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Background: An explainable advanced electrocardiography (A-ECG) heart age gap is the 

difference between A-ECG heart age and chronological age. This gap is an estimate of 

accelerated cardiovascular ageing expressed in years of healthy human aging, and can 

intuitively communicate cardiovascular risk to the general population. However, existing A-

ECG heart age measures require discernible P waves on the ECG. Aims: To develop and 

prognostically validate a revised, explainable A-ECG heart age gap without incorporating P-

wave measures. Methods: An A-ECG heart age without P-wave measures (non-P) was 

derived from the 10-second 12-lead ECG in a derivation cohort using multivariable 

regression using an existing Bayesian 5-minute 12-lead A-ECG heart age as reference. The 

non-P heart age was externally validated in a separate cohort of patients referred for 

cardiovascular magnetic resonance imaging by describing its association with heart failure 

hospitalization or death using Cox regression, and its association with comorbidities. Results: 

In the derivation cohort (n=2771), A-ECG non-P heart age agreed with the 5-min heart age 

(R2=0.91, bias 0.0±6.7 years), and increased with increasing co-morbidity. In the validation 

cohort (n=731, mean age 54±15 years, 43% female, n=139 events over 5.7 [4.8–6.7] years 

follow-up), increased A-ECG non-P heart age gap (≥10 years) associated with events (hazard 

ratio [95% confidence interval] 2.04 [1.38–3.00], C-statistic 0.58 [0.54–0.62], and the 

presence of hypertension, diabetes mellitus, hypercholesterolemia, and heart failure (p≤0.009 

for all). Conclusions: An explainable A-ECG non-P heart age gap applicable to both sinus 

and non-sinus rhythm associates with cardiovascular risk, cardiovascular morbidity, and 

survival. 

Keywords: ECG, accelerated ageing, advanced ECG analysis, machine learning, risk 

prediction  
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Introduction 

Primary prevention in cardiovascular disease has underpinned the reduction in cardiovascular 

death over the decades and stands out as one of the most effective strategies for reducing its 

burden (1-3). Guidelines generally encourage both systematic and opportunistic 

cardiovascular screening with a focus on high-risk individuals (2, 4, 5). Despite being the 

simplest and most accessible cardiovascular diagnostic modality, current guidelines advise 

against the use of the traditional 12-lead electrocardiogram (ECG) in population screening 

due to its limited diagnostic performance (6). However, the ECG is known to contain 

information that is neither  visually apparent nor immediately extractable with strictly 

conventional ECG analysis methods (7). Advanced ECG (A-ECG) analysis is one method of 

extracting such information from the ECG that offers markedly improved diagnostic 

performance over conventional ECG analysis, and could potentially enable more effective 

presymptomatic screening (8). 

A-ECG analysis using high-fidelity 5-minute ECG recordings has been used to develop an 

accurate estimation of heart age concordant with the chronological age in healthy volunteers. 

ECG heart age by this method incrementally deviates from chronological age in individuals 

with cardiovascular risk factors and those with established cardiovascular disease (9). 

Subsequently, A-ECG analysis of the standard 10-second ECG has been used to derive an A-

ECG heart age gap defined as the difference between A-ECG heart age and chronological age 

(10, 11). Increasing heart age gap has been shown to be associated with cardiovascular risk 

factors, heart failure and mortality (11). However, the presented A-ECG heart age estimation 

relied on presence of quantifiable P waves, limiting its utility to individuals in sinus rhythm. 

We hypothesized that heart age could also be derived using a standard 10-s ECG without 

including P-wave information. We therefore aimed to evaluate whether 10-s A-ECG could 

reliably predict heart age estimated from 5-min A-ECG, while not using any information 
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from the P wave. We also aimed to externally validate the non-P-wave heart age gap 

estimation by determining the association with conventional risk factors and heart failure 

hospitalization or death. 

