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Abstract 

Objective: Automatic and robust characterization of spinal cord shape from MRI images is 
relevant to assess the severity of spinal cord compression in degenerative cervical myelopathy 
(DCM) and to guide therapeutic strategy. Despite its popularity, the maximum spinal cord 
compression (MSCC) index has practical limitations to objectively assess the severity of cord 
compression. Firstly, it is computed by normalizing the anteroposterior cord diameter by that 
above and below the level of compression, but it does not account for the fact that the spinal 
cord itself varies in size along the superior-inferior axis, making this MSCC sensitive to the 
level of compression. Secondly, spinal cord shape varies across individuals, making MSCC 
also sensitive to the size and shape of every individual. Thirdly, MSCC is typically computed 
by the expert-rater on a single sagittal slice, which is time-consuming and prone to inter-rater 
variability. In this study, we propose a fully automatic pipeline to compute MSCC.  

Methods: We extended the traditional MSCC (based on the anteroposterior diameter) to other 
shape metrics (transverse diameter, area, eccentricity, and solidity), and proposed a 
normalization strategy using a database of healthy adults (n=203) to address the variability of 
the spinal cord anatomy between individuals. We validated the proposed method in a cohort 
of DCM patients (n=120) with manually derived morphometric measures and predicted the 
therapeutic decision (operative/conservative) using a stepwise binary logistic regression 
including demographics, clinical scores, and electrophysiological assessment. 

Results: The automatic and normalized MSCC measures significantly correlated with clinical 
scores and predicted the therapeutic decision with higher accuracy than the manual MSCC. 
Results show that the sensory dysfunction of the upper extremities (mJOA subscore), the 
presence of myelopathy and the proposed MRI-based normalized morphometric measures 
were significant predictors of the therapeutic decision. The model yielded an area under the 
curve of the receiver operating characteristic of 80%.  

Conclusion: The study introduced an automatic method for computation of normalized MSCC 
measures of cord compression from MRI scans, which is an important step towards better 
informed therapeutic decisions in DCM patients. The method is open-source and available in 
the Spinal Cord Toolbox v6.0. 
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1. Introduction 

Morphometric measures computed from structural magnetic resonance imaging (MRI) scans 
are often used to evaluate the severity of spinal cord compressions in degenerative cervical 
myelopathy (DCM)1–3. Morphometric measures also demonstrated potential in predicting DCM 
progression4,5 and to guide therapeutic strategy6–8. Nonetheless, these measures present 
considerable variability due to anatomical differences between spinal levels and among 
individuals, currently limiting their usage. 

Variations in spinal cord anatomy along the superior-inferior direction within a single individual 
lead to different morphometric measures between levels. For example, spinal cord measures 
at the C2 vertebral level differ from those at the C4 vertebral level9–11. Maximum spinal cord 
compression (MSCC) is a popular index providing compression severity normalization by using 
the non-compressed levels above and below the compression site12,13. However, MSCC does 
not consider the varying spinal cord anatomy across spinal levels, which can lead to 
inaccuracies in the assessment of compression severity, as the measures may not reflect the 
true pathology extent. For instance, if a compression occurs at the cervical enlargement 
(around C5 level), the MSCC13 would be underestimated because the levels above and below 
the compression site are typically smaller than the cervical enlargement. Analogously, if the 
compression happens right below the cervical enlargement, the opposite would happen: the 
MSCC would be overestimated. Additionally, the MSCC computation is usually done manually 
by clinicians on a single sagittal slice which is time-consuming and prone to variability between 
experts. 

Inter-subject variability, on the other hand, is associated with the differences between 
individuals in terms of age, sex, and body size (weight, height). For instance, a significantly 
smaller spinal cord area is consistently reported in females relative to males11,14,15. Similarly, 
age-related changes in spinal cord size and shape can also impact spinal cord morphometrics 
and may require different normalization strategies for different age groups15. Previous studies 
proposed different normalization strategies to mitigate this variability, like normalizing to age-
matched healthy control16 or taking into account confounding variables like age and brain 
volume14,15,17. However, an age- and sex-matched healthy control cohort is not always 
available, measures like brain volume are not commonly accessible within spinal cord studies, 
and there is no clear consensus on which demographic and anatomical factors to use for 
normalization. 

