional model spaces widely adopted in deep learning [33] (see Supplementary
Figure 1 for an illustration). NAS-Bench-201 model space provides a predefined set of
neural network architectures, and we evaluated the corresponding performance metrics
on each specific benchmark dataset. The sampled models correspond to approximately
1% of all possible models (Methods 7.3). We then compared the models ranked
by training-free metrics to the performances of models that were fully trained to
convergence. Specifically, we measured the Spearman correlation coefficient (ρ) of
training-free metrics with the testing performance (F1 for ECG, AUC for CT) on ECG
and CT datasets, respectively (Fig. 2; Supplementary Table 1).
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Importantly, no single existing training-free metric can consistently outperform
other metrics across both ECG and CT datasets. Each of the four training-free metrics
provided different levels of information when compared to their fully-trained model.
While ZiCo achieved superior performance in ECG (ρ = 0.437), it failed to capture the
trained performance in CT (ρ = 0.063). By contrast, NTK performed substantially
better in CT (ρ = 0.487) than in ECG (ρ = 0.362).

Motivated by the different behaviors and complementary predictions of these
four training-free metrics, we sought to develop a new composite training-free metric
that can consistently characterize a DNN’s quality across different clinical tasks. We
refer to this new composite metric as the TEACUP metric that combines all four
existing training-free metrics. We performed a multivariate linear regression analysis
to find the most predictive linear combination of training-free metrics (Methods 7.4).
Even though test rewards in ECG and CT datasets differ by a scale factor, our
bootstrapped regression analysis revealed a surprisingly simple combination: TEACUP
metric=−0.5× log(Length) + log(NTK) + log(SynFlow) + log(ZiCo)(Supplementary
Figure 2). As shown in Fig. 2, the composite TEACUP metric that combines all training-
free metrics, Length, NTK, SynFlow, and ZiCo, consistently achieved an overall high
Spearman correlation with the performance of trained models (ρ = 0.471 for ECG,
ρ = 0.442 for CT). We further demonstrated that all four training-free metrics, despite
their various level of correlations to model performance in clinical tasks, were all
informative to the final performance of the TEACUP metric (Supplementary Table 2).

TEACUP dramatically reduces computing time and costs.

We quantified the computing costs saved by employing the TEACUP metric versus
training DNN models. To set up the comparison, we tested a commonly used, naive
baseline approach that assumes partially-trained models (i.e., only trained for the first
few epochs) can predict DNN architecture generalization, therefore providing a fair
comparison to our TEACUP metric performance. To determine how many training
samples were consumed to achieve the same correlation as the TEACUP metric in each
clinical dataset, we measured the correlation between the validation performance (F1
for ECG, AUC for CT) at each trained epoch and the test performance across n = 150
models. Notably, the correlation coefficient, when computed against the validation
performance from each trained epoch across all n = 150 architectures, will be close to,
but not reach 1. This is expected because even though there is a strong relationship
between the validation and test rewards, they are not perfectly aligned.

As shown in Fig. 3, on a single A100 GPU each model will take almost 10 minutes
to train on ECG and CT scans to reach the same correlation to the model’s test
performance as the TEACUP metric, corresponding to training on roughly 300,000
samples in ECG and 35,000 samples in CT. In contrast, computing the training-free
TEACUP metric takes less than 10 and 40 seconds to achieve a high correlation over
0.4 on ECG and CT, respectively. This represents a substantial reduction of over
90% in computing cost every time a DNN model is evaluated. Equivalently, using
TEACUP framework on the scale of a previous milestone study that evaluated 12,800
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Fig. 3: Comparison of computation time costs between partial training and the TEACUP
metric when they achieve equal Spearman correlations with the final trained DNN performance.
For “Training”, the Spearman correlation across the 150 benchmark architectures (y-axis) is
calculated between the testing and the validation accuracy after trained for a certain amount
of data (x-axis).

architectures [20], would be predicted to save over $7,300 in cloud computing costs
and 1,792 hours per AutoML experiment 1 .

TEACUP improves the accuracy of automated model design.