 

Methods 

For this study, two pre-existing databases were used. For the derivation of heart age based on 

10-second resting 12-lead ECG information excluding P-wave information, a database 

consisting of ECGs from 2,771 subjects (1,682 healthy volunteers, 305 individuals with 

cardiovascular risk factors, and 784 patients with established cardiovascular disease) was 

used (8, 9). The healthy subjects were recruited at Johnson Space Center (USA), the 

Universidad de los Andes (Venezuela), the University of Ljubljana hospitals and clinics 

(Slovenia), or Lund University Hospital (Sweden). Individuals included in the healthy cohort 

were low risk, asymptomatic volunteers with no identifiable cardiovascular or systemic 

disease based on clinical history and physical examination. Furthermore, active smokers, 

those with increased blood pressure at physical examination (≥140/90 mm Hg), and those on 

treatment for hypertension or diabetes were excluded from the healthy cohort. 

 

Within the derivation dataset, Patients with cardiovascular risk factors (such as hypertension, 

diabetes mellitus, hypercholesterolemia or obesity) or established cardiovascular disease were 

recruited from cardiology clinics at either Texas Heart Institute (Houston, USA); the 

University of Texas Medical Branch (Galveston, USA), the University of Texas Health 

Sciences Centre (San Antonio, USA), Brooke Army Medical Centre (San Antonio, USA); St. 

Francis Hospital (Charleston, USA), the Universidad de los Andes (Mérida, Venezuela); and 

Lund University Hospital (Lund, Sweden). Inclusion in the established cardiovascular disease 

cohort was based on the presence of any of the following: 1) coronary heart disease, 
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determined by coronary angiography with at least one obstructed vessel (≥ 50%) in at least 

one major coronary vessel, history of coronary artery bypass, or alternatively one or more 

reversible perfusion defects on 99mTc-tetrofosmin single-photon emission computed 

tomography (SPECT); 2) left ventricular hypertrophy (LVH) based on imaging evidence of at 

least moderate, concentric wall thickening according to guidelines of the American Society of 

Echocardiography;  3) left ventricular systolic dysfunction (left ventricular ejection 

fraction ≤ 50%) at echocardiography, cardiac magnetic resonance imaging (CMR) or SPECT, 

with findings suggestive of ischemic or non-ischemic cardiomyopathy; or 4) 

echocardiographic or CMR-related findings consistent with hypertrophic cardiomyopathy. 

Details of the derivation cohort have been previously published (8). All patients in the 

derivation cohort underwent both 5-min and 10-s A-ECG analysis. 

 

A second cohort was used for the purpose of assessing the prognostic value of the A-ECG 

non-P heart age gap produced from the derivation cohort. This validation cohort consisted of 

ECGs from patients who had undergone clinical CMR imaging at University of Pittsburgh 

Medical Centre (UPMC, Pittsburgh, PA, USA). All patients had 12-lead 10-sECG recorded 

within 30 days of the CMR exam and follow-up for death or hospitalization for heart failure. 

In the validation cohort, patients with missing follow-up data, heart rate ≥100/min, QRS 

duration ≥130 ms, atrial fibrillation or flutter, or digoxin use were excluded from the analysis. 

The validation cohort has been described in previous studies (12, 13). For the derivation 

cohort, Institutional Review Board (IRB) approvals were obtained from NASA’s Johnson 

Space Centre and partner hospitals that fall under IRB exemptions for previously collected 

and de-identified data. For the validation cohort, approval was obtained from the IRB at 

University of Pittsburgh Medical Centre. Written consent was obtained for all participants for 

both cohorts, and all data was analysed following de-identification.  
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Heart Age Estimation in the Derivation Cohort 

Both 5-minute and 10-second A-ECG analyses were applied to all ECGs in the derivation 

cohort. A-ECG measures obtained can be grouped into three categories: 1) Conventional 

ECG measures, such as heart rate, waveform durations, as well as frontal plane QRS- and T-

wave axes, and amplitude-based criteria such as the Cornell or Sokolow-Lyon indices; 2) 

Spatial information from transformation of the 12-lead ECG to a derived vectorcardiogram 

using Kors’ transformation, including the spatial mean and maximum QRS-T angles, spatial 

azimuths and elevations, and the spatial ventricular gradient and its components, and 3) 

Waveform complexity measures of the QRS and T waves derived by singular value 

decomposition. A 10-s 12-lead ECG heart age has been described previously(10). For the 

purpose of this study, 10-second heart age was again derived using the 5-min Bayesian A-

ECG heart age as the reference standard, but this time without allowing any P-wave 

information into the 10-second ECG approximation of the 5-minute score. The finally 

determined “non-P” 10-s A-ECG heart age score (formula) was then applied forward to all 

patients in the validation dataset.  

