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Abstract 

Background and Objective: Cancer is a leading cause of morbidity and mortality worldwide. The 

emergence of digital pathology and deep learning technologies signifies a transformative era in 

healthcare. These technologies can enhance cancer detection, streamline operations, and bolster patient 

care. A substantial gap exists between the development phase of deep learning models in controlled 

laboratory environments and their translations into clinical practice.  This narrative review evaluates the 

current landscape of deep learning and digital pathology, analyzing the factors influencing model 

development and implementation into clinical practice. 

Methods: We searched multiple databases, including Web of Science, Arxiv, MedRxiv, BioRxiv, Embase, 

PubMed, DBLP, Google Scholar, IEEE Xplore, and Cochrane, targeting articles on whole slide imaging 

and deep learning published from 2014 and 2023. Out of 776 articles identified based on inclusion criteria, 

we selected 36 papers for the analysis. 

Key Content and Findings: Most articles in this review focus on the in-laboratory phase of deep 

learning model development, a critical stage in the deep learning lifecycle.  Challenges arise during 

model development and their integration into clinical practice. Notably, lab performance metrics may not 

always match real-world clinical outcomes. As technology advances and regulations evolve, we expect 

more clinical trials to bridge this performance gap and validate deep learning models' effectiveness in 

clinical care. High clinical accuracy is vital for informed decision-making throughout a patient's cancer 

care.  

Conclusions: Deep learning technology can enhance cancer detection, clinical workflows, and patient 

care. Challenges may arise during model development. The deep learning lifecycle involves data 

preprocessing, model development, and clinical implementation. Achieving health equity requires 
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including diverse patient groups and eliminating bias during implementation. While model development 

is integral, most articles focus on the pre-deployment phase. Future longitudinal studies are crucial for 

validating models in real-world settings post-deployment. A collaborative approach among 

computational pathologists, technologists, industry, and healthcare providers is essential for driving 

adoption in clinical settings.  

Keywords: Artificial Intelligence, Deep Learning, Digital Pathology, Computational Pathology, Cancer 
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1. Introduction 

Cancer remains one of the leading causes of morbidity and mortality worldwide (1,2). In 2019, the World 

Health Organization estimated that cancer is the leading cause of death globally. According to the 

National Center for Health Statistics, there will be 1,958,310 newly diagnosed cancer cases in 2023 (3). 

The American Cancer Society projects 609,820 cancer deaths in 2023 (3). 

Screening and treatment have improved but remain a considerable primary public health 

concern. Public health systems worldwide spend $200 billion on cancer-related costs (4). By 2030, there 

will be 19.3 million new cancer cases and 10 million cancer deaths (5). As these numbers continue to 

rise, there is a need for enhanced efforts to diagnose and treat cancer for all patient populations. To ensure 

equitable access to care for all patient populations, addressing and overcoming disparities and biases in 

medical care is essential, thus providing patients with the care they deserve (6). Four principles underlie 

health equity: equal access, equal utilization of resources, health equality, and distribution according to 

need (7). Health disparities can be reduced by addressing multi-level structural determinants and ensuring 

access to disadvantaged populations (8). The Joint Commission and the Institute for Healthcare 

Improvement oversee initiatives and prioritize inclusion and fairness in clinical practice (9,10). 

Cutting-edge healthcare innovations that transform glass slides into digitized formats, when 

coupled with artificial intelligence (AI) and telecommunication systems, have the potential to ensure 

equitable access to cancer care, particularly in regions facing shortages of specialists. Digital pathology 

(DP) originated in the late 1960s, with telepathology (TP), a branch of DP, as one of its first uses. TP 

involves sending digital images over a secure long-range network. 1986 Ronald Weinstein, MD, coined 

the term TP (11). Since then, validation studies have shown DP and conventional light microscopy to be 

highly accurate (11-15). Diagnosis does not require an onsite pathologist. TP has also eradicated the need 
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for long-distance travel for specialized care, effectively addressing pathologist shortages and resource 

limitations within these networks. This innovation promotes equity in healthcare by making specialized 

care more accessible. TP also facilitates international expert consultations, enhances provider 

communication, and ensures seamless handoffs. Since the 1960s, the evolution of digital images has been 

remarkable, progressing from expensive devices to sophisticated robotic microscopes and autonomous 

robotic whole slide image (WSI) intelligent scanners with integrated storage and retrieval systems, 

significantly enhancing workflow efficiency (16). The appeal of digitizing slides with WSI technology 

lies in its convenience, portability, and the power to manipulate and analyze pixels. Furthermore, WSI 

systems are utilized for virtual education and novel research and serve as indispensable tools for primary 

cancer diagnosis (17). 

In the era of precision medicine, integrating deep learning (DL) with these technologies is 

crucial for enhancing health equity and advancing the field. This can be achieved by developing DL 

models to identify algorithmic biases in cancer care (18). Furthermore, digital slides have been 

successfully utilized in pathology, leveraging computational pathology techniques to deliver faster and 

more precise outcomes.  (19-21). DL algorithms in DP can help pathologists identify complex patterns, 

classify image features, and provide quantitative assessment and predictive analytics. By harnessing 

advanced digital image management systems using cloud-based technology, healthcare organizations can 

facilitate faster, quality workflows (16,17). As this technology progresses, the anticipated global revenue 

for digital pathology is projected to soar to a remarkable $2,045.9 million by 2029, boasting a robust 

Compound Annual Growth Rate of 12.6% (22). Amidst this rapid expansion, a significant opportunity 

emerges to enhance clinical outcomes in precision oncology. This article offers an overview of the 

literature surrounding digital pathology (DP) and deep learning (DL) models in oncology. The DL 
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development lifecycle encompasses critical stages, including data preprocessing, model development, 

deployment, and continuous management within clinical practice. Additionally, we delve into the factors 

that influence model development. We present this article in accordance with the Narrative Review 

reporting checklist. 

