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Abstract 

 

Background The number of elective surgeries for older individuals is on the rise 

globally. Machine learning may improve risk assessment with an impact on surgical 

planning and postoperative care. Preoperative cognitive assessment may facilitate 

early identification of postoperative delirium (POD). This study aims to estimate the 

predictive ability of machine learning models for POD using pre-and/or perioperative 

features, with a specific focus on adding neuropsychological assessments prior to 

surgery. 

Materials and Methods This retrospective cohort study analyzed data from the 

multicenter PAWEL study and its PAWEL-R substudy, encompassing older patients 

(≥70 years) undergoing elective surgeries across five medical centers from July 2017 

to April 2019. A total of 1624 patients were included, with POD diagnosis made before 

discharge. Data included demographics, clinical, surgical, and neuropsychological 

features collected pre- and perioperatively. Machine learning model performance was 

evaluated using the area under the receiver operating characteristic curve (AUC), with 

permutation testing for significance and SHapley Additive exPlanations (SHAP) to 

identify effective neuropsychological assessments. 

Results In this cohort of 1624 patients, 52.3% (N=850) were male, with a mean [SD] 

age of 77.9 [4.9] years. Predicting POD before surgery using demographic, clinical, 

surgical, and neuropsychological features achieved an AUC of 0.79. Incorporating all 

pre- and perioperative features into the model yielded a slightly higher AUC of 0.82, 

with no significant difference observed (P= .19). Notably, cognitive factors alone were 

not strong predictors (AUC=0.61). However, specific tests within neuropsychological 

assessments, such as the Montreal Cognitive Assessment memory subdomain and 

Trail Making Test Part B, were found to be crucial for prediction according to SHAP 

analysis. 

Conclusion and Relevance Preoperative risk prediction for POD can increase risk 

awareness in presurgical assessment and improve postoperative management in 

patients with a high risk for delirium.  

 

Keywords Postoperative delirium, Machine learning, Explainability, Preoperative 

cognition, Geriatrics  
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Highlights 

 

1. Analyzed 1624 older patients (≥70 years) undergoing elective surgeries across five 

medical centers from July 2017 to April 2019. 

2. Established machine learning model to predict postoperative delirium before 

surgery. 

3. Preoperative cognition enhances predictive performance, comparable to models 

incorporating all pre- and perioperative features. 

4. Montreal Cognitive Assessment memory subdomain and Trail Making Test Part B 

drive the cognition-based prediction. 

5. Perioperative surgical features, such as the duration of the surgery, are important 

predictors.  
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Introduction 

In an aging society, there is a rising demand for elective surgeries due to the 

changing healthcare needs of older people 1-3. However, this increase in elective 

surgeries raises concerns about additional adverse outcomes, particularly given the 

unique challenges posed by aging, such as pre-existing health conditions, disease 

sequelae, and diminished physiological reserves 4,5. Meeting the growing demand for 

elective surgeries among the elderly requires a comprehensive strategy, including 

thorough preoperative assessments, personalized care plans, and continuous post-

operative support 6-8. In this study, we systematically assess the potential benefits of 

utilizing machine learning techniques to predict the risk of postoperative delirium (POD) 

based on a diverse range of features. 

POD, characterized by acute and fluctuating inattention with alterations in 

thinking or consciousness after surgery, affects 12% to 51% of older patients, with 

incidence varying by surgical procedures and regions 9. POD in older patients is linked 

to heightened rehospitalization rates, persistent postoperative cognitive dysfunction, 

increased incidence of dementia, and elevated mortality 10-12. Some studies have 

shown significant associations between POD and factors collected before or during 

surgery (pre- or perioperatively) 13,14. These factors could aid in predicting the POD 

15,16. However, different pre- and perioperative feature categories may vary in their 

importance for POD risk assessment. Demographic factors, such as age and sex, are 

critical for assessing POD risk 17-23. Clinical data, including blood samples and chronic 

disease medication, are also predictive 24-26. The Type and length of surgery and 

anesthesia are indispensable for POD prediction 18,27. Although preoperative 

neuropsychological assessments, like the Mini-Mental State Examination (MMSE) and 

others 28-30, help identify at-risk patients for early risk mitigation 31-33, these evaluations 

are not yet incorporated in clinical routine despite experts’ recommendations 34. The 

early identification of POD risk factors enables clinicians to proactively mitigate the 

occurrence of POD 35 and might affect patient’s decision before non-emergent surgery. 