 
Statistical Analysis 

Continuous variables were described using either mean±SD or median [interquartile range]. 

The chi-squared test was used to test for proportional differences between groups. When 

deriving the 10-s A-ECG “non-P” heart-age score, variable selection was determined in the 

healthy cohort through stepwise standard least squares multivariable linear regression for the 

prediction of the Bayesian 5-min heart age as the reference standard. Selection of variables 

was based on achieving the most parsimonious multivariable model with the highest possible 
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model R2 with individually statistically significant (p<0.0001) measures. The intercept and 

coefficients of the prediction model was subsequently determined after applying the final 

model to both healthy subjects, patients with cardiovascular risk factors, and established 

cardiovascular disease using the 5-minute Bayesian A-ECG Heart Age as the reference 

standard. 

 

Time-to-event analysis was conducted in the validation cohort, and Kaplan-Meier curves 

were constructed with censoring at the study's end. The subjects were divided into two 

categories based on their non-P heart age gap: those with a gap of less than 10 years and 

those with a gap of 10 years or more, where 10 years approximately represents two standard 

deviations from the average heart age gap among healthy subjects in the initial derivation 

cohort (10). The association between the heart age gap and a composite endpoint of 

hospitalization for heart failure or death was analysed using Cox proportional hazard 

regression, unadjusted and adjusted for age, sex and cardiovascular risk factors (smoking, 

diabetes mellitus, hypertension, hypercholesterolemia and body mass index). A potential 

interaction effect between age and heart age gap on the association with outcomes was 

evaluated by analysing models with and without an interaction term for age (heart age gap × 

age). These models were then compared using the likelihood ratio test. Hazard ratios (HRs) 

are presented with 95% confidence intervals (CIs) for each 5-year increment in the heart age 

gap. A restricted cubic spline regression model was used to demonstrate risk increments with 

increasing heart age gap. Repeatability was assessed by describing the minimum detectable 

change (1.96 × √2 × standard error of the mean difference) in heart age gap one year later 

in a subset of healthy patients (n=27) for both the P-wave inclusive and P-wave exclusive 

heart age estimation. These patients all remained healthy at the time of the repeat ECG 

recording(14). These results are presented in Supplements, Table S1. Regression analysis and 
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the derivation of the A-ECG Heart Age model was performed using SAS JMP version 11.0 

(SAS Institute Inc, Cary, NC, USA). All other analyses were performed using the software R 

(version 4.2.2, R Core Team, R Foundation for Statistical Computing, Vienna, Austria).  

 

Results 

Derivation of the Non-P Heart Age 

Characteristics of the derivation cohort are summarized in Table 1. The final non-P A-ECG 

heart age model with its ten (10) included measures are presented with intercepts and 

coefficients in Tables 2 and 3 for males and females, respectively. The mean values for the 

included A-ECG measures are summarized in Table 4, stratified by state of health, risk 

factors, and disease. The agreement between the non-P heart age and the 5-min heart age 

reference standard was strong (R2=0.91, bias 0.0±6.7 years, Figure 1). In healthy individuals, 

non-P gap was 0.4±5.0 years. in individuals with risk factors it was 7.4±6.8 years, and among 

those with established cardiovascular disease it was 13.5±8.3 years (Figure 2). 

 

External validation of the Non-P Heart Age Gap 

The validation cohort included 731 patients with a median follow-up of 5.7 [4.8–6.7] years, 

during which 138 (18.9%) individuals experienced the primary combined outcome of 

hospitalization for heart failure or death (101(13.8%) deaths, 57(7.8%) hospitalizations for 

heart failure, and 20 (2.7%) both hospitalisation and death).Baseline characteristics of the 

validation cohort are presented in Table 5. 