 

2. Methods 

This study follows the PICO Framework. Problem:  human samples for cancer diagnosis. Intervention: 

WSI and DL. Comparison (Evaluation): Model evaluation. It’s not possible to compare each model 

directly due to the differences in data sets, algorithms, and output metrics used in each study—outcomes: 

model performance metrics such as accuracy, F1 score, and others to measure model performance.   

We searched Embase, PubMed, DBLP, Google Scholar, IEEE Xplore, Cochrane database, 

IEEE, Web of Science, ArXiv, BioRxiv, MedRxiv Web of Science, and Semantic Scholar. 

Articles were published between 2014 and 2023, using terms 1) Boolean Logic: connecting 

words like "AND," "OR," and "NOT" in various combinations to expand or narrow down search results 

2) Fuzzy Logic: search terms like "Digital Pathology" NEAR "Deep Learning" or "Whole Slide Imaging" 

WITHIN 5 words of "Deep Learning" to search for particular articles 3) Truncation: We searched for 

terms that began with a specific string by placing an asterisk (*) at the end of a root word. The word 

string used in the search were digital pathology, deep learning pathology, cancer, digital AI pathology, 

artificial intelligence, and cancer. 

Studies on cancer detection utilizing WSI and DL were considered eligible Table 1. Employing 

the specified search criteria, a total of 776 articles were identified. Two independent reviewers, BB and 

AR, screened the articles to determine eligibility based on the inclusion criteria. Out of the initial pool, 
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thirty-six papers were deemed eligible for inclusion in the study. In cases of disagreement, a third 

reviewer, BKK, served as a tiebreaker to reach a consensus. Figure 1. Shows the flow chart of studies 

using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analysis) guidelines.    

 

3. Discussion 

3.1 Model Types 

The upcoming section offers a categoric overview of the DL models used in the literature. This will 

include exploring the various types of DL methods and analyzing their model development processes. 

By examining these aspects, we aim to provide a thorough understanding of the capabilities of these DL 

models in cancer detection. The selected literature is denoted in Table 2. 

High-resolution slide images are gigapixels in size and require more memory and computational 

resources, so they cannot be incorporated directly into deep-learning models. Splitting high-resolution 

slide images into patches and developing patch aggregation strategies can help deep-learning models 

analyze large image datasets efficiently.   

Slides can be divided into patches to train DL models (30). Models can be taught to recognize 

patch features and patterns. After training, models can predict labels for new patches or entire images 

and reconstruct the source image using patch aggregation strategies. Patch-based aggregation optimizes 

memory usage and DL efficiency. 

 

3.2 Patch-based Aggregation Methods 

Patch-based aggregation in machine learning is often used in image processing and computer vision 

tasks. It involves dividing an image into smaller, fixed-size pieces or "patches." Each of these patches is 
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then analyzed and processed independently (50,58). This approach allows for a more detailed and 

localized understanding of the image data; learning about each patch may capture unique features, 

whereas the patches themselves are part of the bigger picture and may or may not contain the region of 

interest for tumor analysis. Patch-based aggregation is beneficial in tasks like image classification, object 

detection, and texture analysis. For instance, histopathology imaging can help identify specific features 

in WSI, such as tumors or other abnormalities (29). The algorithm can make more accurate predictions 

or identifications by focusing on small image areas at a time. Moreover, this method can be combined 

with various machine learning models, such as convolutional neural networks. In such combinations, 

each patch is fed into the network, which learns to identify patterns or features within these smaller 

segments of the image. This can lead to more nuanced and detailed image analysis than processing the 

entire image (26,35). 

 

3.3 Multiple Instance Learning 

During training, bags are labeled in Multiple Instance Learning (MIL). Each bag has multiple instances, 

but only the bag label is known (25,26,30,35,36,57,59). A bag label is valid when the precise location of 

each instance is not essential, but the overall composition is. Bags are treated as single entities without 

explicitly modeling individual instances. For optimal performance, MIL requires large amounts of data; 

a minimum of 10,000 slides is recommended (30,57). MILs require many data points to capture patterns. 

Spatial relationships between instances are another MIL limitation. 

Cancer classification using WSIs poses challenges because of their large pixel size and the 

annotation limitations when used on convolutional neural networks (26). Several techniques have been 

developed to overcome this limitation. An End-to-End, Part Learning-based approach can learn diverse 
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and discriminative features to predict prostate and basal cell carcinomas (26). Furthermore, it defines 

multi-label lung cancer architectural subtypes for clinical decision support (26). Similarly, Cluster-to-

Conquer overcomes the computational and algorithmic challenges posed by gigapixel-sized WSIs and 

the lack of MIL annotation (36). Convolutional neural networks (CNN) encoders and aggregation 

improve classification accuracy by learning slide-level label representations (36). 

In small sample sizes and the large size of WSIs, the DTFD-MIL Double-Tier Feature 

Distillation MIL uses pseudo bags to virtually enlarge the number of bags and utilize a double-tier MIL 

model to improve feature representation (32). This method outperforms other existing methods on 

CAMELYON-16 and TCGA lung cancer datasets (32). 

Whole Slide Histopathology Images Survival Analysis WSISA is an aggregation method for 

predicting cancer survival in cases that are too computationally complex for traditional survival models 

(50). Through adaptive sampling, WSISA extracts hundreds of patches from each WSI. An aggregation 

method makes patient-level predictions based on cluster-level deep convolutional survival (50). The 

process is evaluated through experiments on different datasets related to Non-small-cell lung cancer and 

Glioma, demonstrating its ability to significantly improve prediction performance compared to existing 

state-of-the-art survival methods (50). 

Using MIL approaches, an additional center-embedded aggregation technique accurately 

classifies colon cancer dataset images. This method learns both instance and bag-level embeddings by 

hierarchical pooling of features (25). 

 

3.4 Spatially Aware MIL 

A need for more spatial information limits MIL's applications. Spatially aware MIL (saMIL) has been 
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proposed to address this problem (59). CNN extracts features from instances within each bag. Combining 

these features creates a more accurate and interpretable model.  

