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Abstract 

 

Purpose: Patient body composition is a major factor in patient management. Indeed, assessment of SMI as well 

as VFA and, to a lesser extent, SFA is a major factor in patient survival, particularly in surgery. However, to 

date, there is no simple, rapid, open-access assessment method. The aim of this work is to provide a simple, 

rapid and accurate tool for assessing patients' body composition. 

 

Material and methods: A total of 343 patients underwent liver transplantation at the University Hospital of 

Rennes between January 1st, 2012 and December 31s, 2018. Image analysis was performed using the open source 

software ImageJ. Tissue distinction was based on Hounsfield density. The training dataset used 332 images (320 

for training and 12 for validation). The model was evaluated on 11 patients. The complete software and video 

package is available at https://github.com/tpecot/MuViSS. 

 

Results: In total, the model was trained with 332 images and evaluated on 11 images. Model accuracy is 0.974 

(SD 0.003), Jaccard's index is 0.98 for visceral fat, 0.895 for muscle and 0.94 for subcutaneous fat. The Dice 

index is 0.958 (SD 0.003) for visceral fat, 0.944 (SD: 0.012) for muscle and 0.970 (SD: 0.013) for subcutaneous 

fat. Finally, the Normalized root mean square error is 0.007 for visceral fat, 0.0518 for muscle and 0.0124 for 

subcutaneous fat. 

 

Conclusion: To our knowledge, this is the first freely available model for assessing body composition. The 

model is fast, simple and accurate, based on Deep Learning. 
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INTRODUCTION 

Sarcopenia is defined by the European Working Group on Sarcopenia in Older People (EWGSOP) as the 

progressive and generalized reduction of skeletal muscle mass. Well known in the elderly, its incidence is also 

high in many chronic diseases such as respiratory [1], renal [2] or liver diseases [3]. Sarcopenia, evaluated by the 

Sketal Muscule Index (SMI) (ratio between the area of the muscles at L3 level and the height squared) is found 

to be a risk factor for poor prognosis in surgery, in particular with a decrease in the overall survival of patients 

undergoing hepatic [4], colorectal [5] or pancreatic surgery [6]. 

 Obesity, a true epidemic on a global scale, is defined by the WHO as an abnormal or excessive 

accumulation of fat, representing a real health risk. Indeed, 4 million people die each year as a result of being 

overweight or obese. In addition to the risk of developing chronic diseases such as coronary artery disease [7] , 

hypertension [8], dyslipidemia [9] or NASH [10], obesity is recognized in cancerology as a risk factor for many 

cancers [11], including 13 with a high level of evidence [12]. Moreover, obesity represents a risk factor for 

mortality in this population [13]. Although global obesity is strongly correlated with abdominal obesity, these 2 

parameters are not always linked. In fact, there are patients who are obese, based on BMI calculation, but not 

viscerally obese, and vice versa. However, this distinction is relatively difficult to assess in clinical practice [14]. 

 

 The assessment of body composition is complex. Indeed, the gold standard remains the biophotonic X-

ray absorptiometry. However, the rarity, the cost and the method (prospective evaluation) do not allow an 

evaluation in current practice. Computed Tomography (CT), which is faster and widely used for diagnosis and 

follow-up, is the tool of choice for retrospective assessment of body composition. Several articles in the 

literature showed that there is a strong correlation between CT data and body composition [15–18]. Therefore, 

sarcopenia is assessed by the skeletal muscle index (SMI), division of SMA (skeletal muscle mass) by size 

squared, on the third lumbar vertebra [19,20]. According to the recommendations [21], the assessment of 

abdominal obesity involves the measurement of the VFA (Visceral Fat Area) on a CT scan. 

Although widely used, there are few freely available tools using DeepLearning to assess SMA (skeletal 

muscle area), VFA (visceral fat area) and SFA (subcutaneous fat area) simply and quickly. In this study, we 

provide an automated method for assessing SMA, VFA and SFA at the L3 level. 
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MATERIAL AND METHODS 

Patient  

A total of 331 patients underwent liver transplantation at the University Hospital of Rennes between January 1st, 

2012 and December 31s, 2018. The evaluation of the SMA (Skeletal Muscul Area), SFA (Subcutaneous Fat 

Area) and VFA (Visceral Fat Area) were assessed from the last CT scan performed in the 90 days before 

transplantation. The data used to build the MuViss model comes from another study, the results of which have 

not yet been published. However, the study in question, from which the data are taken, has been approved by the 

ethics committee of the University Hospital of Rennes. 

 

Image Analysis  

Analysis was performed on a slice through the third lumbar vertebra. The images were processed using ImageJ 

version 2.3.0/1.53f (open source) (no image analysis software having demonstrated superiority). The distinction 

between different tissues was based on the Hounsfield Unit (HU).  The threshold of -29 to + 150 HU was used 

for skeletal muscle, which at L3 included: psoas, erector spinae muscles, squared lumbar muscles, transverse 

abdominal muscles, internal and external oblique muscles, and rectus abdominis muscles. The threshold of -190 

to -30 HU was used for fat. Visceral fat included all intraperitoneal and retroperitoneal fat, including perirenal. 