We systematically evaluated three distinct searching algorithms to optimize neural
architectures using the TEACUP metric as optimization objectives. In particular,
we implemented a reinforcement learning-based controller network [14, 20] and a
probabilistic model building genetic algorithm [34] to maximize the TEACUP metric
as a reward, and a pruning-based algorithm that iteratively removes the edge with
the minimum contribution to the TEACUP metric from a super-net [28]. Given that
these three algorithms have distinct underlying assumptions for DNN architectures
and cover a wide range of neural architecture search methods, their performance would
be indicative of the general utility of the TEACUP metric in automated DNN design.
TEACUP removed heavy computation costs in conventional AutoML methods and
allowed us to efficiently perform 10 independent runs for each search algorithm on each
clinical task, which enabled us to account for the stochasticity of the search algorithms.
This would not have been feasible using conventional AutoML methods for DNN, given
the cost and time required to finish these tasks. In contrast, all three search algorithms
were efficient in optimizing the TEACUP metric and converged within 6 GPU hours
across all runs with TEACUP (Methods 7.5; Supplementary Figure 3).

The improved TEACUP metrics successfully translated to high-performance DNN
models. To examine the quality of DNN models built using TEACUP, we first compared
TEACUP-optimized models to randomly sampled models from the NAS-Bench-201
model space, then expanded the comparison to state-of-the-art AutoML methods.
TEACUP-optimized models exhibited significantly higher testing performance in both
ECG and CT datasets, with the sole exception of pruning-based search method in ECG

1We use one cloud A100 on AWS (https://aws.amazon.com/ec2/instance-types/p4/) as an example: $4.1
per hour × 0.14 hours × 12800 ≈ $7347.
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Fig. 4: Performance of ensemble prediction (larger dot with a dash) and optimized architec-
tures (dot) compared with benchmark results (gray area). The horizontal line is the median,
and the gray area is the upper to lower quartile region, for the performance of 150 benchmark
architectures, respectively.

which failed to improve performance (Fig. 4). Nonetheless, in CT dataset, pruning-
based algorithm searched for models (test AUC=0.88±0.02) significantly better than
the randomly sampled benchmark (test AUC=0.85±0.03; Table 1). This demonstrates
that different search algorithms have varying performances across clinical datasets.
Indeed, we found that reinforcement learning-based controller network achieved superior
searched model performance in the ECG dataset, while genetic algorithm worked the
best in the CT dataset. Furthermore, these TEACUP-optimized models are significantly
more accurate than previously published human-designed baselines (Table 1). In
ECG [15], TEACUP models achieved an average testing F1 of 0.66±0.01, significantly
higher than XGBoost (0.44±0.02) [35] and Wide ResNet (0.57±0.01) [36]. Similarly in
CT [32], TEACUP models performed better (testing AUC of 0.89±0.01) than ResNet-
18 (0.88±0.02) and a substantially more parameterized ResNet-50 (0.87±0.02) [37].
Even compared with training-based AutoML methods [14, 38–41], TEACUP remained
highly competitive and matched the performance among state-of-the-art AutoML
methods. Additionally, we ensembled the TEACUP models into the TEACUP ensemble
(Fig. 4), which achieved the highest test performance among existing AutoML methods
(test F1=0.68 on ECG, test AUC=0.92 on CT).

Dataset
ECG CT

Method
Result (F1)

Method
Result (AUC)

Mean ± Std (Ensemble) Mean ± Std (Ensemble)

Training-free
searching method

Reinforcement learning 0.66 ± 0.01 (0.68) Reinforcement learning 0.87 ± 0.01 (0.90)
Genetic algorithm 0.65 ± 0.01 (0.68) Genetic algorithm 0.89 ± 0.02 (0.92)
Pruning method 0.62 ± 0.04 (0.66) Pruning method 0.88 ± 0.02 (0.91)

Fixed architecture
training

Wide ResNet (WRN) 0.57 ± 0.01 ResNet-18 0.88 ± 0.02
XGBoost 0.44 ± 0.02 ResNet-50 0.87 ± 0.02

Training-based
searching method

DenseNAS random 0.58 ± 0.01 Auto-sklearn 0.91 ± 0.01
DARTS GAEA 0.66 ± 0.01 AutoKeras 0.87 ± 0.03
AMBER 0.67 ± 0.02

Table 1: Performance comparison between our approach and previous works.
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Fig. 5: Distributions of optimized architectures by reinforcement-learning, genetic-algorithm,
and pruning-method on two datasets.

