
Title: Locus-specific stratification and prioritization unveil high risk genes 1 

underlying hyperuricemia 2 

Authors: Jing Zhang1,2, Yue Guo1,2, Luyu Gong1,2, Limei Xia1,2, Qiaoqiao Liu1,2, 3 

Kangchun Wang1,2, Qi Wang1,2, Zhaojun Liu1,2, Zhaohui Qin3, Shaolin Shi4*, Jingping 4 

Yang1,2,4* 5 

 6 

1State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing 7 

University, Nanjing, Jiangsu, 210093, China. 8 

2Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 9 

Nanjing, Jiangsu, 210093, China. 10 

3Department of Biostatistics and Bioinformatics, Rollins School of Public Health, 11 

Emory University, Atlanta, GA, 30322, USA. 12 

4National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated 13 

Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China. 14 

* Corresponding author. Email: shaolinshi1001@yahoo.com; jpyang@nju.edu.cn. 15 

  16 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.06.24303846doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.03.06.24303846


 2 

Abstract 17 

The development of alternative medications for urate-lowering therapies is imperative 18 

for patients that are intolerant to current treatments. Despite GWAS have identified 19 

hundreds of loci associated with serum urate levels, the mechanistic understanding and 20 

discovery of drug targets remain difficult. This difficulty arises from the multiple-21 

independent-associations challenge in the genomic studies of complex diseases as 22 

hyperuricemia. Here, we introduced a locus-specific stratification (LSS) and gene 23 

regulatory prioritization score (GRPS) approach to address the multiple-independent-24 

associations challenge. By integrating with kidney single-cell chromatin accessibility 25 

and gene expression, LSS identified functional SNPs, regulatory elements, and genes 26 

for 118 loci. The interpretability was increased by 1.4 to 5.2 fold. GRPS prioritized 27 

genes and nominated under-explored drug target with high confidence, which was 28 

validated using CRISPR activation and phenotypic assays. Our findings not only 29 

identified top causal genes but also proposed the regulatory mechanisms for pathogenic 30 

genes, expanding our knowledge of the genetic contribution in complex diseases as 31 

hyperuricemia. 32 

One-sentence summary 33 

A novel approach to comprehensively explore genetic contribution and nominate 34 

reliable causal genes for complex diseases as hyperuricemia. 35 

  36 
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Introduction 37 

Hyperuricemia, characterized by elevated serum urate levels, is a complex disease 38 

affecting various complications (1-3). Although the dominant narrative about 39 

hyperuricemia has focused on dietary, recent research suggests that diet plays only a 40 

limited role in regulation of serum urate in the healthy population (4). Instead, it has 41 

been estimated that genetic contribution for hyperuricemia ranges from 40% to 73% 42 

(5). There are currently urate-lowering therapies developed based on genetic targets, 43 

such as allopurinol, which inhibits xanthine oxidase and the production of urate, and 44 

benzbromarone, which inhibits URAT1 and reabsorption of urate in kidney. However, 45 

these medications caused hypersensitivity syndrome, hepatotoxicity or other adverse 46 

effects in specific patient populations (6). Therefore, it is necessary to further nominate 47 

disease-associated genes or drug targets in order to develop medications for intolerant 48 

populations. Large-scale genome-wide association studies (GWAS) have identified 49 

over 200 loci associated with serum urate levels (7, 8), but mechanistic understanding 50 

of the causal variants and genes underlying these loci remains partially explored, 51 

limiting the translation of genetic result to alternative medications. 52 

For complex diseases, the presence of multiple independent associations at 53 

disease-associated locus is commonly observed (9-12). For example, four regions at 54 

SLC2A9 locus have significant causal effects on serum urate levels (13). However, due 55 

to limitation of computational burden, the most commonly used methods for identifying 56 

causal variants, such as lead SNP extension by linkage disequilibrium (LD), genetic 57 

and epigenetic fine mapping, or colocalization (14-17), assume exactly one causal 58 

variant per locus (18, 19). As all the independent disease associations could contribute 59 

to gene regulation and trait association at the locus, these above methods may not fully 60 

map causal variants and leave a large number of loci mechanistically unresolved. 61 

Recent studies have performed the colocalization analysis of urate-associated loci with 62 

kidney expression quantitative trait loci (eQTLs), but the result could only characterize 63 

risk for tens loci and did not find the well-known targets in kidney including SLC22A12 64 
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(encoding URAT1) and SLC2A9 (encoding GLUT9) (7, 20). Therefore, it is urgent to 65 

find an effective way to overcome the issue of multiple independent associations in 66 

complex diseases and comprehensively understand the mechanism of genetic 67 

contribution. 68 

The multiple independent associations in complex diseases also accompany the 69 

complexity of gene regulation at disease-associated locus, and hinder gene 70 

prioritization. Previous studies have shown that drug targets with genetic supports are 71 

more likely to be therapeutically valid (21, 22), but drug target discovery in complex 72 

diseases remains challenging. The heritability of complex diseases could be explained 73 

by the cumulative effects of many variants (23), which are mainly located in non-coding 74 

regions and regulate gene expression in a cell-type-specific manner (24, 25). Thus, 75 

cumulative-regulation-based methods to prioritize the candidate genes is expected to 76 

nominate the most probable causal genes and potential drug targets. Recent regulation-77 

based methods have leveraged the causal gene nomination, but they are not developed 78 

for complex diseases and have certain limitations. ABC-Max only assigned one variant-79 

gene pair with the strongest regulatory score (26), but overlooked the complex 80 

regulation between variants and genes (24) . Open Targets Genetics and H-MAGMA 81 

took into account all the variant-gene connectivity, but the connectivity is considered 82 

qualitatively rather than quantitatively (27, 28). The incompleteness of cumulative 83 