Subcutaneous fat included all fat located in the muscle wall and the skin plane. 

 

Image segmentation 

Code  

All the used code is open source. U-Net was [22] coded in Python and used the Python libraries numpy [23], 

tensorflow [24], keras [25], scipy [26] and imgaug [27]. The MuViSS ImageJ macros are available at 

https://github.com/tpecot/MuViSS. 

 

Training dataset  

The training dataset consisted of 320 512 x 512 images while the validation dataset consisted of 12 512 x 512 

images. For each image in both datasets, a physician expert manually annotated the backbone, visceral fat, muscle 

and subcutaneous fat with Annotater [28]. 

 

Training  

Images were normalized with a 1-99.8 quantile. A root mean square prop was used to estimate the parameters of 

the deep neural network by minimizing a weighted cross entropy loss to handle class imbalance for 25 epochs. A 

data augmentation to increase the training dataset by a factor of 100 was processed before normalization with the 

imgaug python library [27] and included flipping, pixel dropout, blurring, noise addition and contrast 

modifications. The trained model in the format that is directly usable with the CSBDeep plugin [29] in ImageJ is 

available at https://zenodo.org/record/7990044. 
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Post-processing  

416 images were then segmented with the trained model. An ImageJ macro [30, 31] was used to correct 

segmentations. For both backbone and visceral fat, the largest connected components obtained with the MorpholibJ 

[32] plugin followed by hole filling were defined as the segmented areas. For both muscle and subcutaneous fat, 

the largest connected components obtained with the MorpholibJ [32] plugin followed by hole filling with a 

maximum size of 1000 pixels for holes were defined as the segmented areas.  

 

Quantification  

Pixels with an intensity defined between -29 and 150 were set as muscle while pixels with an intensity between -

190 and -30 were set as fat. The area of muscle pixels within the segmented muscle region as well as the area of 

fat pixels within the segmented subcutaneous and visceral fat regions were measured to compute the visceral fat 

area. The MuViSS ImageJ macro defined to process this task is available at https://github.com/tpecot/MuViSS. 
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RESULTS 

In total, the model was trained on 320 images and evaluated on 11 images. Figure 1 shows examples of the final 

result after analysis by the model. Table 1 summarizes the types of scanners used in this study both for training, 

validation and evaluation datasets. The accuracy and evaluation metrics of the segmentation are summarized in 

Table 2. Note that our model has an accuracy of 97.4%. In order to use our model, video tutorials are available at 

https://github.com/tpecot/MuViSS. 

These tutorials show how to install ImageJ and the required plugins and how to use MuViSS. Note that the 

intensity for muscle, visceral and subcutaneous fat can be adjusted as input parameters.  

 

           

 
SFA : Sub-Cutaneous Fat Area – SMA : Skeletal Muscle Area – VFA : Visceral Fat Area 

Figure 1. Representation of the automatic segmentation by the model. 
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Table 1. Brand and type of scanner. 

 Pourcentage (n) 

Toshiba  

     Aquilion 0,19%     (1) 

     Aquilion ONE 0,38%     (2) 

GE MEDICAL SYSTEMS  

     BrightSpeed 31,92%   (166) 

     BrightSpeed QX/i 3,27%     (17) 

     Discovery CT750 HD 2,12%     (11) 

     LightSpeed16 0,58%     (3) 

     LightSpeed 0,38%     (2) 

     LightSpeed Pro 32 0,58%     (3) 

     LightSpeed VCT 11,92%   (62) 

     Optima CT660 0,96%     (5) 

     Optima CT520 Series  0,38%     (2) 

     Optima CT540 0,58%     (3) 

Philips  

     Brilliance 16 1,15%     (6) 

     Brilliance 40 0,38%     (2) 

     Brilliance 64 1,73%     (9) 

     Ingenuity CT 0,58%     (3) 

SIEMENS  

     Mx8000 0,96%     (5) 

     Definition AS+ 0,19%     (1) 

     Sensation 64 0,58%     (3) 

     Perspective  0,19%     (1) 

     SOMATOM Definition AS 1,35%     (7) 

     SOMATOM Definition AS+ 0,96%     (5) 

Hitachi Medical Corporation  

     SCENARIA 0,19%     (1) 
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Table 2. Accuracy and evaluation metrics 

  

 Average Standard deviation 

Accuracy 0.974 0,003 

Jaccard index 

     Backbone 0,919 0,016 

     Visceral fat 0,980 0,006 

     Muscle 0,895 0,022 

     Subcutaneous fat 0,940 0,025 

Dice index 

     Backbone 0,958 0,009 

     Visceral fat 0,990 0,003 

     Muscle 0,944 0,012 

     Subcutaneous fat 0,970 0,013 

Normalized root mean square error 

     Muscle area 0,0518  

     Visceral fat aera 0,007  

     Subcutaneous fat area 0,0124  
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DISCUSSION 

Sarcopenia and visceral obesity affect a large number of patients, especially in surgery. Their evaluation 

is often complex and there is currently no simple tool available for their evaluation. 