The automated TEACUP-optimized DNNs not only achieved strong accuracy
but also discovered task-specific patterns of DNN structures that are aligned with
characteristics of different tasks and clinical data modalities (Fig. 5). In the case of ECG,
more edges are allocated with pooling layers and convolutions with the larger kernel
size. In contrast, skip connections and the small convolution kernel are preferred in CT.
These two different groups of architectures are highly aligned with the characteristics
of the two clinical datasets. In ECG, the long sequence of the heartbeat signal (1000
in length) requires a larger receptive field, which can be achieved by pooling and
large kernels. However, 3D images of CT scans have a much smaller spatial resolution
(28× 28× 28), and using small convolutions will achieve sufficient receptive fields.

TEACUP enables robust ensemble learning and uncertainty
quantification.

The multiple accurate, distinct architectures efficiently optimized by TEACUP present
an unprecedented opportunity for uncertainty quantification, which is impossible to
achieve using conventional single-model paradigms given the prohibitive DNN training
cost. In the context of DNNs, different types of neural networks can make incorrect
clinical predictions for the same patient persistent to an architecture, even when
starting from different weight initializations, suggesting that each neural network is
sensitive to different aspects of the data [42].

We hypothesized that DNNs of different architectures optimized by TEACUP cap-
ture different perspectives of clinical data patterns and thus would allow us to prioritize
high-confidence, high-accuracy predictions over uncertain, less-accurate predictions. To
rank predictions based on their confidence, we computed their variance across different
TEACUP-optimized models as a measure of uncertainty quantification (Method 7.7).
Intuitively, neural network models with distinct architectures (i.e. different “experts”)
that make the same prediction from clinical samples are more confident and thus likely
to be accurate. For comparison, we followed the same uncertainty computation across
different random initializations of a single model architecture, which already goes
beyond the conventional single model regime by considering multiple random weight ini-
tializations. In the test CT example illustrated in Fig. 6A, even though the predictions
from both schemes are incorrect (i.e. false negative), the architecture-wise uncertainty
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Fig. 6: (A) Comparison of a false negative test case over two uncertainty quantification meth-
ods: different architectures vs. single architecture trained from different weight initialization.
Despite both methods yielding incorrect predictions, the larger architecture-wise uncertainty
suggests the need for additional tests. (B) Across testing samples of different confidence, the
ensemble of TEACUP-optimized models outperforms the ensemble of a single architecture
trained from random initialization.

calculated by the TEACUP ensemble is high, flagging this example for additional tests;
whereas the initialization uncertainty calculated by the single-architecture ensemble is
low, indicating over-confidence in its incorrect prediction.

We further chose the architecture that occurred most frequently across all TEACUP
search runs as the single model architecture baseline for ECG and CT, respectively
(Method 7.7). This represents a strong and fair baseline, because the DNN architecture
that is consistently searched as optimal by all three search algorithms is more likely to
fit the corresponding clinical data. Consequently, this allowed us to interrogate the
influence of assembling distinct architectures versus only weight initialization variability
in an optimal but fixed architecture.

Deep ensembles of TEACUP-optimized distinct architectures showed superior per-
formance in prioritizing high-confidence clinical predictions, even when compared
against the strong baseline of the most consistently-searched single architecture ensem-
ble. Although both methods were highly competitive in ECG and CT when evaluating
all test samples (rightmost dot, 100% test data; Fig. 6B), the TEACUP ensemble
achieved a superior accuracy compared to the single-architecture ensemble when we
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move to the most high-confidence predictions, (leftmost dots, Fig. 6B). For example,
the TEACUP ensemble achieved perfect accuracy (100%) in 55% of top-ranked con-
fident predictions in CT; whereas the single-model ensemble achieved an accuracy
of only 94%, highlighting a 6% accuracy gap. Thus, the TEACUP ensemble more
effectively ranks and prioritizes high-confidence, high-accuracy predictions.