The dual-stream MIL with contrastive learning learns meaningful features from local and global 

pathology images (43). Two streams of the model are trained, one focusing on local patches and the other 

on the whole image, and a contrastive loss function is used to encourage the model to learn similar 

representations (43). 

The multi-task MIL (MT-MIL) algorithm handles multiple related tasks simultaneously to 

capture complex relationships. MT-MIL assigns each task a different bag-level label, and the goal is to 

learn a model to predict these labels accurately, as used in the study looking at both the diagnosis and 

prognosis of early-stage invasive breast carcinoma (58). 

Global and local features are extracted using a Multiscale Domain-adversarial Multiple instance 

CNN, automatically detecting tumor-specific features in a WSI (34). It addresses the difficulties 

associated with annotating tumor regions in WSIs, extracting global and local image features, and 

detecting image features against differences in staining conditions among hospitals/specimens for 

malignant lymphoma use cases (34). 

Similarly, a framework for correlating MIL is (TransMIL), incorporating morphological and 

spatial information (31). The proposed method achieved faster convergence than state-of-the-art methods 

in various experiments (31). This framework improves weakly supervised tumor classification and cancer 

subtype identification (31). 

A second-order learning model (SoMIL) with an attention mechanism and RNN learns the bag 

and extracts instance-level feature information trained on the breast cancer lymph node metastasis dataset 

(33). 
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3.5 Graph-Based 

Using graph theory, graph-based methods model spatial relationships at the local and global levels to 

better define cells within the tissue structure and its functional relationships (38,39). Graph-based 

methods such as the SlideGraph model predict HER2 status in breast cancer and accurately identify and 

predict HER2-positive regions (39). 

Node-aligned graph convolutional network representation and classification addresses the large 

gigapixel size of WSI (37). Prior approaches MIL combined with graph convolutional network (GCN), 

but non-ordered pooling may lose valuable information. Using a global-to-local clustering strategy, 

Node-Aligned GCN (NAGCN) builds correspondence across different WSIs, representing them with 

rich local structural information and global distribution (37). It performs better in cancer subtype 

classification datasets and can be applied to improve WSI representation (37). 

The graph-transformer (GT) framework called GTP interprets morphological and spatial 

information for disease grade prediction (40). Contextual information is crucial in disease grading, 

overcoming the patch-based method’s limitations (40). GTP distinguishes adenocarcinoma and 

squamous cell carcinoma from normal histology (40). A graph-based saliency mapping technique called 

GraphCAM was also introduced, highlighting WSI regions associated with a class label (40). 

 

3.6 Attention-Based MIL 

An attention-based deep MIL for learning Bernoulli distributions of bag labels, where neural networks 

fully parameterize the bag label probability (42). Compared to other methods, the proposed method 

outperforms two real-life histopathology datasets without sacrificing interpretability (42). Pathologists 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.14.24304308doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.14.24304308
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

13 

highlight each instance's contribution to each bag label to identify disease markers in large 

histopathological images (42). 

Only sets are labeled on individual data instances in a permutation-invariant neural network 

called the Memory-based Exchangeable Model (MEM). Based on input sequences embedded in high-

level features, the model learns interdependencies among instances using a self-attention mechanism 

(45). For the classification of two subtypes of lung cancer, the model achieved an accuracy of 84.84% 

by relying on toy datasets, point cloud classification, and lung WSIs (45). The MEM model can classify 

Histopathology images into different cancer subtypes (45). 

The attention-based deep MIL also accurately classifies breast and colon cancer, and it also 

assists with cancer survival prediction, including high accuracy in predicting the survival of breast cancer 

patients (42,48). 

 

3.7 Weakly Supervised Learning 

Annotation by hand takes time, is tedious, and needs to be more scalable. MIL methods handle weakly 

labeled or unlabeled data by training on bags of instance (25,26,30,32,35,36,57). Classifying tumors with 

weakly supervised deep learning using patch-based models with regions of interest does not require 

manual annotation (24,35). Weakly labeled semantic segmentation is where only image tags are available 

as class annotations (19). Latent structured prediction encodes the presence and absence of classes and 

assigns semantic labels to superpixels (19). It shows improved accuracy in per-class classification 

compared to state-of-the-art methods (19). 

Multi-class learning improves the model's capability to classify complex structures. For weakly 

supervised image segmentation, representative structure cues in WSI identify glandular regions in 
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endometrial cancer images (53). 

 

3.8 Self-Supervised Learning 

Studies using self-supervised learning overcome the labeling bottleneck. One study combines self-

supervised feature learning using contrastive predictive coding (CPC) with regularized attention-based 

MIL (41). It achieves state-of-the-art performance for binary classification of breast cancer histology 

images with high accuracy and an area under the ROC curve reporting (41). Similarly, in dual-stream 

MIL networks, MIL-based methods effectively address WSI classification without localized annotations 

(41). 

Its model accuracy can be improved with a novel MIL aggregator that models the relations of 

the instances in a dual-stream architecture with trainable distance measurement. Self-supervised 

contrastive learning was used to extract good representations for MIL, and a pyramidal fusion mechanism 

for multiscale WSI features was used to improve the accuracy of classification and localization (43). 

Self-supervised contrastive learning can extract good representations for MIL and reduce cost 

bags' prohibitive memory costs (43). The classification accuracy and localization are further improved 

through pyramidal fusion (43). 

The study also uses SISH (self-supervised image search for histology) self-supervised deep 

learning to search WSI (46). The self-supervised model achieves constant search speed after being trained 

with only slide-level labels (46).  The model encodes whole slide images into discrete latent 

representations. Furthermore, it leverages a tree data structure for fast searching followed by an 

uncertainty-based ranking algorithm for image retrieval. It identifies similar regions across multiple large 

diverse WSI datasets with strong performance accuracy (46). 
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Lastly, the study uses a self-supervised approach that highly accurately predicts biomarkers 

from WSI ross various institutions and scanner types (47). It utilizes self-supervised, attention-based 

multiple-instance learning (attMIL) to train models capable of identifying vital morphological 

characteristics within the WSIs. This methodology allows the model to concentrate on specific regions 

of the WSI and obtain insights from the data (47). 