Cardiovascular risk factors and diseases were more prevalent among patients with a higher 

gap (≥10 years) compared to those with a lower gap (<10 years; hypertension 57%vs 43%, 

p<0.001; diabetes 27%vs 12% p<0.001; hyperlipidaemia 46% vs 31%, p<0.001). In addition, 

abnormal CMR imaging findings were more prevalent among those with higher gap, 
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compared to those with a lower gap (lower LVEF, worse global longitudinal strain (GLS), 

higher left ventricular mass, greater presence of late gadolinium enhancement, and higher 

myocardial extracellular volume, p<0.01 for all). 

Increased gap (≥10 years) was significantly associated with increased risk of heart failure 

admission or death (unadjusted HR: 2.04 [1.38–3.00], adjusted for age and sex: 1.55 [1.04–

2.30]). The interaction test for gap and age did not achieve statistical significance (p=0.06). 

Given the close proximity to the predefined significance level (p<0.05), HRs were also 

calculated after stratifying data by age. Heart age Gap ≥10 years was associated with heart 

failure or death among younger individuals (<60 years: HR 2.98 [1.68–5.30]), but not among 

≥60 years (HR 1.01 [0.60–1.71]). 

 

Discussion 

The main finding of this study is that an estimation of ECG heart age containing useful 

prognostic value can be performed without the use of P-wave information. Healthy 

volunteers had a “non-P” heart age similar to their chronological age, i.e. their gap was close 

to zero. In comparison, individuals with cardiovascular risk factors had a gap of 

approximately 7 years, while those with established disease had a gap of 14 years. In the 

external validation cohort, high gap was associated with higher prevalence of cardiovascular 

risk factors, abnormal CMR findings, and ultimately hospitalization for heart failure or death.  

 

The current study builds on prior work enabling the use of an A-ECG heart age on standard 

10-second, 12-lead ECGs rather than a 5-minute, 12-lead higher-fidelity ECG as originally 

devised (9-11). However, P-wave duration constituted an important part of the initial 10-

second A-ECG model for heart age, limiting its use to individuals in sinus rhythm (10). The 
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current study therefore now extends the applicability of 10-second A-ECG heart age 

estimations to patients with atrial fibrillation or other causes of non-quantifiable P-waves.  

 

The current study mechanistically shows that determinants of the emerging concept of 

cardiovascular ageing are embedded in the ECG along domains beyond the P wave, which 

has previously been described as an important measure associated with cardiovascular ageing 

and associated pathologies (15-18). In the original 10-second A-ECG heart age gap, P-wave 

and spatial QT durations were the two most important A-ECG measures in the model. By 

contrast, in the non-P heart age gap of the current study, the axis of the spatial QRS axis in 

the derived vectorcardiographic frontal plane and the heart rate-corrected spatial QT interval 

were the two most important ECG measures in the model. Indeed, the normal evolution of 

these two metrics with ageing is well known (19, 20).  

 

Higher non-P gap was also associated with both adverse outcomes and underlying 

comorbidities. This is consistent with multiple recent studies on the concept of biological age 

estimation using the ECG (21-28).For example, a deep neural network (DNN) has been 

trained to predict sex and age from the 12-lead ECG. In that study, those with a predicted 

heart age >7 years higher than their chronological age (gap ≥7 years)had a higher prevalence 

of coronary disease, hypertension, and reduced left ventricular ejection fraction, while those 

with a lower gap had fewer events in long-term follow-up(21). Similarly, DNN-estimated 

ECG age trained on a large cohort (n=1,558,415) showed increased risk with increasing gap 

(27). 

 

A-ECG emphasizes the use of transparently explainable and quantifiable ECG measures for 

heart age estimation. This differs from other attempts at heart age estimation using the ECG, 
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particularly from DNN-type modelling. For example, DNN techniques continue to have the 

inherent limitation of model opaqueness and non-explainability and as such are still 

considered “black box” methods. In the only head-to-head comparison on an identical 

external validation cohort, the original 10-second A-ECG heart age outperformed a DNN-

based heart age estimation model in prognostic strength (11). In terms of explainability, 

measures included in the non-P gap are transparently quantifiable digital biomarkers of 

cardiac electrophysiology. Some of these digital biomarkers have been described extensively 

in the literature, such as the frontal plane QRS axis, spatial QT duration, vectorcardiographic 

T-wave axis, spatial ventricular gradient and certain ratios between the T-wave eigenvalues 

that quantify the complexity of the T wave in three-dimensional space. Furthermore, the 

deviations of these measures from normal ranges are known to be associated with adverse 

events (29-35).  