3 Discussion

In this study, we presented TEACUP, an automated workflow for designing deep
learning models tailored to clinical tasks. By using training-free metrics, we can estimate
a neural network’s performance without expending large computation resources on
model training, reducing computation cost by more than 90% per model evaluation. The
composite metric we developed is compatible with a wide range of search algorithms.
We demonstrated improved training-free metrics using three search algorithms. With
the evaluation of two distinct datasets varying in dimension and application, TEACUP
yielded promising results, showing its potential to adapt to a variety of clinical tasks.

Foundation models have been a rising trend and adapting to the medical domain as
well, with widespread adoption in various downstream tasks, due to their exceptional
performance and versatility [43, 44]. However, despite their efficacy, it is also known
that building foundation models requires huge amounts of data and high computation
resources for training. Furthermore, a significant challenge lies in the interpretability
of foundation models, particularly crucial in clinical applications where understanding
the decision-making process is important. In contrast, TEACUP offers an alternative
solution that not only accelerates the model development process but also facilitates the
exploration of multiple architectural choices, mitigating the risk of bias associated with
relying solely on a single model. By analyzing the distribution among different model
predictions, our approach provides insights into the overall uncertainty of the results.
Additionally, as our models leverage well-established deep learning frameworks, a
valuable future direction is to utilize explainable AI tools like Grad-CAM to understand
the model’s decision-making process by elucidating the elements of input data.

There are a couple of areas for improvement in our approach. The first one lies
in the selection of the model space. NAS-Bench-201, the model space we utilized,
has shown excellent performance on the famous natural image classification dataset,
CIFAR-100. However, it remains unknown whether this model space spans the best
space to represent all the possibilities of model architecture for medical data analysis.
Future research could explore alternative model spaces specifically tailored to medical
datasets, considering the unique characteristics and complexities of medical data.
Another notable feature is that TEACUP only requires a small portion of the data for
robust training-free metrics calculation, which holds considerable promise in medical
data analysis where data is scarce. Therefore, future investigations would focus on
refining data subset selection methodologies, which has the potential to significantly
enhance the efficiency and applicability in clinical practice.

In summary, TEACUP is a fast, accurate, and universal automated deep learning
framework that could be easily adapted to different clinical tasks with light computation
resources. TEACUP generated multiple, optimal models with distinct architectures
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that enabled architecture-wise ensemble learning, which in turn allowed us to quantify
DNN uncertainty for clinical data for the first time. As such, the neural uncertainty
enabled by our TEACUP framework presents a major paradigm shift to current deep
learning-based clinical prediction methods, and we expect that it will be of significant
clinical utility.

4 Data Availability

The benchmarking datasets are publicly available. ECG is precompiled in https://nb360.
ml.cmu.edu/. CT scan is part of the MedMNIST dataset in https://medmnist.com/.

5 Code Availability

Our code and analysis can be found in GitHub: https://github.com/zhanglab-aim/
TEACUP.
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7 Methods

7.1 Data

To demonstrate the performance of our method, we study two benchmarks for machine
learning tasks routinely used in clinical settings, covering 1D and 3D medical data:
1. ECG (Electrocardiogram): The dataset [15] is originally collected for the 2017

PhysioNet Challenge [45] for heartbeat categorization, with an average 30-second
ECG recording stored at 300 Hz. Processed by 1,000 ms sliding window and 500
ms stride, there are 261,740 training data, 33,281 validation data, and 33,494
testing data in total. All the data is labeled from one of the four classes: normal,
disease (atrial fibrillation, AF), other, or noisy rhythm. The macro-averaged F1
score is used to evaluate training performance.

2. NoduleMNIST3D: This lung nodule dataset collects images from thoracic CT
scans. The dataset is used in a benchmark paper [32]. Originally from [46], a total
of 1,633 three-dimensional 28×28×28 images with spacing 1mm×1mm×1mm are
cropped from the center of spatially normalized thoracic CT scans. The data is
turned into a binary classification task using malignancy levels 1 and 2 as negative,
4 and 5 as positive, ignoring malignancy level 3. With a splitting rate of 7:1:2,
there are 1,158 training data, 165 validation data, and 310 testing data. The area
under the curve (AUC) is used as an evaluation metric.