In this study, we demonstrate that a scan-based assessment using Deep Learning was a reliable and 

reproducible method. This method allows the assessment of the SMA based on the calculation of the area of the 

L3 level muscles including: the psoas, the erector spinae muscles, the squared lumbar muscles, the transverse 

abdominal muscles, the internal and external oblique muscles and the rectus abdominis muscles. After adjusting 

the SMA to the height square, an evaluation of the SMI is made possible. This method also allows to measure, 

on the same scan section, the VFA represented by the total area of intra-abdominal fat and the SFA represented 

by the total area of parietal fat. 

The evaluation of SMI, a reflection of sarcopenia, is widely studied in the literature. Indeed, in 

oncology, a 10% loss of SMI in patients undergoing radiochemotherapy for esophageal cancer decreased the 

overall survival of patients [33]. What's more, in these patients there is a reduction in progression-free survival 

and overall survival [34,35]. In the hepatobiliary field, sarcopenia is also a risk factor for 5-year mortality in 

patients treated for hepatocellular carcinoma. [36]. In gynecological surgery, sarcopenia decreased overall 

survival in patients with cervical cancer [37], endometrial cancer [38, 39] and ovarian cancer [40]. In pancreatic 

surgery, there is a decrease in recurrence-free survival and overall survival in patients with low SMI after 

pancreatic resection [6]. In esophageal surgery, a decrease in survival of sarcopenic patients after esophagectomy 

has been reported [41]. In colorectal surgery, sarcopenia associated with an NLR < 3 significantly decreased the 

overall survival of patients operated on for non-metastatic colorectal cancer [42]. In liver transplantation, an 

increased risk of mortality on the liver transplant waiting list has been highlighted in patients with a low SMI. 

[43]. 

The evaluation of obesity is also essential. Indeed, in addition to the specific complications related to 

obesity such as coronary artery disease, diabetes, etc., obesity, especially visceral obesity, is a risk factor for 

many complications and a risk factor for mortality. Moreover, although widely used in current practice, BMI is a 

poor index of fat distribution [44].The assessment of abdominal obesity, represented by the VFA measurement, 

is much more relevant. Indeed, in pancreatic surgery, visceral obesity associated with sarcopenia leads to a 

reduction in recurrence-free survival and overall survival. [6]. Moreover, abdominal obesity is a risk factor for 

postoperative infectious complications after pancreatic surgery [45]. More generally, a meta-analysis 

summarizes all the postoperative complications associated with abdominal obesity [46]. 

In the literature, we find a large number of ways of assessing body composition based on scans : 

BMI_CT [47,48], Aquarius iNtuition (TeraRecon, San Mateo,CA) [49], sliceOmatic (TomoVision, Magog, 

Quebec, Canada) [50,51], Synapse Vincent [49,50], Infinitt PACS [51]. To date, there has been no significant 

difference between the different software programs in the assessment of body composition [52].  The aim of this 

study is not to demonstrate the superiority of our model, which would require a much more in-depth study. 

However, the advantage of our method is that it's free. Indeed, although probably very powerful, tools such as 

SliceOmatic, Aquarius iNtuition, Synapse Vincent and Osirux require a paid license. BMI_CT, on the other 

hand, is a semi-quantitative evaluation software, meaning that it requires at least one manual segmentation for 

each evaluation. 
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The aim was to make available a simple and fast method, free of charge and easy to use. Indeed, our 

model requires no downloading or special identification, apart from the installation of ImageJ, an open-source 

software package, or which distributions for Microsoft Windows, Mac OS and Linux are available for download. 

Our model can therefore be used on any computer. In addition, video tutorials were created to show how to use 

this tool, available at https://github.com/tpecot/MuViSS. 

The interest in developing a free, automatic method could, in future, 1) enable systematic assessment of 

body composition 2) standardize results and thus enable better comparison. 

To date, no team has developed a deep learning-based access-free assessment model for routine body 

composition assessment. Moreover, the thresholds, in HU, for the evaluation of intra-abdominal and parietal fat 

is variable according to the studies. Indeed, some teams use the threshold of -190 to -30 HU while others use 

thresholds of -150 to -50 HU. In this method, the threshold values retained for fat are adjustable, to allow each 

person to evaluate the VFA according to the chosen values. 

 

 

 

CONCLUSION 

To our knowledge, this is the first study to make available a method for evaluating SMA, VFA and SFA using 

deep learning in free access, based on ImageJ software. 
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