In this study, we aimed to improve the accuracy of spinal cord compression morphometric 
measures by mitigating the effects of intra-subject and inter-subject variability. We proposed 
an automatic computation of the MSCC from MRI scans and extended it to other morphometric 
measures: transverse (RL) diameter, cross-sectional area (CSA), eccentricity, and solidity. 
Furthermore, we implemented an inter-subject normalization to account for the varying 
anatomy along the spinal cord. We validated our approach in a large cohort of DCM patients 
(n=120). The proposed method is available as part of the open-source software Spinal Cord 
Toolbox (SCT).  
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2. Materials and methods 

In this section, we first describe the automatic self-normalization of morphometric measures 
using the non-compressed levels above and below the compression site. Then, we introduce 
the normalization across subjects based on a database of healthy adults. Finally, we validate 
the method in a cohort of DCM patients. 

2.1. Self-normalizing of morphometric measures 
MSCC is typically used as a self-normalized metric to assess compression severity computed 
by measuring the anteroposterior (AP) diameter at the level of compression and at the levels 
above and below the compression site13. The computation is usually done manually by an 
expert-rater on a single sagittal slice which is a time-consuming process prone to inter-rater 
variability. 

In the current study, we automated the MSCC computation and included additional metrics 
besides the AP diameter (2.1.1 and 2.1.2). We refer to these metrics as morphometric ratios. 
Additionally, we added an across-subject normalization to consider the varying spinal cord 
anatomy along the superior-inferior axis between subjects (2.1.3). The method is available in 
SCT’s v6.0 and higher via the sct_compute_compression function.  

2.1.1. Automatic MSCC computation 

Figure 1 presents an overview of the automatic morphometric ratios computation. Given that 
compression typically affects more than one axial slice, and compression sites are commonly 
located near the intervertebral discs, we opted not to directly take the entire vertebral levels 
above and below the compression site for self-normalization. Instead, we averaged the metrics 
on 20mm extent at a 10mm distance above and below the compression site. If multiple 
compressions are present, we use 10mm above the most upper compression, and 10mm 
below the lowest compression site to ensure that “non-compressed” levels are used for the 
normalization. We chose an extent of 20mm to approximate vertebral level length10, and a 
distance of 10mm to reliably select only non-compressed areas. The extent and distance can 
be specified by the user as input arguments of the sct_compute_compression function. 

2.1.2. Morphometric measures to characterize spinal compression 

Various morphometric measures were shown to be sensitive to spinal cord compression16,17 
and DCM progression4,5. Therefore, we implemented the normalization approach for several 
morphometric measures provided by SCT’s sct_process_segmentation. Those metrics are: 
1) AP diameter, 2) RL diameter, 3) CSA, 4) eccentricity, and 5) solidity11. Note that the original 
MSCC normalizes only the AP diameter13 (see Figure 1B). 

The sct_process_segmentation requires a spinal cord segmentation mask, vertebral labels, 
and a file with identified compression sites as inputs and outputs a CSV file with computed 
metrics for each compression site. A tutorial on how to get the labels and use 
sct_process_segmentation is available at: 

https://spinalcordtoolbox.com/user_section/tutorials/shape-analysis/normalize-
morphometrics-compression.html. 
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2.1.3. Normalization with healthy controls 

To account for variability caused by anatomical differences between spinal levels, the self-
normalized morphometrics were additionally computed on a database of healthy adult 
volunteers (n=203) in the PAM50 anatomical dimensions (Figure 1A)11. To account for the 
influence of sex and age on the morphometric measures, we implemented an option to filter 
healthy controls based on sex (males vs females) and a specific age range (e.g., 40-50 y.o.).  

 

Figure 1. (A) Morphometric ratio and normalized morphometric ratio. The morphometric ratio 
is computed based on the metric (here AP diameter is shown) at the compression site, 10mm 
above and below the compression and averaged along a 20mm extent on the patient and 
healthy controls. Normalized morphometric ratio (ratio_norm) is computed by dividing each 
metric (mx) by the corresponding value averaged across healthy controls. (B) Morphometric 
measures used to compute morphometric ratios and normalized morphometric ratios. Adapted 
from11. 

2.2. Validation in patients with cord compression 

In the following section, we validated the automatic morphometric ratios against manually 
derived shape measures in a single-center DCM cohort. We also explored the relationship of 
the morphometric ratios with clinical scores and examined which metrics can predict the 
therapeutic decision (operative/conservative).  
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2.2.1. Participants 

120 DCM patients were recruited at Balgrist University Hospital (Zurich, Switzerland) between 
October 2016 and December 2022. The research received approval from the regional ethical 
review board (Kantonale Ethikkommission Zurich, KEK-ZH 2012-0343, BASEC Nr. PB_2016-
00623), and is registered (www.clinicaltrials.gov). The execution of the study adhered to the 
ethical guidelines set forth by the World Medical Association's Declaration of Helsinki, which 
pertains to human experimentation. Prior to their inclusion in the study, all participants gave 
their informed consent. 