7.2 Training-free Metrics

The bottleneck of accelerating AutoML for medical problems is the costly and unstable
DNN training, for each sampled DNN during the architecture search. To avoid such
overhead, we aim to replace the DNN training with indicators or metrics that exhibit
strong correlations with DNNs’ performance on healthcare benchmarks while not
requiring training. Inspired by the recent development of deep learning theory [24, 27]
and AutoML methods [20, 39], we introduce four training-free metrics. These four
metrics are complementary to each other in characterizing different aspects of a DNN’s
properties:
1. Condition number of Neural Tangent Kernel (NTK): Training deep networks

requires optimizing high-dimensional non-convex loss functions. In practice, gra-
dient descent often finds the global or good local minimum. However, many
expressible networks are not easily learnable. For example, a deep stack of convo-
lutional layers (e.g. Vgg [47]) is much harder to train than networks with skip
connections (ResNet [37], DenseNet [48], etc.), even the former could equip a
larger number of parameters. The trainability of a neural network studies how
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effective it can be optimized by gradient descent [49–51]. To characterize the train-
ing dynamics of wide networks, Neural tangent kernel (NTK) is proposed [52–54].
NTK controls the training dynamics of linearized DNNs and can be treated as
the measurement of “sample-wise similarity” by the inner product of network’s
gradients across different input data. NTK is defined as:

Θ̂(x,x′) = J(x)J(x′)T , (1)

where J(x) is the Jacobian evaluated at input samples x. Inspired by [27, 28], we
measure the trainability of networks by studying the spectrum and conditioning
of Θ̂, and use the empirical condition number of NTK to represent trainability:

κ̂ =
λmax(Θ̂(x,x))

λmin(Θ̂(x,x))
. (2)

x are drawn from a training dataset. κ̂ is calculated at the network’s initialization.
A small NTK condition number indicates a smooth loss landscape and favors
faster DNN training convergence.

2. Length distortion (Length): Intuitively, a complex network can propagate a simple
input into a complex manifold at its output layer, thus likely to possess a strong
learning capacity. In our work, we also study the manifold complexity of mapping
a simple circle input through the network. We define the network as M, its
input-output Jacobian v(x) = ∂xM(x) at an input x, and a(x) = ∂xv(x). Length
distortion measures the norm of a DNN’s input-output Jacobian. The Length

Distortion in Euclidean space is defined as LE = length(M(x))
length(x) . It measures when

the network takes a unit-length input, what is the length of the output curve. Since
the ground-truth function we want to estimate (using M) is usually very complex,
one may also expect that networks with better performance should also generate
longer outputs. We will calculate expected complexities over a certain number
of xs randomly sampled. A large length distortion indicates a high sensitivity
of DNN’s output to changes of its input, and thus potentially indicates a larger
model capacity in learning complicated input-output mappings. The original NTK
is negatively correlated with the model performance; for simplicity in this work,
we further transform to the negative absolute value of NTK so they positively
correlate with the model performance.

3. Synaptic flow (SynFlow): Originally, [55] proposed performing parameter pruning
based on a saliency metric computed at initialization using a single minibatch
of data. This saliency criteria approximates the change in loss when a specific
parameter is removed. Tanaka et al. [29] generalized these so-called synaptic
saliency scores and proposed a modified version (SynFlow) which avoids layer
collapse when performing parameter pruning. Synaptic flow measures the product
of a DNN parameter and its gradient, indicating the sensitivity of the loss with
respect to changes in a specific DNN parameter (i.e. larger SynFlow indicates more
important parameters). Similar to NTK, we transform to the negative absolute
value of SynFlow.