Therefore, identifying preoperative risk factors for POD is crucial in facilitating 

personalized surgical risk assessment before surgery 36,37.  Moreover, stratifying POD 

risks remains challenging due to its multifactorial origins 18,22,38. The precise categories 

of preoperative and perioperative features with superior predictive capabilities for POD 

remain unknown and unvalidated 39. 

In this study we (1) predict POD by employing a machine learning approach 

utilizing diverse pre- and perioperative features from a large multicenter cohort of older 

patients and (2) conduct a comparative analysis of independent models using various 



5 

 

data categories, including demographic, clinical, surgical, and neuropsychological 

features. This study provides a comprehensive assessment of predictors for POD 

thereby enhancing presurgical awareness of risk and postoperative management in 

older patients.  
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Materials and Methods 

Participants 

The study utilized the cohort from the PAWEL study (Patientensicherheit, 

Wirtschaftlichkeit und Lebensqualität bei elektiven Operationen, English: Patient 

safety, Efficiency and Life quality in elective surgery) and its PAWEL-R sub-study (R 

for risk) to predict POD using machine learning models, departing from original 

statistical methods in the previous studies. Patients were recruited from five major 

medical institutions in Germany (three university hospitals: Tübingen, Freiburg, and 

Ulm, and two tertiary medical centers: Stuttgart and Karlsruhe) between July 31, 2017, 

and April 12, 2019 13,40,41. The study adheres to the guidelines outlined in the 

STROCSS criteria 42. 

Participants included patients aged 70 and older undergoing elective surgery 

(joint, spine, vessels, heart, lung, abdomen, urogenital system, and other organs) with 

an expected surgical duration exceeding 60 minutes. Exclusion criteria covered 

patients unable to communicate effectively in German, those undergoing emergency 

surgery, severe dementia with MMSE < 15 or Montreal Cognitive Assessment (MOCA) 

< 8, or an estimated survival time less than 15 months. A stepped-wedge cluster 

randomized design was employed for equitable intervention group allocation 40,41. The 

study, initially including 1631 patients, conducted thorough postoperative assessments 

within one week after surgery but before discharge. To ensure accuracy in predicting 

POD diagnosis, patients without POD diagnosis before discharge (N=7) were 

excluded, resulting in 1624 patients included in prediction models. The study reported 

23.1% of patients diagnosed with POD, with detailed group comparisons available in 

eTables 1 and 2.  

 

Measures 

The PAWEL and PAWEL-R studies extensively evaluated elective surgery 

patients to identify risk factors and outcomes related to POD. Diagnosis involved the 

Confusion Assessment Method (I-CAM) algorithm and chart review within the first 

postoperative week or until discharge. Demographic data, including age, sex, 

education, alcohol/smoking habits, living arrangement, and hospital location, were 

collected preoperatively. Neuropsychological assessments such as MOCA, Trial 

Making Test (TMT) parts A and B, digit span backwards, Subjective Memory 

Impairment (SMI), and Patient Health Questionnaire-4 (PHQ-4) were conducted at 

admission. Clinical profiles included blood samples, past medical histories including 
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pre-existing dementia and previous delirium history, and baseline assessments. 

Surgical information covered types of surgery, anesthesia, and perioperative events. 

Preoperative and perioperative features were analyzed for predictive capacity at two 

time points. Models were developed and tested with both features and preoperative 

features alone. Additionally, models were compared with and without 

neuropsychological assessments to assess their contribution to predictive 

performance. The study aimed to identify effective feature combinations for predicting 

POD diagnosis by comparing predictive performance across different feature 

combinations from the two time points.  