Inclusion criteria: cervical spinal stenosis on the T2-weighted (T2w) MRI; clinical symptoms 
consistent with DCM3 (i.e., pain, sensory or motor deterioration in the upper or lower limbs, 
gait or bladder dysfunction); age 18-80 years. Patients suffering from a competing neurological 
disease with a potential bias to clinical and neurophysiological assessments were excluded. 
Additional exclusion criteria: MRI contraindications, epileptic seizures, mental illness, severe 
medical illness and pregnancy.  

2.2.2. Clinical and electrophysiological assessment 

Neurological status and functional impairment were assessed with the following scores: 

1. Modified Japanese Orthopedic Scale (mJOA, max. 18 points)18 and its subscores 
upper extremity sensory dysfunction, lower extremity motor dysfunction, upper 
extremity motor dysfunction and bladder dysfunction.  

2. American Spinal Injury Association (ASIA)/Graded Redefined Assessment of Strength, 
Sensibility, and Prehension (GRASSP) subscores19,20: the upper-extremity light-touch 
score, the upper-extremity pin prick score (cervical pin prick score), monofilament 
testing of dorsal hand sensation (monofilament sensation score), upper extremity motor 
score and lower extremity motor score. 

Electrophysiological assessment included dermatomal somatosensory evoked potentials 
(dSEP) from spinal levels C6 and C8 and contact heat evoked potentials (CHEPS) from levels 
C6, C8, and T4. The electrophysiological assessment was performed as previously described 
in Scheuren et al. 21 

Moreover, the following clinical information was provided: level of maximal compression, 
number of stenosis levels, spine surgery prior to study inclusion (0- no, 1 -yes), and presence 
of radiological signs of myelopathy (i.e., T2w hyperintensity; 0 - no, 1 - yes). The presence of 
a hyperintense T2w signal (e.g., diffuse T2 hyperintensity, cystic lesions, snake eyes) within 
the spinal cord (representing radiological signs of established myelopathy) was visually 
evaluated in axial and sagittal T2w MRI (2.2.3.). 

2.2.3. MRI acquisition  

MRI scanning was performed on a 3T scanner (Siemens SkyraFit, Erlangen, Germany), using 
the body transmit coil and the product 16-channel receive head/neck coil. An MRI compatible 
cervical collar was used to reduce involuntary neck motion. The axial T2w scans were acquired 
with the following parameters: TE of 93 ms, TR of 3600 ms, slice thickness of 3mm, flip angle 
of 150 degrees, field-of-view of 160mm, bandwidth of 284 Hz/px, base resolution of 320, phase 
resolution of 80%, spatial resolution of 0.5×0.5×3.0mm³, and GRAPPA 2. The sagittal T2w 
scans were were acquired with the following parameters: TE of 87 ms, TR of 3760 ms, slice 
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thickness of 2.5mm, flip angle of 160 degrees, field-of-view of 220mm, bandwidth of 260 Hz/px, 
base resolution of 384, phase resolution of 75%, spatial resolution of 0.6×0.6×2.5mm³. 

2.2.4. MRI analysis (manual) 

Clinicians performed a manual assessment of the MRI images using the adapted spinal canal 
occupation ratio (aSCOR) calculated at the level of compression as the ratio of the spinal cord 
area divided by the spinal canal area multiplied by 10022,23 and adapted MSCC (aMSCC) 
calculated as the ratio of CSA in the compressed segment divided by the CSA at C2 vertebral 
level.  

2.2.5. MRI analysis (automatic) 

Automatic processing was done using SCT v6.024 and the dcm-metric-normalization pipeline 
(https://github.com/sct-pipeline/dcm-metric-normalization) and is illustrated in Figure 2. For 
each subject, intervertebral discs were obtained from the sagittal T2w image using 
sct_label_vertebrae25, and the spinal cord was segmented on the axial T2w image using 
sct_deepseg_sc26 (Figure 2A). The intervertebral discs and spinal segmentations were 
visually controlled and manually corrected when necessary. Then, the sagittal T2w image was 
resampled to the axial T2w image to bring sagittal intervertebral discs to the axial scan and to 
label the axial spinal cord segmentation (Figure 2B). The compression sites were manually 
identified on the axial T2w images based on the clinical information (Figure 2B). Finally, the 
sct_compute_compression function was used to automatically compute morphometric 

ratios and normalized morphometric ratios (2.1.3) (Figure 2C). To mitigate the differences in 
morphometrics between sex when computing the normalized morphometric ratios, we filtered 
healthy controls according to sex. Morphometric ratios and normalized morphometric ratios 
were computed for five measures (AP diameter, RL diameter, CSA, eccentricity, and solidity).  