In this heart age model, chronological age was included and used as the foundation from 

which accelerated or decelerated cardiac aging then occurred based on electrocardiographic 

deviations from healthy aging. In contrast, DNN-type heart age models have focused on 

predicting the actual chronological age of study participants (11).  

The non-p heart age was derived using strictly healthy individuals in whom cardiovascular 

risk factors or disease were actively ruled out. Hence, no disease signatures were embedded 

in the ECGs used for training the model.  Beyond scientific curiosity, there appears to be little 

clinical relevance in predicting the actual chronological age from an ECG among patients 

with known or suspected cardiovascular disease. Interestingly, the association between non-P 

gap and the primary outcome was stronger in younger individuals who should otherwise be at 

lower risk of adverse cardiovascular events. In younger individuals, the association between 

heart age gap and prognosis is consistent with this association being attributable to risk 

factors and disease. In contrast, among older individuals, it is possible that a higher 
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prevalence of other risk factors or established disease lessen the prognostic impact of the 

heart age gap. 

 

The findings of the current study align with multiple previous publications on 

electrocardiographic signals of accelerated ageing. The emerging understanding from DNA 

methylation studies of the process of accelerated cellular senescence in response to adverse 

lifestyle and external factors indicate that perhaps the ECG can be an accessible and intuitive 

‘epigenetic clock’ with clinical and public health utility (35-38). This theory is further 

supported by findings of a weak albeit linear relationship between accelerated ageing as 

measured using DNA methylation-based ageing biomarkers and A-ECG Heart Age (40). 

A higher ECG heart age gap has been shown to be associated with Lamin-related gene 

(LMNA gene) mutations related to accelerated aging in Progeria syndrome (39), as well as 

impaired peripheral microvascular endothelial dysfunction, which is associated with vascular 

ageing (22). Based on these observations, the association between the non-P gap and 

cardiovascular morbidity and mortality possibly stems from detecting subtle 

electrophysiological signatures related to accelerated cellular senescence.  

 

The greater purpose of non-P gap is to have easy access to a simple yet prognostic and 

explainable biomarker of cardiovascular risk that can be easily deployed anywhere standard 

ECGs are performed, and intuitively communicated to a patient to aid personalized decision-

making and intervention. For example, informing an individual with unaddressed risk factors 

that their heart is 15 years older than their chronological age could be a powerful message to 

spur preventive action. Similar attempts have been made in other areas, such as to incentivize 

smoking cessation through age-estimations based on pulmonary function testing results (42).  
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Beyond the mechanistic insights offered by the non-P gap, it extends its use to a more diverse 

population, particularly those in non-sinus rhythm. Whether heart age estimations in patients 

in atrial fibrillation can improve thromboembolic risk stratification merits testing in future 

studies. 

 

The current non-P gap is the first heart age gap specifically developed for applications in 

non-sinus rhythms. Atrial fibrillation is a widely heterogenous condition and also the most 

common non-sinus rhythm. Potential applications of the heart age gap in atrial fibrillation 

include phenotyping (43), risk stratification at time of diagnosis, and monitoring the effects 

of therapy, with future studies of these applications being justified.  

 

Limitations 

The validation cohort consisted of patients referred for CMR imaging, representing a group 

with a higher prevalence of cardiovascular risk factors and diseases compared to an otherwise 

relatively asymptomatic general practice outpatient population who could be a target for 

clinical application of the non-P gap. Despite this, the non-P gap retained its simplicity and 

utility even in this higher-risk group. Additionally, the cardiovascular risk factors and 

conditions observed in this cohort are representative of the very issues that preventive 

healthcare measures strive to address. 