 

Preprocessing, imputation, and features  

Features with more than 20% missing data, such as albumin level (60.28%) 

and depth of anesthesia (75.37%), were excluded 16. Information about missing values 

is available in eTable 3. Data imputation involved using the mean value for continuous 

variables and random sampling from the original probability distribution for discrete 

and binary variables within cross-validation folds. Blood samples, including 

hemoglobin, sodium levels, and C-reactive protein (CRP), were interpreted following 

clinical guidelines in line with standard practice 43. For instance, hemoglobin levels of 

less than 12 g/dL were considered indicative of anemia, while sodium levels of less 

than 135 mmol/L and more than 145 mmol/L were associated with hyponatremia and 

hypernatremia, respectively. Similarly, CRP levels greater than 3 mg/L indicated an 

increased CRP level, while values within the normal range were not considered 

clinically significant. Redundant features with a perfect correlation were excluded. Non-

binary categorical features, including location, SMI, types of anesthesia, and surgery, 

were one-hot encoded because they had no natural ordinal relationship among their 

categories, and assigning numerical labels to them could introduce bias or incorrect 

assumptions in the model.  

Seventy features were used, divided into preoperative (51) and perioperative 

(19) categories. Preoperative features encompassed demographic (7), clinical (23), 

surgical categories (6), and neuropsychological assessments (15). Perioperative 

features included clinical (4) and surgical (15) categories. Different combinations of 

features were compared, including preoperative only, preoperative and perioperative, 

and sub-feature sets of preoperative features. The study evaluated model 

performance, feature category effectiveness, and the additional benefits of 

preoperative neuropsychological assessments.  
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The study aimed to develop a prediction model in a naturalistic setting. 

Information regarding interventions was included only as a sensitivity analysis to 

demonstrate its potential impact on the prediction model. The potential imbalance of 

dataset for all models was tested by oversampling with the Synthetic Minority 

Oversampling Technique (SMOTE) 44. Possible entry errors in clinical assessments 

were identified by mean imputation of data points exceeding five times the standard 

deviation on a respective measure. Model performances were estimated and 

compared to the original predictions, which included those datapoints. Various 

sensitivity analyses as described in the supplement were performed.  

 

Machine learning models, performance evaluation and feature importance 

Machine Learning models were used to predict POD, including logistic 

regression, support vector machines, random forest, and gradient boosting without 

hyperparameters tuning using the scikit-learn library version 1.2.2 45 and the Xgboost 

library version1.7.3 46. Independent variables were feature variables, while the 

dependent variable was POD diagnosis, as illustrated in Figure 1-B. Five-fold cross-

validation, with balanced labels across folds, measured model performance at testing 

using the area under the receiver operating characteristic curve (AUC) as the primary 

metric. Additional metrics included precision, recall, sensitivity, specificity, balanced 

accuracy, and area under the precision-recall curve presented in eTable 4. 

Permutation testing assessed AUC values compared to random chance. POD 

diagnosis labels were shuffled for random chance, and AUC values were measured 

1000 times. The p-value compared the original AUC value to the distribution of 

permuted AUC values. The difference between models was assessed similarly, 

calculating the difference between the AUC values of two models with permuted labels 

47.  The SHapley Additive exPlanations (SHAP) values were used to assess feature 

importance. SHAP measures each feature's influence on the model’s prediction. 

Positive SHAP values increased the probability of POD, while negative values 

decreased it. All features' average absolute SHAP value indicated contributions to the 

model’s prediction. The SHAP library version 0.41.0 in Python was employed 48. All 

preprocessing steps and analyses are available on GitHub upon publication from 

Sharma forked to https://github.com/MHM-lab. The data can be requested by 

addressing the PAWEL consortium. 