 

Figure 2. Automatic processing pipeline. Intervertebral discs were obtained for the sagittal 
T2w image, and the spinal cord was segmented on the axial T2w image (A). Then, the sagittal 
T2w image was resampled to the axial T2w images to bring the intervertebral discs from 
sagittal to axial T2w scan to label the axial spinal cord segmentation (B). Spinal cord 
compression sites were manually labeled, and morphometric ratios and normalized 
morphometric ratios were automatically computed using the sct_compute_compression 
function (C). 
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2.2.6. Statistics 

Statistical analysis was performed with SciPy Python library v1.6.3 and scikit-learn Python 
library v0.23.2. Descriptive statistics including mean and standard deviation were provided. 
We computed the Spearman correlation among all available regressors (as provided in 
Table 1) between continuous variables. Phi coefficient was computed across dichotomous 
variables and the point-biserial correlation was computed across continuous and dichotomous 
variables. Dichotomous variables included sex, previous surgery, myelopathy and therapeutic 
decision. We did not correct for multiple comparisons when computing correlations since the 
purpose was exploratory and the number of regressors is considered in the subsequent 
multivariate regression analysis. 

2.2.6.1. Correlation between manual, automatic and normalized morphometrics 

First, we computed the Spearman’s correlation between the manual measures (aSCOR and 
aMSCC), and automatic morphometric ratios. As aSCOR and aMSCC were computed using 
the CSA, we only compared them with CSA ratio and CSA ratio normalized 

2.2.6.2. Prediction of therapeutic outcome 

To validate the automatic computation of morphometric ratios, we created a model to predict 
the therapeutic decision (conservative/operative) using a stepwise binary logistic regression. 
The dependent variable was the therapeutic decision (conservative: 0, operative: 1). The 
independent variables included demographics, clinical data, clinical scores, 
electrophysiological data, automatic morphometric ratios, and manual morphometric 
measures as detailed in Table 1. 

First, we proceeded to a stepwise logistic regression with p-value=0.05 as the level of 
significance. A binary logistic regression was generated using the resulting significant variables 
of the stepwise regression. The model was validated using a 10-fold cross-validation. The 
receiver operating characteristic (ROC) curve and area under the curve (AUC) were used as 
performance metrics. We repeated the process using the normalized morphometric ratios, 
leading to 2 different models. If the participant's maximum level of compression was not 
included in the axial field-of-view, the participant was excluded from the analysis.  

3. Results 

3.1. Descriptive statistics 

Detailed demographics and descriptive statistics for all available regressors are provided in 
Table 1. Quantitative variables are represented as mean±standard deviation while categorical 
variables are presented as % in each category. 

Table 1. Descriptive statistics of demographics, clinical data, clinical scores, morphometrics, 
and electrophysiological data. 
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Demographics 

Age 55.28 ± 12.80 

Sex (M: male/F: female) M: 64% F: 36%  

Height (m) 1.70 ± 0.10 

Weight (kg) 74.93 ± 14.17 

Clinical data 

Previous surgery (yes/ no) 6% 94% 

Therapeutic decision (conservative/operative) 40% 60% 

Myelopathy (yes/no) 38% 62% 

Number of stenoses 2.09 ± 0.97 

Maximum level of compression C3/C4: 17% 
C4/C5: 23%  
C5/C6: 52%  
C6/C7: 8% 

Clinical scores 

mJOA (max. 18 points) 15.89 ± 1.84 

Upper extremity motor subscore (max 5 points) 4.54 ± 0.67 

Lower extremity motor subscore (max 7 points) 6.49 ± 0.80 

Upper extremity sensory subscore (max 3 points) 2.18 ± 0.64 

Bladder function subscore (max 3 points) 2.68 ± 0.58 

Monofilament sensation score (max 24 points) 21.78 ± 2.80 

Cervical light touch score (max 28 points) 25.83 ± 3.16 

Cervical pin prick score (max 28 points) 25.16 ± 3.84 

Upper extremity motor score ASIA (max 50 points) 49.34 ± 1.40 

Lower extremity motor score ASIA (max 50 points) 49.58 ± 1.51 

Morphometric ratios (automatic, normalized) 

AP diameter ratio (%) 18.51 ± 11.27 

AP diameter ratio normalized (%) 17.20 ± 9.96 

CSA ratio (%) 18.42 ± 15.36 

CSA ratio normalized (%) 20.38 ± 12.81 

RL diameter ratio(%) -5.40 ± 12.64 

RL diameter ratio normalized (%) 0.45 ± 9.42 

Eccentricity ratio (%) -8.29 ± 4.91 

Eccentricity ratio normalized (%) -4.93 ± 3.80 

Solidity ratio (%) 5.06 ± 5.56 

Solidity ratio normalized (%) 4.48 ± 4.98 

Morphometric ratios (manual) 

aSCOR (%) 75.52 ± 13.16 

aMSCC (%) 100.57 ± 17.38 

Electrophysiological data  

dSEP C6 pathologic n=5 

dSEP C8 pathologic n=9 

CHEPS C6 pathologic n=42  

CHEPS C8 pathologic n=69 

CHEPS T4 pathologic n=29 
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3.2. Correlations between morphometrics and clinical scores 

The correlation matrix across all variables is presented in the supplementary materials 
Figure S1. Some correlations are described in the following.  