Although the purpose of developing a heart age gap without P wave measures is to enable 

heart age estimation in patients with non-sinus rhythms, the validation was performed in 

patients in sinus rhythm. Therefore, the results of this study should only be considered as 

proof-of-concept at this stage regarding applicability in non-sinus rhythms. Further validation 

studies in individuals in non-sinus rhythms are justified.  
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Conclusions 

Accurate and prognostically useful heart age estimations can be made through A-ECG 

analysis applied to standard 10-second resting 12-lead ECGs without relying on P-wave-

derived measures. This therefore now extends the applicability of A-ECG heart age 

estimations to patients who are in non-sinus rhythms.  
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Figure Legends 

 

 

Figure 1. Left panel: Scatter plot showing the relationship between the 10-s, Non-P-wave 

Advanced-ECG (A-ECG) heart age and the 5-min A-ECG heart age in the derivation cohort. 

The R2 value was 0.91 (p < 0.001). Right panel: Bland–Altman plot showing the difference 

between the 10-s Non-P wave A-ECG Heart Age and 5-min A-ECG heart age in relation to 

the mean of both ECG heart ages. The agreement between methods is strong, with minimal 

deviation from the identity line (dashed) or bias (0.0 ± 6.7 years). 
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Figure 2. Advanced ECG (A-ECG) non-P heart age gap in healthy individuals (left, orange), 

individuals with cardiovascular (CV) risk factors (middle, dark grey), and patients with CV 

disease (right, navy blue). On average, there is a negligible difference between non-P heart 

age and chronological age in healthy individuals, whereas the gap is increased in individuals 

at CV risk and highest for those with overt CV disease. 
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Figure 3. Time-to-event analysis for individuals with A-ECG non-P heart age gap<10 years 

(dense, Orange line) versus those with an A-ECG non-P heart age gap>=10 years (dashed 

grey line) for hospitalization for heart failure or death in the external validation cohort. 
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Figure 4. Restricted cubic splines plot showing the continuously increasing hazard ratio for 

death or hospitalization for heart failure with increasing non-P A-ECG heart age gap. The 

shaded area indicates the 95% confidence interval. 
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Table 1. Derivation Cohort Characteristics 
 
  All 

(n = 2771) 
Healthy 

(n = 1682) 
CV risk factors 

(n = 305) 
CV disease 
(n = 784) 

Age, years 46.2±16.0 38.6±13.0 54.8±11.2 59.0±13.2 
Male sex, n (%) 1645 (59.4) 999 (59.4) 163 (53.4) 483 (61.6) 
Heart Age Gap, years 4.9±8.6 0.4±5.0 7.4±6.8 13.5±8.3 
CAD, n (%) 421 (15.2) – – 421 (53.7) 
ICM, n (%) 120 (94.3) – – 120 (15.3) 
HCM, n (%) 92 (3.3) – – 92 (11.7) 
LVH, n (%) 96 (3.5) – – 96 (12.2) 
NICM, n (%) 53 (1.9) – – 53 (6.8) 
Abbreviations: 
CAD: coronary artery disease; ICM: ischemic cardiomyopathy; HCM: hypertrophic 
cardiomyopathy; LVH: left ventricular hypertrophy; NICM: non-ischemic 
cardiomyopathy. 
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Table 2. A-ECG measures included in the non-P heart age for males.  
Measure Coefficient t ratio 
Intercept -166.22 12 
Chronological age, years 0.900 99 
Ln of corrected spatial QT interval, ms 27.5 13 
Ln of the “Intradipolar ratio” of T-wave complexity from the Frank XYZ 
leads [(T Eigenvalue2 x T Eigenvalue3) /(T Eigenvalue1)2)] after singular 
value decomposition, Ln % 

1.69 12 

R-wave amplitude in derived lead Y, µV -0.00740 -12 
Corrected Spatial JT interval, ms 0.0580 11 
Spatial T-wave axis, sine radians   -3.41 -9 
Max amplitude of the derived VCG frontal planar QRS loop, µV 0.00302 6 
Mean difference between the frontal plane T-wave elevation and azimuth 
of all T-wave loop samples, degrees  0.0279 5 