  

https://github.com/MHM-lab


9 

 

Results 

Predicting POD with combined, pre-, and perioperative features   

Evaluating four classifiers, comparable performances were observed (eFigure 

1). Here, we accentuate the findings obtained from random forest due to its marginally 

better performance across most models. The models incorporating combined and 

independent pre- and perioperative features exhibited robust performance, as 

evidenced by AUC values surpassing chance levels (Figure 1-C and eTables 4 and 5) 

and eFigure 2 displays the performance of these models through receiver operating 

characteristic curves. Notably, the model using only preoperative features (Pre-Op) 

achieved an AUC of 0.76, comparable to a model incorporating both pre- and 

perioperative features (Pre and Peri-Op), which had an AUC of 0.80, showing no 

significant difference (Figure 1-D). The independent model exclusively utilizing 

perioperative surgical features demonstrated an AUC value of 0.73 (Figure 1-E). It is 

noteworthy that longer cut-to-suture time (surgical duration) and increased equipment 

usage duration were associated with a higher likelihood of POD, as shown in eFigure 

5. Further details, including pairwise comparisons and p-values for differences in AUC 

values, can be found in eFigure 3 and eTable 6. 

 

Addition of preoperative neuropsychological assessments  

The model using preoperative neuropsychological assessments exclusively, 

exhibited AUC values of 0.61. Integrating neuropsychological assessments into the 

model, utilizing both pre- and perioperative features (Pre and Peri-Op + NeuroPsy), 

led to a slight improvement in the AUC, reaching 0.82. This enhancement elevated the 

model to the top-performing one (Figure 2-B). Adding neuropsychological 

assessments to the preoperative model (Pre-Op + NeuroPsy) improved the AUC from 

0.76 to 0.79, which resulted in a non-significant model comparison including a model 

based on all pre- and perioperative features (Pre and Peri-Op) with the AUC of 0.80 

(Figure 2-C). Specifically, poorer performance in the MOCA memory subdomain and 

TMT part B before surgery indicated a higher likelihood of POD, as illustrated in Figure 

2-D and eFigure 6. For detailed pairwise comparisons of AUC values and 

corresponding p-values, please refer to eFigure 4 and eTable 6. Including intervention 

allocation information had no discernible impact on predictive performance (eFigure 7 

and eTables 4 and 7). Lastly, there was no difference in AUC between models with 

and without oversampling (eFigure 8) and outliers or erroneous data didn’t affect our 

models’ performance (eFigure 9). 
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Discussion 

Leveraging machine learning, we forecasted the occurrence of POD after 

elective surgeries through a combination of preoperative and perioperative features 

with a large multicenter cohort. Although our models showcased robust preoperative 

performance, it was the perioperative surgical data that proved to be the most potent 

sole predictors category of POD. The integration of preoperative neuropsychological 

tests yielded an enhancement in the AUC comparable to the model with all pre- and 

perioperative features, notably influenced by the MOCA memory subdomain and TMT 

part B, as elucidated by model explanations. This integrated analysis improves 

conventional clinical risk profiling, furnishing superior predictive capacity with 

promising implications for surgical planning in the era of machine learning-assisted 

healthcare and empowers the prioritization of pivotal features in future work. 

 

Perioperative surgical features 

Perioperative surgical features, including those on the day of the operation, 

emerged as the best solo predictors category for POD, as illustrated in Figure 1-E. 

Their significant SHAP values highlighted vital factors such as ventilation duration, 

surgical procedures overall duration, and central venous catheter use, anticoagulants, 

oxygen use duration, as depicted in eFigure 5-B. Prolonged individual surgical 

durations with longer equipment use were associated with a higher risk of POD. This 

association was particularly notable in surgeries involving the use of a heart-lung 

machine (eFigure 5-A), with significantly more patients experiencing POD undergoing 

cardiopulmonary bypass (47.1%) compared to those not experiencing POD (17.8%) 

(eTable 1). Consistent with our findings, even a 30-minute increase in surgery duration 

corresponded to a 6% rise in POD risk 27, and this risk is further elevated in prolonged 

use of cardiopulmonary bypass during cardiac surgeries 49. This might be explained 

by potential hypoperfusion or micro-embolism in cardiac surgeries, elevating the risk 

of POD 50.  