3.2.1. Correlations with clinical data 

The therapeutic decision significantly (p-value<0.05) correlated with the mJOA (ρ=-0.57), 
upper extremity motor subscore (ρ=-0.45), lower extremity motor subscore (ρ=-0.50), upper 
extremity sensory subscore (ρ=-0.26), bladder function subscore (ρ=-0.26), radiological signs 
of myelopathy (ρ=0.38), upper extremity motor score ASIA (ρ=-0.28), lower extremity motor 
score ASIA (ρ=-0.27), cervical light touch score (ρ=-0.40), the cervical pin prick score, (ρ=-
0.39), and the monofilament sensation score (ρ=-0.35). 

Among the automatic morphometrics, AP diameter ratio (ρ=0.36), AP diameter ratio 
normalized (ρ=0.32), CSA ratio (ρ=0.43), CSA ratio normalized (ρ=0.38), solidity ratio 
(ρ=0.28), and solidity ratio normalized (ρ=0.28) were significantly correlated with the 
therapeutic decision. Normalized ratios seem to have lower correlations with the therapeutic 
decision than the ratios without normalization. For the manual morphometrics, aSCOR 
correlated significantly with the therapeutic decision (ρ=0.24), while aMSCC did not 
significantly correlate with the therapeutic decision. 

Radiological signs of myelopathy significantly correlated with AP diameter ratio (ρ=0.43), AP 
diameter ratio normalized (ρ=0.41), CSA ratio (ρ=0.55), CSA ratio normalized (ρ=0.53), RL 
diameter ratio (ρ=0.31), RL diameter ratio normalized (ρ=0.32), and aSCOR (ρ=0.30) while it 
did not correlate significantly with aMSCC. 

The number of stenoses significantly correlated with age (ρ=0.21), potentially suggesting that 
the number of stenoses increased with age. 

3.2.2. Correlations with clinical scores 

Correlations between CSA ratio, CSA ratio normalized, AP diameter ratio, AP diameter ratio 
normalized, RL diameter ratio and RL diameter ratio normalized were significant with motor 
dysfunction of lower extremities and upper extremities (lower extremity motor subscore: -
0.33<ρ<-0.22, and upper extremity motor subscore: -0.36<ρ<-0.19). The mJOA correlated 
significantly with AP diameter ratio, CSA ratio and CSA ratio normalized (-0.29<ρ<-0.22). 

The upper extremity motor score ASIA correlated with CSA ratio (-0.25, p-value=0.013) and 
RL diameter ratio (-0.24, p-value=0.015). The lower extremity motor score ASIA correlated 
with AP diameter ratio (-0.23, p-value=0.024), CSA ratio (-0.31, p-value=0.013), CSA ratio 
normalized (-0.23, p-value=0.021), and RL diameter ratio (-0.22, p-value=0.03). The cervical 
light touch score correlated with CSA ratio (ρ=-0.18) and CSA ratio normalized (ρ=-0.18).  

aSCOR correlated significantly with lower extremity motor subscore (ρ=-0.28). aMSCC 
correlated with the cervical pin prick score (ρ=0.2). 

3.3. Correlation between manual, automatic and normalized 
morphometrics 

Figure 3 presents the Spearman’s correlation and scatterplots between the manual 
morphometric ratios performed by physicians (aSCOR, aMSCC) and proposed automatic 
morphometric ratios (CSA ratio and CSA ratio normalized).  
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Figure 3. Spearman's correlation between manual measures (aSCOR, aMSCC) in orange, 

and automatic morphometric ratios (CSA ratio, CSA ratio normalized) in green. 

3.4. Predicting therapeutic decision 

Using the available regressors described in Table 1, we tested if therapeutic decision of the 
DCM cohort (operative/conservative) could be predicted using a stepwise binary logistic 
regression. We developed 2 models: (1) without normalization of the automatic morphometric 
ratios and (2) with normalization of the automatic morphometric ratios. We tested these models 
in two datasets: one that included all the regressors (n=54 patients), and one without the 
electrophysiological data (n=100).  