SynFlow : S(θ) = ∂L
∂θ

⊙ θ (3)
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L is the loss function of a neural network with parameters θ, θ ∈ θ. S is the
per-parameter saliency. We extend these saliency metrics to score an entire neural

network by summing over all |θ| parameters in the model: Sn =
∑|θ|

i S(θi).
4. Zero-shot Inverse Coefficient (ZiCo): In [31], Li et al. found that networks with

high training convergence speed and generalization capacity should have high
absolute mean values and low standard deviation values for the gradient with
respect to the parameters across different training samples and batches. Therefore,
ZiCo jointly considers both absolute mean and standard deviation values. ZiCo
prefers high absolute mean values and low standard deviation values of a DNN’s
sample-wise gradients. It implicitly improves the convergence and generalization
of DNNs.

ZiCo =

L∑
l=1

log

(∑
θ∈θl

E [|∇θL (x,y;θ)|]√
Var (|∇θL (x,y;θ)|)

)
. (4)

L stands for the depths of the network. θ denotes the set of all initialized parameters
of a given network; θl denote the parameters of the lth layer of the network, and
θ represents each element in θl; x and y are input samples and corresponding
labels from the training set. E and Var are taken over the batch of input samples.

Instead of calculating the loss or error of a neural network after training, we measure
these training-free metrics at the network’s initialization to characterize its performance.
The core benefit of our training-free metrics is to achieve a strong correlation with the
quality of designed networks with minimal computation costs. Note that for all four
metrics, we use their expectations taken over batches of samples drawn from a training
dataset x ∼ Dtrain and random Kaiming normal initializations θ ∼ N (0, 2

Nl
) (Nl is

the width at layer l) [56].

7.3 Model Space

We build our model space based on NAS-Bench-201 [33]. NAS-Bench-201 provides a
standard cell-based search space (containing 15,625 architectures). The macro skeleton
of each architecture candidate begins with a convolution layer as a stem, followed by
three blocks of cells with two intermediate residual blocks connecting them. Then, global
average pooling is applied to flatten the output into one dimension, followed by a fully
connected layer for binary or multi-classification output, depending on the application.
Each block contains 5 cells, with each cell having 4 nodes (feature maps) that form a
directed acyclic graph, where each edge is associated with an operation selected from
none (zero), skip connection, conv1× 1, conv3× 3, and average pooling 3× 3, resulting
in a total of 56 = 15, 625 candidates. We adapt it to our problems by changing the
convolution and pooling layer to 1D and 3D kernels. To obtain the benchmark results,
we sample 150 architectures, which is approximately 150/15, 625 ≈ 1%.

7.4 Training-free Metrics Combination

To improve the robustness of training-free metrics across different clinical datasets, we
seek to ensemble different combinations of the four training-free metrics. We employ
a bootstrap method (B = 2000) over the 150 benchmark data points from the two
distinct datasets. Within each bootstrap iteration, a 80 : 20 train-test split is applied
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separately on both the ECG and CT datasets. Then, after merging training sets from
both datasets, a multivariate linear ridge regression is conducted to compute the
weighted aggregate of training-free metrics. The multivariate regression regresses the
logarithm of all four training-free metrics to the standardized model test performance
of both datasets.

To further explore the potential of using a reduced number of training-free metrics,
we repeat the bootstrap procedure while retaining only three out of the four training-
free metrics. Spearman correlation coefficients between the model performance and
weighted aggregate of training-free metrics across ECG and CT test sets are utilized
to evaluate performance consistency. Because the rank correlation remains unchanged
for linear rescale of the combined training-free metric, for simplicity, we divide the
weights derived from the multivariate linear ridge regression by the minimum absolute
coefficient to achieve a more interpretable overall proportion.

7.5 Architecture Search Methods

The overall pipeline of our method works as a modular framework of evaluation phase
and search phase. Given a large model space (which includes over 10K different DNN
structures in our work), we equip popular neural architecture search algorithms with
our training-free metrics, i.e., these search algorithms will use the TEACUP metric
as a reward to evaluate architectures when they explore the model space. For each
architecture explored by the search algorithm, we randomly initialized the network
and calculated the four training-free metrics on the network’s initialization with mini-
batches of training data (batch size= 8 with 4 mini-batches), without any gradient
descent steps. That means our search is still data-dependent and metrics are aware of
different tasks. The final searched network architecture will be evaluated by training.