In contrast to the significance of the surgery type during the preoperative phase, 

our analysis revealed that the duration of individual surgery with ventilation emerged 

as a more influential factor in predicting POD. Overall, our findings highlight the critical 

importance of cardiovascular risk measures and surgical metrics in POD prediction. 

Looking ahead, the integration of real-time predictive technology into surgical 

workflows holds promise. This advancement could potentially facilitate on-the-fly 

predictions during surgery, enabling timely adjustments to medication or non-

pharmacological intervention to mitigate potential adverse outcomes associated with 
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surgical interventions. Our study emphasizes the substantial value of information 

gleaned from measures taken during surgery, shedding light on their crucial role in 

enhancing our understanding and prediction of POD. 

 

Enhanced POD prediction prior to surgery through neuropsychological 

assessments 

The preoperative model for predicting POD demonstrated effectiveness, which 

is in line with previous work 16,36,37. Although incorporating perioperative data slightly 

improved POD predictions, it's crucial to note that this information is only available 

during and immediately after surgery. This limitation prevents surgical planning and 

decision-making beforehand, allowing only for adjustments in real-time. Therefore, 

augmenting the predictive performance of algorithms by incorporating data that can be 

gathered prior to a surgical procedure is important, as it allows for integrated surgical 

planning and informed decision making prior to any invasive or surgical procedure. In 

our study, preoperative neuropsychological assessments were predictive above 

chance, however, the added benefit to combined pre- and perioperative features was 

modest (Figure 2-B). However, the absence of preoperative neuropsychological tests 

reduced the performance of POD prediction in the context of models solely relying on 

preoperative features (Figure 2-C), which is critical given that surgical and 

postoperative management could be optimized. Preoperative models with 

neuropsychological tests effectively predicted POD before surgery substantiating 

previous observations 13,28,51. This could be attributed to preoperative 

neuropsychological tests revealing subtle cognitive deficits, despite less than 2% of 

dementia diagnoses before surgery in this study cohort (eTable 1). These deficits may 

progress into POD. In line with this explanation, timely preoperative cognitive 

interventions can mitigate the risk of POD and long-term cognitive dysfunction after 

cardiac surgeries52,53. Additionally, patients with pre-existing cognitive decline face 

increased risks of other postoperative complications 54. Consequently, baseline 

neuropsychological assessments are valuable for improving the prediction of POD 

although and as shown in this study with modest additional effects.  

Selecting suitable neuropsychological assessments for clinical use is crucial. 

Our study identified the MOCA memory subdomain and TMT part B as effective 

indicated by their average absolute SHAP values (Figure 2-D). Low scores on the 

MOCA memory subdomain and longer test times on the TMT Part B indicate poor 

cognitive performance and executive dysfunction (eFigure 6). These tests are crucial 

for predicting POD risk, as demonstrated in a prior prediction study 15. Patients with 
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mild cognitive impairment at baseline are more likely to develop POD 25, while good 

preoperative cognitive performance is protective against POD 18. Previous studies 

have often used the MMSE 28,31,55 , Clock-Drawing Test 20, or MOCA score as 

preoperative risk factors 56. Critically, we replicated the strong association between 

baseline MOCA and POD risk in the previous theory-driven PAWEL-R study with a 

larger cohort13. These findings offer a thorough understanding of the efficacy of 

individual preoperative neuropsychological tests in predicting POD. By conducting 

comprehensive assessments of pre-existing risks, we may unlock new avenues for 

optimizing surgical planning and postoperative management. Our study underscores 

the added albeit moderate advantage of evaluating cognition, emphasizing its 

importance, and advocating for its inclusion in future developments aimed at refining 

preoperative risk assessments. 