Abbreviations:  
Ln: natural logarithm; VCG: vectorcardiographic 
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Table 3. A-ECG measures included in the non-P heart age for females.  
Measure  Coefficient t ratio 
Intercept -200  
Chronological Age, years 0.942 91 
VCG Frontal plane QRS axis, sine radians   -9.59 -23 
Gender 4.20 14 
Natural logarithm Ln of corrected spatial QT interval, ms 32.3 13 
R-wave amplitude in lead Y, µV -0.00869 -12 
Ln of the “Intradipolar ratio” of T-wave complexity from the 
Frank XYZ leads [(T Eigenvalue2 x T Eigenvalue3) /(T 
Eigenvalue1)2)] after singular value decomposition, Ln % 

1.88 12 

Corrected Spatial JT interval, ms 0.0676 11 
Spatial T-wave axis, sine radians   -3.77 -9 
Max amplitude of the derived VCG frontal planar QRS loop, µV 0.00 345 6 
Mean difference between the frontal plane T-wave elevation and 
azimuth of all T-wave loop samples, degrees 0.0334 5 

Abbreviations:  
Ln: natural logarithm; VCG: vectorcardiographic 
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Table 4. Advanced ECG parameters in the derivation cohort stratified by health and presence of 
cardiovascular risk factors or established cardiovascular disease. 
  

Healthy Risk 
Factors 

Disease p 

n (%) 1,682 (60.7) 305 (11) 784 (28.3) 
 

Chronological age, years   39±13 55±11 59±13 <0.001 
R-wave amplitude in lead Y, µV 1144±392 828±363 717±462 <0.001 
VCG frontal plane QRS axis, sine 
radians 

0.82±0.23 0.54±0.44 0.29±0.54 <0.001 

Max amplitude of the derived VCG 
frontal planar QRS loop, µV 

1617±411 1384±385 1286±599 <0.001 

Ln of the “Intradipolar ratio” of T-
wave complexity from the Frank 
XYZ leads [(T Eigenvalue2 x T 
Eigenvalue3) /(T Eigenvalue1)2)] 
after singular value decomposition, 
Ln % 

-0.69±0.83 -0.28±0.89 0.43±1.12 <0.001 

Ln of the corrected spatial QT 
interval, ms  

6.00 (0.06) 6.05 (0.06) 6.07 (0.08) <0.001 

Spatial T-wave axis, sine radians 0.71 (0.20) 0.63 (0.28) 0.46 (0.54) <0.001 
Corrected spatial JT interval, ms 336±23 355±29 364±37 <0.001 
Mean difference between the frontal 
plane T-wave elevation and azimuth 
of all T-wave loop samples, degrees 

41±16 47±22 72±36 <0.001 

Abbreviations:  
Ln: natural logarithm; VCG: vectorcardiographic 
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Table 5. Validation Cohort Detailed Characteristics 
 All Cohort Non-P Heart Age Gap (Years)   

 <10 ≥10 p 
Number of individuals, n (%) 731 (100) 277 (37.9) 454 (62.1) 

 

Chronological Age, years 53.6±15.3 49.6±15.2 56.0±14.8 <0.001 
Non-P A-ECG Heart Age, years 66.7±19  54.4±16.1  74.1±16.7 <0.001 
Non-P A-ECG Heart Age Gap, years 13.1±8.2   4.8±3.8  18.1±5.7 <0.001 
Male Sex, n (%) 417 (57.0) 160 (57.8) 257 (56.6) 0.82 
Body-mass index, kg/m2 30±7.8 29.4±7.6 30.3±7.8 0.12 
Body Surface Area, m2 2.0±0.3   2.0±0.3   2.1±0.3 0.29 
All cause mortality, n (%) 101 (13.8)     28 (10.1)      73 (16.1)  0.031 
Death or HF Hospitalization, n (%) 138 (18.9)     34 (12.3)     104 (22.9)  0.001 
NT-proBNP, ng/L 64 [28–188] 43 [20–131] 82 [33–222] <0.001 
eGFR, mL/min/1.73m2 89±25 93±23 86±26 0.001 
Hypertension, n (%) 379 (51.8) 120 (43.3) 259 (57.0) <0.001 
Diabetes Mellitus, n (%) 157 (21.5) 33 (11.9) 124 (27.3) <0.001 
Hyperlipidemia, n (%)   295 (40.4) 86 (31.0) 209 (46.0) <0.001 
Chronic Kidney Disease, n (%)   18 (2.5) 2 (0.7) 16 (3.5) 0.034 
Smoker, n (%)   119 (16.3) 50 (18.1) 69 (15.2) 0.36 
CABG, n (%)   56 (7.7) 20 (7.2) 36 (7.9) 0.84 
PCI, n (%)   89 (12.2) 25 (9.0) 64 (14.1) 0.06 
Heart Failure Hospitalizations, n (%)   57 (7.8) 11 (4.0) 46 (10.1) 0.004 
HFrEF, n (%) 166 (22.7) 48 (17.3) 118 (26.0) 0.009 
HFpEF, n (%) 51 (7) 13 (4.7) 38 (8.4) 0.081 
 