3.4.1. Using all the regressors 

We first used all the available regressors (Table 1) to predict the therapeutic decision. 
Participants with missing data were excluded (n=46 without electrophysiological data,n=20 
without clinical scores), bringing the total number of participants from 120 to 54.  

For both models using the morphometrics ratios with and without normalization with healthy 
controls, the significant regressors are presented in Table 2 with the resulting logistic 
regression model. The ROC curves are presented in Figure 4 without normalization 
(Figure 4a) and with normalization (Figure 4b). Both models yielded an accuracy of 
0.767±0.152. 
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Table 2. Logistic regression with selected parameters from the stepwise regression using all 
available regressors (n=54). 

1. No Normalization 

 Coef. STD.Err. z P > z [0.025 0.975] 

Bladder function subscore -1.8436 0.5793 -3.1827 0.0015 -2.9789 -0.7083 

CHEPS T4 pathologic 2.2958 0.8827  2.6009 0.0093 0.5657 4.0258 

aSCOR 0.0428 0.0197 2.1787 0.0294 0.0043 0.0813 

dSEP C8 pathologic 2.3622 1.1746 2.0110 0.0443 0.0600 4.6645 

2. Normalization of automatic ratios 

 Coef. STD.Err. z P > z [0.025 0.975] 

Bladder function subscore -1.8436 0.5793 -3.1827 0.0015 -2.9789 -0.7083 

CHEPS T4 pathologic 2.2958 0.8827 2.6009 0.0093 0.5657 4.0258 

aSCOR 0.0428 0.0197 2.1787 0.0294 0.0043 0.0813 

dSEP C8 pathologic 2.3622 1.1746 2.0110 0.0443 0.0600 4.6645 

Coef.: coefficient; STD Err. standard error of coefficient; z: z value; P > z: p-value;  

 

Figure 4. ROC curve of logistic binary regression to predict therapeutic decision using all 
regressors (n=54) using a 10-fold cross-validation without normalization (A) and with 
normalization (B). Mean ROC curve, 95% confidence interval (CI) and standard deviation are 
shown. 

3.4.2. Excluding the electrophysiological regressors 

To gain statistical power, we also tested a model that excluded the electrophysiological 
regressors (missing in n=46 patients), bringing the number of patients to 100 (vs. 54 in the 
previous section). Table 3 presents the logistic regressions with the significant predictors 
(p<0.05) from the stepwise regression without normalization (model 1) and with normalization 
(model 2). The resulting ROC curves are presented in Figure 5 without normalization 
(Figure 5a) and with normalization (Figure 5b). The model without normalization yielded an 
accuracy of 0.684±0.128 while the accuracy was of 0.661±0.130 with normalization. CSA ratio 
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(model 1) and CSA ratio normalized (model 2) were a significant predictor in addition to 
myelopathy and the upper extremity sensory subscore. 

Table 3. Logistic regression with selected parameters from the stepwise regression removing 
electrophysiological data (n=100). 

1.No Normalization 

 Coef. STD.Err. z P > z [0.025 0.975] 

Upper extremity sensory subscore -0.8948 0.1933 -4.6303 <0.0001 -1.2736 -0.5161 

CSA ratio 0.0537 0.0193  2.7904 0.0053 0.0160 0.0915 

Myelopathy   1.0854 0.5364 2.0233 0.0430 0.0340 2.1367 

2. Normalization of automatic ratios 

 Coef. STD.Err. z P > z [0.025 0.975] 

Upper extremity sensory subscore -0.9636 0.2181 -4.4176 <0.0001 -1.3911 -0.5361 

CSA ratio normalized   0.0535 0.0215 2.4889 0.0128 0.0114 0.0956 

Myelopathy  1.2102 0.5323 2.2735 0.0230  0.1669 2.2535 

Coef.: coefficient; STD Err. standard error of coefficient; z: z value; P > z: p-value;  
 

 

Figure 5. ROC curve of logistic binary regression to predict therapeutic decision without 
electrophysiological (n=100) using a 10-fold cross-validation without normalization (A) and with 
normalization (B). Mean ROC curve, 95% confidence interval (CI) and standard deviation are 
shown.   
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4. Discussion 

We introduced an automatic method to quantify cord compression from clinical MRI scans. We 
extended the traditional MSCC (based on AP diameter) to other morphometrics (RL diameter, 
CSA, eccentricity, and solidity), and added a normalization across healthy adults to better 
account for variability in the spinal cord anatomy along the superior-inferior axis. We validated 
the proposed methodology against manual measurements and clinical scores in a cohort of 
120 DCM patients and explored which metrics can predict therapeutic decision 
(operative/conservative). Using a stepwise binary logistic regression, we found that the upper 
extremity sensory subscore, CSA ratio, CSA ratio normalized and radiological signs of 
myelopathy were significant predictors of the therapeutic decision leading to an AUC of 80% 
and 78% (with normalization).  