7.5.1 Reinforcement Learning (RL)

The policy agent maintains an internal state to represent the architecture search space,
denoted as θA. This internal state can be converted to a categorical distribution of
the architectures (A) via softmax: A = σ(θA).

Stopping Criterion: We stop the RL search when the average TEACUP metric
stops increasing for 30 iterations (total iterations T = 100 in our work). We trained
the RL agent with Adam optimizer and a learning rate as η = 0.001.

Architecture Sampling: In each iteration, the agent samples 10 architectures at
from A.

Update: We update the RL agent via policy gradients.

θA
t+1 = θA

t − η · ∇θAf(θA
t ) t = 1, · · · , T (5)

f(θA
t ) = −log(σ(θA)) · (rt − bt) (6)

bt = γbt−1 + (1− γ)rt (b0 = 0, γ = 0.9) (7)

r stands for reward, the TEACUP metric combined in Sec. 7.4, and b for an exponential
moving average of reward for variance reduction.
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Architecture Deriving: To derive the final searched network, the agent chooses
the architecture that has the highest probability, i.e., a∗ = argmaxaσ(θ

A)(a).

7.5.2 Genetic Algorithm

We adopt a Bayesian probabilistic model building genetic algorithm as another search
method. The genetic algorithm is first initialized with a population of 50 architectures
by random sampling.

Stopping Criterion: We run the algorithm for a maximum of 100 iterations, and
early-stop the searching when the average TEACUP metric stops increasing for 30
iterations.

Architecture Sampling: We model the distribution of the architectures A as
multinomial distributions

A ∼ Multinomial(n = 1, p = θ), s.t.
∑
k

θk = 1 (8)

That is, we draw n = 1 instance each time from {1, 2, .., k, ..,K} classes. The probability
of each class θk follows a Dirichlet distribution as an uninformative prior:

θ ∼ Dir(1) (9)

The posterior distribution of θ will be updated using the survived architectures in each
generation that further updates the sampled architectures.

Update: Following Zhang et al. [34], in each iteration, the population is updated
by adding a set of new architectures (n=10 in our work) and popping out the same
amount of oldest architectures (the one that stays in the population for the longest
time). Our buffer keeps at most 5 sets of architectures, which is 50 architectures in
total. At the end of each iteration, we calculate the mean reward rmean in the buffer
and only use the M architectures with a higher reward than rmean for updating the
probability θ by generating the conjugate rule of Dirichlet-Multinomial:

p(θ|A) = Dir({a > rmean,∀a ∈ A}|α) (10)

αk =

M∑
i=1

ai,k + 1 (11)

Architecture Deriving: To derive the final searched network, the best architecture
from the population is selected, where the criterion is the same as we choose at (see
above “Architecture Sampling”).

7.5.3 Pruning

Inspired by recent works on pruning-from-scratch [55, 57], we also leverage a a pruning-
by-importance model search mechanism [28] to quickly shrink the search possibilities
and boost the search efficiency. Specifically, we start the search with a super-network
M0 composed of all possible operators and edges, and iteratively prune operators with
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marginal importance (with respect to four training-free metrics). In the outer loop,
for every round we prune one operator on each edge with the least contribution of
four training-free metrics. In the inner loops, we measure and compare each operator’s
importance.

Stopping Criterion and Architecture Deriving: The outer-loop stops when
the current supernet Mt is pruned to be a single-path network, i.e., there is only one
candidate operator left on each edge.

Update: For the inner-loop, we measure the change of each four training-free
metrics before and after pruning each individual operator, and assess its importance
using the sum of ranks of the changes of four training-free metrics. We order all currently
available operators in terms of their importance, and prune the lowest-importance
operator on each edge.

For more details, please refer to the Algorithm 1 in [28].