 

3.9 Unsupervised Learning 

In unsupervised learning, models discover patterns from unlabeled data on their own. A study identified 

intrahepatic cholangiocarcinoma subtypes using unsupervised clustering (49). Deep convolutional 

autoencoders group tumor morphologies based on visual similarity (49). It identifies patterns in cancer 

tissue images without knowing the type of tumor (49). Tumor stroma is crucial in tumor growth, 

angiogenesis, and metastasis.; it was used to stratify ductal carcinoma in situ (49). These models predict 

overall survival (49). 

 

3.10 Transfer Learning 

Transfer learning in digital pathology involves using pre-trained CNNs trained on large-scale image data 

sets and then fine-tuning them on pathology image datasets. Transfer learning aims to overcome the 

limitations of pathology slide annotations and, by doing so, may improve performance and save time and 

computational costs (60-64). At times, performance declines when using specific pre-trained models, for 

example, ones trained on ImageNet, because it may incorporate the significant differences in the natural 

and the pathology image datasets, resulting in performance inefficiencies (65). 

Prostate carcinoma is detected from TransUretral Resection of the Prostate (TURP) images 
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using DL trained on large WSI datasets, then fine-tuned on smaller datasets. Using transfer and weakly 

supervised learning, they trained DL models to classify TURP WSIs into prostate adenocarcinoma and 

benign lesions. With these results, these DL models are suitable for diagnostic workflows (52). 

The DL breast ductal carcinoma in situ classification model trains a CNN on a large, annotated 

image dataset and uses transfer learning to improve performance (66). It reports improved accuracy 

compared to traditional machine learning (66). 

 

3.11 Ensemble Learning 

Ensemble learning combines DL models to improve classification performance (44). Ensemble methods 

reduce the risk of over-fitting and improve overall model accuracy by training multiple models with 

different architectures or input data (44). One study's system's predictions may assist clinicians in making 

medical decisions and managing treatment (44). 

 

3.12 Other Algorithms and Techniques 

 

3.12.1 NN192 Machine Learning Algorithm 

Acs et al. (67) is a significant study in digital pathology, focusing on developing an automated NN192 

algorithm for assessing tumor-infiltrating lymphocytes (TILs) in melanoma. The study addresses the 

challenges of standardization and subjectivity in TIL assessment by utilizing hematoxylin-eosin-stained 

sections. The automated scoring system, validated through a retrospective analysis of 641 melanoma 

patients, demonstrates that higher TIL scores correlate with better disease-specific overall survival. This 

highlights the potential of the automated TIL scoring system as an independent prognostic marker in 
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melanoma. Furthermore, the study showcases the transformative power of digital technologies in 

pathology, improving the accuracy and efficiency of pathological assessments. This research contributes 

to melanoma prognosis and sets a precedent for the broader application of digital pathology in cancer 

care and research (67). 

Aung et al. (68) examine how digital pathology, specifically in melanoma, can improve cancer 

diagnosis and prognosis. Using the NN192 machine learning algorithm, the study achieves an objective 

and precise assessment of tumor-infiltrating lymphocytes (TILs) compared to traditional visually based 

evaluations. The analysis of TILs in melanoma samples highlights the potential of digital pathology to 

provide consistent and reproducible results. This advancement is crucial in personalized medicine, where 

accurate biomarker assessment is essential for tailoring cancer treatment. The study emphasizes 

integrating digital technologies into pathology for more precise diagnoses and better patient outcomes in 

oncology. 

 

3.12 2 Neural Image Compression 

Neural Image Compression (NIC) reduces gigapixel WSI images to extremely compact representations 

for training CNNs to predict image labels (54,55,69,70). Three encoding tools transform low-level vector 

embeddings of high-resolution WSIs: contrastive learning, reconstructional error minimization, and 

Bidirectional Generative Adversarial Network (BiGAN). BiGANs outperformed the other two 

unsupervised encoding mechanisms, with a Spearman correlation of 0.521 (55). NIC builds 

convolutional neural networks for gigapixel image analysis based on weak image-level labels (55). The 

first step is compressing gigapixel images using an unsupervised neural network, retaining high-level 

information, and suppressing pixel noise (55). CNN is trained on these compressed image representations 
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to predict image-level labels, avoiding manual annotations (55). Two public histopathology datasets were 

evaluated with NIC and found to integrate global and local visual information while attending to areas 

of the input gigapixel images that overlap with human annotations (55). NIC classifies non-small cell 

lung cancer subtypes with high accuracy (54). In addition, compression algorithms can preserve 

important image features and accuracy (70). 

 

3.12.3 Conformal Prediction 

Conformal prediction is a mathematical framework to assess the reliability of prediction systems for 

diagnosing and grading prostate biopsies. A model is trained to estimate its accuracy, and conformal 

prediction intervals are generated to quantify its uncertainty (68). Conformal prediction may improve the 

reliability and interpretability of AI-assisted pathology diagnosis (68). Conformal prediction led to a 

lower rate of incorrect cancer diagnoses and flagged a higher percentage of unreliable predictions than 

AI systems without conformal prediction (68). Conformal prediction can help augment medical providers’ 

decision-making in the clinical setting (51). 

 

3.13 Elements Impacting Model Development 

Factors that should be considered arise when developing a DL model (71-75). Awareness of these factors 

is crucial to ensure a successful development process. 

 

3.14 Reducing GPU Use and Memory Consumption with Sustainable AI Technique 

A DL model for WSI often needs a lot of computing power, especially when working with large-pixel 

data. GPU usage and memory consumption can be high, leading to longer training times and higher costs. 
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DL techniques have been developed to address this issue, limiting GPU use and memory consumption. 