4.1. Correlations between morphometrics and clinical scores 

The proposed MRI morphometrics significantly correlated with clinical scores (mJOA & CSA 
ratio: ρ=-0.29, p-value=0.004), better than the manually derived aMSCC (mJOA: ρ=0.09, p-
value=0.4) and aSCOR (mJOA: ρ=-0.13, p-value=0.2). Previous studies reported no 
correlation between manual MRI morphometrics and mJOA27–29, or correlation for some 
morphometrics (compression ratio, MCC, and MSCC) with mJOA12,30. This could be caused 
by several factors including differences in cohort sizes and inclusion/exclusion criteria, 
variability in scanner field strengths (1.5T vs. 3.0T) and sequences used (axial vs. sagittal; T1w 
vs T2w), and intra- and inter-rater variability in manual measurements. Moreover, although 
mJOA is currently a widely accepted clinical score for assessing DCM patients, it has poor 
sensitivity, which is especially problematic in mild DCM (mJOA of 15-17)3.  

4.2. Comparison of manual vs. automatic MRI measures 

When assessing the relationship between the automatic and manual morphometric ratios, we 
found that the correlation of aMSCC with CSA ratio and CSA ratio normalized was only of ρ=-
0.182 (p-value=0.047) and ρ=-0.166 (p-value=0.069), respectively (Figure 3). Given that 
aMSCC is calculated as the area at the maximum compressed level divided by the area at C2 
vertebral level, a higher agreement with the automatic morphometric ratios was expected. 
Surprisingly, we found higher correlation of CSA ratio and CSA ratio normalized with aSCOR 
(ρ=0.395 and ρ=0.325, respectively) than with aMSCC.  

In the final model (n=100), CSA ratio and CSA ratio normalized were significant predictors of 
the therapeutic decision while neither aSCOR or aMSCC were significant (Table 3). 

Only a few studies have used automatic or semi-automatic measures to compute spinal cord 
morphometrics5,16,17,31–33. The majority of the studies measured the AP diameter on the mid-
sagittal slice1,12,29,34–36. However, the mid-sagittal slice may not correspond precisely to the 
middle of the spinal cord due to patient scoliosis and/or sequence positioning. Additionally, 
manually measuring the AP diameter at the compression sites and healthy levels above/below 
is time consuming and prone to inter-rater variability13,30. Another study comparing manually 
vs. automatically derived morphometrics (CSA, compression ratio, AP diameter, and RL 
diameter) showed higher inter-rater reliability for the automatically computed morphometrics16.  
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Computing MSCC only with AP diameter does not necessarily reflect the compression severity, 
and might poorly quantify lateral compression35. Computing MSCC with other shape metrics 
will likely increase the ability to detect and characterise various types of compressions37.  

Some studies directly used the AP diameter or CSA in their analysis without self-normalization 
with healthy levels above and below the compression sites4,16,32,33,38. Spinal cord morphometry 
has a large inter-subject variability, especially for CSA, AP and RL diameters10,11,14 and 
between males and females11,14,15,39–41. This suggests the need for self-normalization in cross-
sectional studies. 

4.3. Impact of across-subject normalization 

We presented 2 different models predicting the therapeutic decision in a cohort of 120 DCM 
patients. In both models, the same automatic morphometric ratios were significant. For the 
analysis without electrophysiological data (n=100), the model with normalized morphometric 
had a slightly lower AUC, 0.78±0.14 compared to 0.80±0.14. There is no clear conclusion on 
the effect of this additional normalization.  

The majority of DCM patients in this study had their maximum spinal cord compression located 
at the C5/C6 level (n=52), which aligns with previous findings4,38. This might reduce the overall 
effect of the normalization as it is designed to be beneficial especially when patients have a 
maximum level of compression located across different levels.  

Also, the effect of the normalization might be influenced by different age ranges. The DCM 
cohort in this study had a mean±standard deviation age of 55.28±12.80 y.o., while the healthy 
control database had an age of 28.7±5.6 y.o. 

The number of stenoses significantly correlated with age (ρ=0.21, p-value=0.034), suggesting 
a higher prevalence of compression with increasing age. Previous studies have reported that 
the prevalence of spinal cord compression increases with age11,38,42. Further work will include 
extending the normative database11 to a wider age range. 