 

Limitations and recommendation 

The study exhibits several limitations that require consideration. First, 

interpreting SHAP values warrants caution 57, as is generally the case for methods 

using model explanations in medicine 58,59. Unstable explanations are not uncommon 

for complex models trained on large datasets 60,61. While the ranking of importance 

may fluctuate, features with higher mean absolute SHAP values generally maintain 

consistent attributions. Second, we harnessed cognitive data derived from 

standardized assessments. However, it's crucial to note that these procedures, while 

standardized, often remain non-digitalized. This presents significant untapped 

potential for future advancements in the realm of risk evaluation before surgical 

procedures. Third, while our study included a wide range of preoperative 

neuropsychological assessments, it's not an exhaustive list. As neuropsychological 

assessments are time-consuming and require training for assessors to conduct 

accurate tests and interpret results. Therefore, incorporating semi-automatic 

assessments of cognition 62 may prove advantageous and a relevant direction for 

future research. 

 

Conclusion and relevance 

We showcase robust predictions of POD in older patients, relying on a 

combination of pre- and perioperative features. This study further underscores the 

feasibility of predicting POD prior to surgery and the additional incorporation of 

preoperative neuropsychological assessments. Our research contributes to a 

heightened comprehension of predictors for POD prioritizing distinct variable 
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dimensions, thereby guiding a more targeted approach in addressing POD risk 

predictions in clinical practice. 
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Figures  

Figure 1. 

 

Figure 1. Individual feature categories perform worse than combined feature 

categories pre- and perioperatively and POD can effectively be predicted prior 

to surgery (see back box). (A) The symbols are consistently used in this study and 

represent the different types of features. (B) We employed a random forest classifier 

with 5-fold cross-validation to forecast postoperative delirium (POD) onset in 1624 

older individuals. Among them, 23.1% experienced POD. Orange indicates patients 

with POD, blue represents those without POD, and grey signifies patients predicted 

to have POD by the algorithm. (C) Through permutation testing we demonstrated that 

both individual and combined features have predictive power for POD beyond 
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chance. (D) No significant difference in their performance was found when comparing 

models utilizing preoperative features alone and those incorporating both 

preoperative and perioperative features (blue bar). The blue bar represents the 

reference model, while the yellow bars represent the comparison models. The 

asterisks (*) denote statistical significance levels for the difference in the Area Under 

the receiver operating characteristic Curve (AUC) between pre-and perioperative 

features and other feature types, calculated over 1000 permutations: *P <.05, **P 

≤.01, ***P ≤.001. (E) A comparative analysis of different feature combinations based 

on their respective AUC values was conducted. Combined feature sets consistently 

outperformed individual feature types. Among individual feature types, surgical data 

from the day of the operation emerged as the strongest predictor category for POD. 

 

Figure 2. 

 

Figure 2. Cognition, in isolation, demonstrates limited predictive power. 

However, when combined with preoperative features the performance matches 

that of all pre- and perioperative features (see back box). (A) The predictive 

capability of preoperative neuropsychological tests was assessed for postoperative 

delirium (POD) individually and in combination with other features. (B) Our analysis, 
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as depicted in the receiver operating characteristic curve, demonstrated the 

successful prediction of POD by preoperative neuropsychological tests. However, 

when combined with pre- and perioperative data, the performance gains were only 

marginal. Asterisks (*) denote the Area Under the receiver operating characteristic 

Curve (AUC) values, which were assessed against chance permutation testing, 

revealing a significance (***P ≤.001). (C) The AUC values of neuropsychological 

tests were compared to those integrated into the pre- and perioperative features. 

While preoperative neuropsychological tests did not prove helpful in predicting POD 

after surgery, they contributed to POD prediction before the surgical procedure. (D) 

SHapley Additive exPlanations (SHAP) was employed to assess feature importance. 

The feature importance was based on the average absolute value of the SHAP score 

within the preoperative features. Specific neuropsychological tests, such as the 

Montreal Cognitive Assessment (MOCA) memory subdomain and Trail Making Tests 

(TMT) part B, were particularly influential. 

 

 