Compressed models, transfer learning, data augmentation, and batch normalization have emerged as 

effective techniques that reduce GPU usage and memory consumption while improving model accuracy, 

training times, and energy costs, reducing the carbon footprint (76,77). Preparation variability 

slide prep, staining, tissue preparation protocols, and scanners can affect DL performance.  This involves 

processing enormous amounts of data with these variations, labeling ground truth, comprehensive image 

pre-processing, denoising, and WSI normalization. Normalization and data augmentation also adjust for 

non-cancer cells, necrosis, and inflammation. MIL, attention, and graph-based methods capture spatial 

relationships between these cells. Furthermore, malignant cells can be challenging to identify and classify 

due to non-cancerous cells and tissue artifacts; this is addressed by handcrafted feature extraction. 

 

3.16 Data Augmentation 

Data augmentation involves rotating, flipping, and scaling existing data to generate new training data. 

As a result, DL models perform well and require less training data, and it helps prevent overfitting and 

reduce memory and GPU utilization. 

 

3.17 Defining Accurate Ground Truth 

We need ground truth and a labeled set of data points to train, test, and validate DL models to compare 

model outputs. The accuracy of ground truth impacts model accuracy. Experts traditionally label ground 

truth. Pathologists manually highlight regions of interest in images and train DL models to detect similar 

areas in other images. Expert annotation verification for large datasets is time-consuming, expensive, 

and not scalable. Experts may also need help labeling consistently. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.14.24304308doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.14.24304308
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20 

 

3.18 Labeling Annotation 

Labeling slide annotation is time-consuming and requires much effort from experts. Moreover, the 

amount of labeled data available may be limited, impacting the performance of DL algorithms. Recent 

progress in developing weakly, semi, self-supervised, and unsupervised machine-learning clustering 

techniques can be used to analyze WSI data without labeled data (24-

26,30,32,35,36,41,43,46,47,49,53,57). In semi-supervised learning, a limited amount of labeled data is 

combined with a more significant amount of unlabeled data to train models; it allows DL models to 

perform better with less labeled data required. 

 

3.19 Domain Adaptation and Diversity 

Domain adaptation refers to the ability of a model to perform well on data from a target domain that may 

differ from the domain in which the model was initially trained. Poor domain adaptation is a significant 

challenge in WSI DL implementation, attributed to the high-resolution large gigapixel size of the images 

and annotation challenges. DL models may lose performance accuracy (35,78-80). 

Data diversity, sensors, and patients must be considered when developing DL models for WSI. 

Managing data diversity is challenging since slide images can come from different hospitals, laboratories, 

and clinics. These differences in quality, resolution, and staining can affect DL models. 

It is crucial to consider sensor type when training DL models. Sensors can also affect image 

quality. Images acquired by fluorescence microscopy may differ from those acquired by brightfield 

microscopy. 

Finally, consider the patients; different patient populations must be represented in a diverse 
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dataset. 

 

3.20 Structured Prediction Global vs. Local Features 

Structured predictions capture spatial and heterogeneous cell relationships in various spatial scales. 

Global cell features describe the overall distribution of cells in a tissue, while local cell features describe 

their immediate neighbors. This model captures complex spatial relationships between cells by 

combining these features. Interactions between cells are complex and dynamic (81). The properties of 

cells vary depending on where they are in tissues. By combining global and local features and examining 

their cellular relationships, structured prediction makes accurate predictions about individual cells' 

malignant behavior. 

 

3.21 High Spatial Resolution 

A substantial amount of spatial data generated by WSI can make the development of accurate DL 

algorithms challenging. Studies reviewed noted that image compression and patch-based techniques can 

overcome this limitation. 

 

3.22 Compressed Models 

Model compression minimizes the number of parameters (54,55,69,70). A pruning technique removes 

less meaningful connections between nodes, and a quantization technique reduces the precision of the 

weights and activations. Compressed models use less memory, can be trained faster, reduce GPU usage, 

and improve digital storage (54,55,69,70). 
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3.23 Batch Normalization 

During training, batch normalization and activations at each neural network layer are normalized to 

improve stability and convergence. Using batch normalization, DL models can be trained faster and more 

accurately and use less memory. 

 

3.24 Transfer Learning 

A pre-trained model is fine-tuned in transfer learning for a specific task (60-64,82). This approach can 

significantly reduce training time, GPU, and memory use. Transfer learning is especially effective for 

tasks with similar features and datasets. Recent developments in resource-efficient neuroevolutionary 

multi-tasking have shown promising results within machine learning pipelines, including AutoML (76). 

Gradient-free evolutionary optimizers have emerged as a powerful alternative to traditional DL, as 

demonstrated by OpenAI (83). 

Combining ResNet50 (residual network 50), a convolutional neural network that is 50 layers 

deep, with weakly supervised or unsupervised techniques in DL WSI improves image classification 

performance and addresses gradient explosion. Training with a pre-trained ResNet50's backbone is faster 

and more efficient. The model has already learned general features from a large dataset, requiring fewer 

data and iterations to reach good accuracy. This is useful for small datasets or scenarios requiring real-

time inference. The quality and diversity of the training data determine the model's performance. Data 

preparation and selection are critical to achieving optimal results.  Not all pre-trained models are suitable 

for pathology. For example, DL models pre-trained on ImageNet at certain times may not be ideal for the 

computational pathology task (65). The ImageNet models are trained on natural images, whereas 

pathological images have unique features. To achieve optimal performance, pre-trained models may need 
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to be fine-tuned or trained from scratch. Furthermore, this model may not capture all the variations in 

pathology images. Artifacts, stains, and other factors may affect the accuracy of DL models in pathology 

images. Careful evaluation of pre-trained models on pathology images and considering alternatives is 

essential.  

 

3.25 Rare Conditions 

Rare conditions are underrepresented in training data, affecting DL models' ability to diagnose them. 