4.4. Predicting therapeutic decision 

In the stepwise binary logistic regression, we first included demographics, automatic 
morphometric ratios, manual morphometric ratios, clinical data, clinical scores, and 
electrophysiological data. However, only 54 subjects had a complete dataset. Significant 
predictors for both model included bladder function subscore, CHEPS T4 pathologic, aSCOR 
and dSEP C8 pathologic (Table 2). The second analysis, excluding electrophysiological data, 
included 100 subjects with a complete dataset, and identified radiological signs of myelopathy 
(T2w hyperintensity), CSA ratio, CSA ratio normalized and the upper extremity sensory 
subscore guiding the decision for surgical intervention (Table 3). This model achieved an AUC 
of 80% in predicting therapeutic decisions. 

This suggests that the therapeutic decision was partly based on electrophysiological 
assessment when available. When electrophysiological assessment was not available, the 
therapeutic decision was based on the anatomical MRI and radiological signs of myelopathy. 
When making the therapeutic decision, the neurosurgeons had access to clinical scores, 
anatomical MRI and electrophysiological assessment only. No morphometric ratios were 
provided. The therapeutic decision remains multi-factorial, which may explain the variability in 
the significant predictors when changing the included subjects in the analysis28. This suggests 
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the need for large multi-center repositories aggregating MRI and clinical data across different 
demographics and clinical settings.  

Hilton et al.28 investigated the factors in current practice that influence the decision to operate 
in 39 DCM patients, and concluded that only the compression ratio was a significant predictor 
of the decision to operate. 

4.5. Limitations & Perspective 

Our model predicting the therapeutic decision only included the morphometric ratios at the 
maximum level of cord compression, which may not provide a complete picture of the 
pathology, for instance, in multi-level stenosis. However, we did not find any association 
between the number of stenoses and mJOA. Additionally, MRI acquisition in a supine position 
may fail to accurately depict spinal cord compression associated with weight-bearing, and miss 
the dynamic compression visible during flexion/extension of the head43. 

The significant morphometric ratios changed following the number of subjects, from aSCOR 
to CSA ratio. This could be attributed to the fact that not all types of morphometric measures 
necessarily reflect all the different shapes of spinal cord compression37. 

We did not differentiate between types of surgery and did not include variables like 
compression ratios, or spinal canal morphometrics which previous studies found relevant for 
disease prognosis. Further work will include extending the automatic computation of 
morphometrics ratios to the spinal canal. 

The computation of morphometrics directly depends on the quality of the spinal cord 
segmentation, which can require manual correction (45 images had to be manually corrected 
in this study, which took about 3 minutes per image). In cases of severe spinal cord 
compressions, segmenting the spinal cord becomes more challenging. The introduction of 
more robust segmentation models will help reduce manual intervention44,45. We computed the 
morphometrics on axial scans, with low superior-inferior resolution, potentially limiting the 
interpolation of the measures to the PAM50 space. Furthermore, choosing a distance from the 
compression site for normalization does not consider inter-subject variability of spinal cord 
length. Other limitations exist for the use of vertebral levels as they do not precisely estimate 
the spinal levels location46. In our pipeline, compression sites have to be manually labeled on 
the MRI image. The next steps will focus on the automatic detection of spinal cord 
compressions. 

Computing morphometrics on sagittal or axial images with a large slice thickness (3-5mm) as 
typically acquired clinically limits the precision of the measurements considering that the spinal 
cord compressions only span over a few millimetres. A 3D acquisition protocol with isotropic 
resolution would be relevant to increase the precision of the morphometric computation as 
proposed in the Spine Generic protocol (T2w 0.8mm3)41. 

Inter-scanner, MRI field strength and acquisition sequence variability also have to be 
considered. It can be minimized by using the standardized protocol41.  

Incorporating quantitative MRI biomarkers sensitive to spinal cord tissue integrity and 
microstructure might also enrich the predictive model sensitivity, especially in patients with mild 
DCM17,47–49. 
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5. Conclusion 

We introduced an automatic pipeline to quantify and characterize spinal cord compressions 
from MRI scans in DCM patients. The output metrics are normalized using a database of 
healthy controls. We show good agreement of the automatic morphometrics ratios with clinical 
scores compared to manual measures. Standardized and automatically computed cord 
morphometrics ensure more precision and accuracy in our ability to detect subtle cord 
compression due to traumatic and non-traumatic events. These objective markers have the 
potential to serve towards better informed therapeutic decisions. 
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10. Supplementary Material 

 

Figure S1. Correlation matrix. Spearman’s correlation coefficient was computed for 
continuous variables, phi coefficient was computed across dichotomous variables and the 
Point-biserial correlation was computed across continuous and dichotomous variables. Sex, 
previous surgery, myelopathy and the therapeutic decision were the dichotomous variables. 
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