Cardiovascular Magnetic Resonance Imaging Parameters 
End-diastolic LV volume, mL 172±63 167±57 175±67 0.084 
End-systolic LV volume, mL 83±58 75±47 85±63 0.003 
LVEF, % 55±14 57±12 54±15 0.002 
GLS, % -16±4 -16±4 -15±5 <0.001 
LV mass, g 120±46 115±42 124±49 0.009 
Presence of LGE, % 263 (36) 83 (30.0) 180 (39.6) 0.010 
Extracellular volume, % 27.9 (3.8) 27.4 (3.5) 28.2 (4) 0.008 
 
Medications 
Insulin, n (%) 107 (14.6) 23 (8.3) 84 (18.5) <0.001 
Oral Hypoglycemic, n (%) 49 (6.7) 12 (4.3) 37 (8.1) 0.06 
ACE/ARB, n (%) 295 (40.4) 110 (39.7) 185 (40.7) 0.84 
No Medications, n (%) 133 (18.2) 73 (26.4) 60 (13.2) <0.001 
Beta Blockers, n (%) 359 (49.1) 109 (39.4) 250 (55.1) <0.001 
Loop Diuretics, n (%)    142 (19.4)  39 (14.1) 103 (22.7) 0.006 
Calcium Channel Blocker, n (%)     55 ( 7.5)  14 (5.1) 41 (9.0) 0.067 
Hydrochlorothiazide, n (%)     68 ( 9.3)  22 (7.9) 46 (10.1) 0.39 
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Nitroglycerin, n (%)       23 ( 3.1)  6 (2.2) 17 (3.7) 0.33 
Statin, n (%)    301 (41.2)  91 (32.9) 210 (46.3) <0.001 
Warfarin, n (%)       45 ( 6.2)  14 (5.1) 31 (6.8) 0.42 
Antiplatelets, n (%)      379 (51.8)  120 (43.3) 259 (57.0) <0.001 
Abbreviations:  
NT-proBNP: N-terminal prohormone of brain natriuretic peptide; eGFR: estimated glomerular 
filtration rate; CAD: coronary artery disease; CABG: coronary artery bypass grafting; PCI: 
percutaneous coronary intervention; HFrEF: heart failure with reduced ejection fraction; HFpEF: 
heart failure with preserved ejection fraction; GLS: global longitudinal strain; LGE: late gadolinium 
enhancement; LV: left ventricle; LVEF: left ventricular ejection fraction; ACE: angiotensin-
converting enzyme; ARB: Angiotensin Receptor Blockers;. 
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Supplemental Table 1. Serial A-ECG non-P heart age and p-wave heart age for healthy 
individuals performed 1 year apart.  
 Non-p heart age p-wave heart age 
Number of subjects, n 27 27 
Males, n (%) 14 (52) 14 (52) 
Age, years 40.5±9 40.5±9 
Heart age gap at first measurement, years -1.4±4.5  -1.6±4.0 
Difference between heart age gap one year 
apart, years 

0.4±1.8  0.6±1.9 

Intraclass correlation coefficient, unitless 0.93 [0.84-0.97] 0.88 [0.76–0.95]  
Minimum detectable change, years 0.9 [0.3-1.6]  1.0 [0.3–1.7] 
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