Techniques in transfer learning, data augmentation, synthetic data, and federated learning address these 

limitations. 

 

3.26 Healthcare Bias, Inclusion, Fairness, and Equity 

Deep learning digital services should incorporate inclusion, fairness, bias detection algorithms, metrics, 

and strict governing protocols during the DL model development lifecycle (6,18,84,85). DL model 

development workflows should strive to obtain model parity. Fletcher describes three aspects of DL 

model development: fairness, appropriateness, and bias (85). To limit disparities, these elements must be 

addressed when developing DL models: religion, economic status, ethnicity, race, and gender should also 

be incorporated into these algorithms (84). If left unaddressed, AI models may demonstrate bias, as noted 

by (84). Feedback algorithms can rectify skewed patient datasets (84). Local governance committees and 

agencies, such as the Joint Commission and Institute for Healthcare Improvement, provide ongoing 

oversight to ensure equitable conditions. Continuous monitoring of quality data underscores the 

importance of equity in clinical practice. 
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3.27 False Positives Management 

DL models for WSI improve sensitivity to detect cancer. However, with this improvement, false positive 

detection increases. While the models are better at detecting cancer, they may also flag areas as cancerous 

when they are not. Training the models on more extensive and diverse datasets may mitigate the risk of 

false positives and improve their accuracy. A study revealed that techniques can reduce and improve false 

positives (86). When interpreting the results of these models, it is vital to consider false positive 

detections. 

 

3.28 Data Privacy 

Privacy and security concerns arise with WSI and DL technologies. As WSI deals with large amounts of 

sensitive patient information, strong data privacy policies, encryption, and access control are 

indispensable. Differential privacy methods such as encryption and federated learning protect individual 

privacy while allowing accurate data analysis (87-89). 

 

4. Conclusions  

Data pre-processing and model development represent only a small fraction of the expansive 

DL lifecycle. A truly seamless journey from model development to clinical production environment is 

ideal. To achieve this seamlessly on a healthcare enterprise scale within digital pathology, a robust AI 

technical infrastructure, expert personnel, and a governance system for continuous oversight are needed. 

The digitalization of pathology has trailed behind its radiology counterpart, which transitioned 

from analog films to digital systems decades ago. This lag is evident in the field of DL within digital 

pathology compared to radiology, as demonstrated by the numerous algorithm approvals by the FDA. 
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While the technical intricacies of model development are vital, as discussed in this review, they are but 

one piece of the puzzle. 

Future longitudinal clinical trials during the post-deployment production phase of the DL 

lifecycle are essential. These studies will offer invaluable insights into the real-world clinical impact of 

DL on cancer care, guiding us toward a future where innovative technology and healthcare intersect 

seamlessly to benefit patients. 

Being a narrative review, this study design may exhibit more bias and is not intended to be as 

comprehensive as other methods. 
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Tables 

Table 1. The search strategy summary 

Items   Specification 

Date of 

Search  

  The first search was conducted on 9/18/2022. The last search was 

conducted on 5/18/2023.  

Databases 

and other 

sources 

searched 

 The Databases searched were Embase, Pubmed, DBLP, 

Google Scholar, IEEE Xplore, Cochrane database, IEEE, 

Web of Sciencex, ARxiv BioRxiv, MedRxiv Web of 

Science, and Semantic Scholar.    

Search 

terms used  

 Search Using terms 1) Boolean Logic: connecting words like "AND," 

"OR," and "NOT" in various combinations to expand or narrow down 

search results 2) Fuzzy Logic: search terms like "Digital Pathology" 

NEAR "Deep Learning" or "Whole Slide Imaging" WITHIN 5 words 

of "Deep Learning" to search for particular articles 3) Truncation: We 

searched for terms that began with a specific string by placing an 

asterisk (*) at the end of a root word. The word string used in the search 

were digital pathology, deep learning pathology, cancer, digital AI 

pathology, artificial intelligence, and cancer 

Timeframe  2014-2023 

Inclusion 

and 

exclusion 

criteria  

 Inclusion Criteria   

● Age greater than 18 years old   

● Dates Range 2014 to 2023   

● DL Novel Models   

● Peer & Non-Peer Reviewed Publications   

● Cancer   

Exclusion Criteria   

● Pediatric population   

● Cytopathology   

● Stereology   

● Non-Cancer   

● Review articles   

Selection 

process  

 Using the search criteria, 776 articles were found. Two 

independent reviewers (BB) and (AR) selected articles that 

fit the inclusion criteria. Thirty-six papers met the study 

eligibility criteria out of 776. A third reviewer (BKK) served 

as a tiebreaker to resolve disagreements.    
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Study  Model  Performance Metrics Training Data  Problem Type  Cancer 
Type  

Staining Type 

Wang et 
al. (23) 

Patch-Based with 
Various DL models 

Two evaluation metrics: 
Lesion-based (based on 
correctly identifying cancer 
cells in  
WSI): 0.7051  
Slide-based:  0.925 ROC 

Camelyon-16 dataset: 400 Classification  Breast  Pan cytokeratin 

Wang et 
al. (24) 

Patch-Based Paired 
with FCN-RF 
(Context-Aware 
Block Selection)  
Spatial Contextual 
Information) 

M4-CNN Weighted  

Norm3-Based RF acc: 
0.973 

SUCC dataset  
Training: 355 
Testing:  1402 

Classification  Lung  H&E 

Chikontwe 
et al. (25) 

MIL Patch  
Aggregation,  
Center Embedding  

F1: 92.36  
Precision: 92.54  
Recall: 92.31   
Accuracy: 92.31 

173 WSI  Classification  Colon  H&E 

Xie et al. 
(26) 

MIL Patch-Based 
End-to-End 
(Learning Diverse 
Discriminative) 

0.986 Accuracy BCC Dataset  
Training: 6900  
Valid:  1487  
Test: 1575  
 
Prostate Needle Biopsies 
Dataset   
Training:8521 
Valid:  1827  
Test:  1811 

Classification  Prostat
e 

H&E 

Li et al. 
(27) 