7.6 Training Settings

We use a similar training setting as stated in the NAS-Bench-201[33] for both the
benchmark 150 architectures and the evaluation of the optimized architecture generated
from search methods. The SGD optimizer with a momentum of 0.9 is used for training
on both datasets, while the weight decay of 10−7 and 0.005 is used for ECG and CT,
respectively. A fixed cosine annealing learning scheduler initializes on different values:
for CT, it ranges from 0.1 to 0 over 100 epochs, while for ECG, it ranges from 0.01
to 0. For the CT dataset, we train for 100 epochs without early stopping. For ECG,
empirically we found that most models converge fast, therefore we train for 10 epochs
and evaluate on the validation set every 100 step. We use the checkpoint that has the
lowest validation loss as the final model.

7.7 Evaluation of Model Ensembles

We ensemble the predictions by voting and taking averages for ECG and CT, respec-
tively, based on their reward metrics (F1 and AUC). For ECG, since it is a multi-class
classification with an F1 score as the reward, we set the majority vote among 4 classes
as the final prediction. For CT, since it is a binary classification with AUC as the
reward, we take the average over all the model outputs.

To compare the disparities between ensemble over architecture-wise and
initialization-wise predictions, we select the most common architecture from a pool of
30 optimized models obtained through all three searching algorithms. Subsequently,
we train the architecture for 10 times employing different random model initializations
to form a robust control group. We refer to this baseline as “single-architecture ensem-
ble”, as opposed to ensembling over different architectures (referred to as “TEACUP
ensemble”).

Then, we analyze the prediction uncertainties for each test case by ranking them
based on the variance among the predictions generated from different architectures or
initializations. The test case exhibiting the lowest variance across the ten predictions
indicates the least uncertainty, and hence the highest prediction confidence.
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Finally, we compute the accuracy for the test cases that ranked from up to the top
5% prediction confidence to the entire dataset (100%). The majority voting among
the 10 predictions is used when computing accuracy to avoid significant tremors when
calculating AUC on a relatively small amount of data points.
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Dataset Content Mean std
Spearman Correlation Coefficient

ECG CT
Length NTK SynFlow ZiCo Test reward Length NTK SynFlow ZiCo

ECG

Length 93.28 296.41
NTK 1.78×109 1.29×1010 0.920
SynFlow 1.53 0.31 0.591 0.567
ZiCo 304.97 146.18 0.477 0.452 0.170
Test reward 0.62 0.02 0.307 0.362 0.016 0.437

CT

Length 1179.89 3192.46 0.969 0.899 0.563 0.432 0.280
NTK 1.07×105 7.36×105 0.838 0.838 0.489 0.367 0.273 0.866
SynFlow 23.88 4.15 0.700 0.686 0.671 0.200 0.051 0.666 0.624
ZiCo 349.57 168.77 0.463 0.439 0.169 0.994 0.427 0.417 0.352 0.187
Test reward 0.85 0.03 0.428 0.406 0.071 0.091 0.099 0.435 0.487 0.265 0.063

Supplementary Table 1: Training-free metric values, test rewards, and Spearman correlation coefficients across benchmark 150
architectures
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Training-free metrics used
Spearman correlation with model performance

ECG CT Summation
All (Length + NTK + SynFlow + ZiCo) 0.41 ± 0.14 0.43 ± 0.16 0.84
NTK + SynFlow + ZiCo 0.38 ± 0.15 0.44 ± 0.16 0.82
Length + SynFlow + ZiCo 0.35 ± 0.15 0.28 ± 0.18 0.63
Length + NTK + ZiCo 0.45 ± 0.13 0.38 ± 0.17 0.83
Length + NTK + SynFlow 0.35 ± 0.15 0.48 ± 0.15 0.83

Supplementary Table 2: Bootstrap results (B = 2000) across different combinations
of training-free metrics. Using all four training-free metrics reaches an overall best result.

Stem

Cell x 5

Residual block

Cell x 5

Residual block

Cell x 5

GAP/Dense

zero
skip
conv 1x1
conv 3x3
avg pool

Cell

…

56=12,625 options of architectures

Supplementary Figure 1: Illustration of NAS-Bench-201 model space.
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Supplementary Figure 2: Bootstrap results of the coefficient distribution on the four log
training metrics.
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Supplementary Figure 3: Change of TEACUP metrics as iteration increases in reinforce-
ment learning and genetic algorithm. Different colors represent different, independent search
runs.
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