2 Stage Patch Based 
MIMS CNN Scale 
Invariant 

0.986 Accuracy 339 3D OCT 
Training: 67%  
Test: 33%  

Classification  Colorec
tal  

H&E 

Tsuneki 
and 
Kanavati 
(28) 

Patch aggregation 
Weakly Supervise 
Efficient Net B1 

Best model TL-colon poorly 
ADC-2 (x20, 512)  
Accuracy:  TUR-P   
Hospital A-B:  0.916 
Hospital A: 0.969 
Hospital B: 0.874 
TCGA: 0.821 
Hospital A-C: 0.844 

Training:   
Hospital A: 281  
Hospital B: 739  
Validation on:   
Hospital A and B:  20  
Test:   
Hospitals A and B:  500 

Classification  Stomac
h, 
Colon, 
Lung, 
and 
Breast 

H&E 
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Kanavati 
et al. (29) 

Patch aggregation 
RNN/CNN  
Efficient Net B1 

DCIS: Test set1: WS + RNN: 
ROC AUC: 0.937  

IDC: Test set1:  WS + RNN:  
ROC-AUC:  0.977  

DCIS: Test set2: WS + RNN: 
ROC AUC: 0.960  

IDC: Test set2:  WS + RNN:  
ROC-AUC: 0.959 

Set:   

total WSI’s:   
total Biopsy:   
total Surgery:  

Test:  1930, 1065, 865 Train:  
1652, 978, 674  
Valid:  90, 58, 32 

Classification  Breast  H&E 

Campanell
a et al. 
(30) 

MIL-RNN  AUC 0.98  skin, prostate, and breast 
slides: 44,732 

Classification  Prostat
e, 
Basal 
Cell  
Carcin
oma, 
and 
Breast  

H&E 

Shao et al. 
(31) 

TransMIL  AUC 96.03% TCGA NSCLC  
98.82% TCGA RCC 

993 NSCLC 
884 RCC 

Classification  Kidne
y, 
Breast
, and 
Lung  

H&E 

Zhang et 
al. (32) 

DTFDMIL  Camelyon-16 ACC 90.8%,  
F1 88.2%, AUC 94.6%  
TCGA ACC 89.4%, F1 89.1%, 
AUC 96.1% 

Camelyon-16 patches: 3.7 
million 
TCGA patches: 8.3 million 

Classification  Lung  H&E 

Wang et 
al. (33) 

Second Order MIL AUC 96%  130 WSI  Classification  Breast  H&E 

Hashimot
o et al. 
(34) 

DA-Domain 
Adversarial MIL 

ACC 87%  
Precision 97%  
Recall 81% 

Malignant Lymphoma 
Slides :  196  

Classification  Lymp
homa  

H&E 

Lu et al. 
(35) 

(CLAM) Cluster 
Constraint Attention 
Multiple Instance 
Learning 

AUC: > 0.95 Variable sizes used: 884, 
1967, 899 

Classification  Lung  H&E 

Sharman 
et al. (36) 

Cluster-2-Conquer C2C (w WSI+Patch+K LD 
Loss)  
Accuracy: 86.2 

Gastro-in Intestinal 
Dataset 413 High-res 
Images.  

Train: 65%  
Valid: 15% 
Test: 20% 

Classification  Gastr
ointes
tinal  

H&E 

Guan et al. 
(37) 

Node Aligned Graph-
based MIL 

Accuracy:  0.896 
AUC ROC: 0.946 

Patches for NSCLC: 13904 
Patches for RCC: 14116 

Classification  Lung 
and 
Renal  

H&E 
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Xu et al. 
(38) 

Graph-Based  Accuracy: 27.9, 0.78 Mean 
AUROC with 0.03 std  

SIFT Flow Segmentation 
Dataset with 2688 Images 
and 33 Classes 
TCgA BRCA 20% test and 
80% Train and Val  

Segmentation  Lung 
and 
Breast  

H&E 

Lu et al. 
(39) 

Graph-Based  TCGA AUC: 75%  
 
Two Independent Data Set 
AUC: 80% 

TCGA Two Independent 
data sets 
Training: 80%  
Test: 20% 

Classification  Breast  DAB 

Zheng et 
al. (40) 

Graph-Based Best Models with Accuracy 
CPTAC: 2- label: Resnet + 
GT: 0.935 +- 0.010  

3-label: CL + GraphAtt:  
0.835 +- 0.022  
 
TCGA 2-label CL + GraphAtt: 
0.911 +- - 0.011  
 
3-label CL + GraphAtt:   
0.797 +- 0.026 

CPTAC: 2071  
WSI's TCGA: 288   
WSI's NLST:  665   
 

Classification  Lung  H&E 

Lu et al. 
(41)  

Attention Based MIL 
with Contrastive 
Learning Self 
Supervised Model 

AUC ROC 0.968 ± 0.022 H&E strained breast cancer 
with 400 images of size 
2048x15 36.   
Train: 300 images  
Valid: 100 images 

Classification  Breast  H&E 

Ilse et al. 
(42) 

Attention Based MIL  Breast: AUC ROC 0.799 
Colon: AUC ROC 0.968  

58 Breast  
100 Colon    
 

Classification Breast 
and 
Colon  

H&E 

Li et al. 
(43) 

Dual-Stream MIL 
Self Supervised   
Contrastive Learning 

Cameylon-16 ACC 86.82%, 
AUC 89.4%  
TCGA ACC  91% AUC 96% 

TCGA Cameylon-16 271 
training 129 test 

Classification Breast 
and 
Lung  

H&E 

Khened et 
al. (44) 

Ensemble  Dice score:  0.782 Datasets with train 
Camelyon-16: 270, 129  
Camelyon-17: 500, 500 
DigestPath: 660, 212  
PAIP:  50, 40 

Segmentation  Breast
, 
Colon, 
and 
Liver  

H&E 

Kalra et al.  
(45) 

MEM Invariant 
Representation 

TCGA ACC 84.84% TCGA 2580 WSI Classification  Lung 
Adenoc
arcinom
a and 
Lung 
Squamo
us Cell 
Carcino
ma 

H&E 
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Chen et al. 
(46) 

SISH Self Supervised 
MIL 

SISH Macro Average: 
45.51% 

WSI: 22,385  
Anatomic Sites: 13 
Subtypes: 56 

Classification  37 
Cance
rs 
includ
ing 
Lung 
carcin
oma 

Variability   
According to 
Cancer  

Niehues et 
al. (47)] 

Self-Supervised 
Attention based MIL 

attMIL AUROC: 0.94±0.02 The dataset consists of 30 
patients' data.   

The performance is then 
compared with previous 
studies. 

Classification  Rectal 
and 
Colon 

H&E 

Yao et al. 
(48) 

Unsupervised 
Siamese Network 

 1500 Australian colorectal 
cancer patients  

Training: 70%,  
Valid: 10%,  
Test: 10% 

Classification  Lung  H&E 

Muha 
mmad et 
al. (49) 

Unsupervised Deep 
Convolutional 
Autoencoder-Based 
Clustering Model 

Autoencoder with 
combined MSE Loss and 
Reconstruction Clustering 
Error.  
Best Cluster:  13 

246 ICC slides Clustering  Breast 
and 
Prosta
te 

H&E 

Zhu et al. 

(50) 

Unsupervised K 
Means Clustering. 

WSISA score:  0.703 (NLST), 
0.638 (TCGA LUSC), 0.60 

(TCGA GBM)  
 

WSISA score:  0.703 (NLST), 
0.638 (TCGA LUSC), 0.603 

(TCGA GBM)  
 

WSISA score:  0.440 (NLST), 
0.397 (TCGA LUSC), 0.645 
(TCGA GBM) 

NLST Dataset:  404 Patients, 
1104 WSI’s.  
 
TCGA Dataset is Divided into 
two parts.  

TCGA LUSC: 121 Patients, 
485 WSI’s TCGA GBM: 126 
Patients, 255   
WSI's Training: 65%   
Validation: 25%  
Test: 20% 

Clustering  Lung  H&E 

Olsson et 
al.  (51) 

Conformal Prediction With Conformal (0.1%)  
 
Error Detects: 85%  
Unreliable Predictions 
Without Conformal: 2% 
Error: 25% (Error in Atypical 
Prostate Tissue) 

Prostate Slides: 7788   
Training: 3059 

Classification  Entropy
, Pseudo 

hyperpl

astic, 

Small-

Cell 

Cancer 

H&E 

Tsuneki et 
al. (52) 

Weakly   

Supervised   
Multi-organ 
Classification 

Best Model x10EfficientN et 
B1: Avg Accuracy:   

0.903 

Training 1k, 2k, and 4k WSI’s 
Validation on set is 
randomly chosen.  

Test Dataset: 
WSI’s: 4896  

 

Classification  Prosta
te  

H&E 
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Moha 
mmad et 
al.  (53) 

Weakly Supervised CLAM 
Acc: 87.04  
AUC: 95.06 

iCAIRD Endometrial  

Train : 1497  
Valid: 499  
Test: 911 

Classification  Endom
etrial  

H&E 

Aswolinski
y et al. (54) 

Neural Image 
Compression 

TCGA AUC: 94%  
TCIA AUC: 94% 
Independent datasets AUC: 
84%-98% 

WSI: 2000 Segmentation  Lung  H&E 

Tellez et al. 
(55) 

Neural Compression 
 

Accuracy: 0.725 
 

Rectum:  74 WSI  
Camelyon-16: 60 WSI  
Tupac-16: 40  
WSI Training: 50,000 
(extracted) 

 

Compression   
and Analysis 
 

Breast 
 

H&E 
 

Sornapudi   
et al. (56) 

Image Segmentation CIN model Test Results 
OU15/OU16 F1 : 93.5  
ACC :  96.5  
AUC :  95.5 

3 Datasets with  
50 WSI’s each OUI : 2998  
True ROIs : 20,841 
False ROIs OUI5 : 4915  
True ROIs: 12,595   
False ROIs OUI6: 4106   
True ROIs :8601   

Segmentation  Cervical  H&E 

Schmitt et 
al. (57) 

CNN  ResNet 50 + CNN MBA: 50+ 
accuracy 56.1%  
 
Slide Preparation Date 
100% Slide Origin 

Total : 42  
Images : 7 
Training : 80% 
Test : 20% 

 

Classification  Breast, 
Lung, 
Skin, 
and 
Gastroi
ntestina
l 

H&E 

Table 2 lists the 36 articles. Dates ranged from 2014 to 2023. 

Legend: WSI: Whole Slide Image, ACC: Accuracy, AUC: Area Under the Curve, ROC: Receiver 

Operator Characteristic Curve, Valid: Validation  ROI: Region of Interest, CNN: Convolutional Neural 

Network, CLAM, Cluster Attention Multiple Instance Learning, TCGA: The Cancer Genome, Atlas 

Program, TCIA: The Cancer Imaging Archive, CPTAC: Clinical Proteomic Tumor Analysis Consortium, 

TUPAC: Tumor Proliferation Assessment Challenge, CAMYELON16: Cancer Metastasis in Lymph 

Node Challenge 2016, H&E: Hematoxylin and Eosin, DAB Staining: 3’.3’-Diaminobenzidine  NSCLC: 

Non-Small Cell Carcinoma, RCC: Renal Cell Carcinoma, CIN: Cervical Intraepithelial Neoplasia, ICC: 

Intrahepatic Cholangiocarcinoma   
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Figure 1 Flow chart of studies using PRISMA guidelines. 
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Figure Legends 

Figure 1 Flow chart of studies using PRISMA guidelines. 
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