regulation maps, together with incomplete variant coverage and the limited cell type 84 

resolution, hinder the prioritization of causal genes. Thus, a method that systematically 85 

and accurately considers the cumulative regulation is required for prioritizing genes for 86 

complex disease. 87 

In the current study, we propose a novel approach with locus-specific stratification 88 

and prioritization to comprehensively explore genetic contribution in complex diseases 89 

and nominate reliable disease-associated genes. Locus-specific stratification (LSS) 90 

efficiently extract all high-risk variants in addition to lead SNP based on a locus-91 

specific background and overcome the challenge of multiple-independent-associations 92 
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in complex diseases. To prioritize genes, we develop gene regulatory prioritization 93 

score (GRPS) to evaluate cumulative regulation on genes by integration high-risk 94 

variants from LSS with scATAC-seq and scRNA-seq datasets. Using this strategy, we 95 

efficiently resolved genetic risk mechanism for 118 out of 267 loci, and nominated 96 

more reliable gene targets for hyperuricemia. We further validated the regulatory 97 

potential of resolved high-risk variant on candidate causal gene by CRISPR activation 98 

(CRISPRa), and evaluated the effect of top prioritized gene on cellular urate level. Our 99 

study established a computational efficient method for GWAS interpretation of 100 

complex disease, extended genetic mechanistic understanding of hyperuricemia, and 101 

ultimately prioritizing genes with high confidence.   102 
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Results 103 

Locus-specific stratification leverages interpretability of loci with multiple-104 

independent-associations 105 

The GWAS of serum urate level exhibited overwhelming multiple-independent-106 

associations challenge. For the available GWAS results of serum urate level, 107 

independent association analysis revealed 22 to 128 loci with multiple independent 108 

associations, ranging from 69.95%-95.65% of all the loci (Fig. 1A). For instance, at 109 

locus chr4:9,743,616-10,243,616 with lead SNP rs3775947, in addition to lead SNP 110 

and SNPs within its high LD neighborhood, there were also numerous variants showing 111 

extremely strong trait association with -log10(p-value) even over 1000 (Fig. 1B). This 112 

suggested that such a locus may not be fully explained by only one association. Notably, 113 

at such highly associated locus, the locus-specific background is much higher than 114 

genome-wide background, suggesting a one-size-fits-all cutoff might not be appropriate.  115 

We observed that the distribution of significancy at locus with multiple-116 

associations tended to be reversed “L” shape with a plateau. The plateau was consisted 117 

of numerous high-risk associations, and generally harbored the top quantile 118 

associations (Fig. 1C and Fig. S1). In order to efficiently and comprehensively explore 119 

the genetic contribution, we proposed the LSS strategy to extract all high-risk 120 

associations based on locus-specific background. We ranked the variants by descending 121 

significance of variant-trait associations within each locus and took the top quartile 122 

associations as rank 1 for further analysis (Fig. 1D). LSS captured the multiple 123 

independent associations (Fig. 1E and Fig. S1) without bringing in noise at locus with 124 

single association (Fig. 1F and Fig. S2).  125 

Previous studies highlighted that disease-associated variants enriched at tissue and 126 

cell type specific regulatory regions (29-31). We thus identified the target tissue and 127 

generated tissue specific single cell EpiMap to pinpoint the potential causal variants of 128 
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these high-risk associations. By LD regression, we found the regulatory contribution 129 

from kidney tissue is highest (Fig. S3). We then focused on the regulatory mechanism 130 

in kidney. We generated cell type EpiMap with our previously generated kidney 131 

scATAC-seq data and integrated it with the rank 1 associations (Fig. 1D). The results 132 

showed that our strategy could explain genomic function for 220 out of 267 loci from 133 

the three studies (Table S1). When compared with other methods including high LD 134 

extension, Bayesian fine-mapping and colocalization, we found LSS could improve the 135 

interpretability of GWAS loci by 8.13% to 69.92% (Fig. 1G). Furthermore, we 136 

examined the contribution of these functional high-risk variants, and found that the 137 

variants identified by LSS contributed more highly and specifically to gout, the most 138 

common complication of hyperuricemia (Fig. 1H). These results suggested that LSS 139 

could pinpoint the functional high-risk variants for complex diseases more 140 

comprehensively and specifically. 141 

LSS identified variants revealed cell-type-specific contribution on complex disease  142 

We further examined the cell types in which the identified high-risk variants could 143 

play a role in. The result showed that 77.86% of these high-risk variants exhibited 144 

chromatin accessibility in proximal tubular cells, and this fraction was followed by that 145 

in distal tubular cell types (Fig. 2A). The result is consistent with fact that urate 146 

homeostasis is maintained mainly through excretion by kidney tubules (20). We also 147 

found that 48.12% of the variants located in regions only accessible in one cell type, 148 

mostly in proximal tubular cells and then in distal tubules (Fig. 2B and Fig. S4). For 149 

example, at the locus chr8:75,316,533-75,816,533 with lead SNP rs2941484, the lead 150 

SNP and its proxy SNP by LD extension showed no accessibility in any kidney cell 151 

type (Fig. 2C). We found by LSS that high-risk variant rs2943549, which is in an 152 

independent association over 26kb away from the lead SNP, located in a region 153 

specifically accessible in proximal tubular cell (Fig. 2C). The phenome-wide 154 

association study (PheWAS) (32), which is a powerful approach to comprehensively 155 
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evaluate associations between genetic variants and phenotypes, revealed that rs2943549 156 

has the strongest association with urate-related phenotypes among the traits (Fig. 2D). 157 

In another locus chr4:9,743,616-10,243,616 with lead SNP rs3775947，a high-risk 158 

variant rs4447862 in addition to lead SNP showed accessibility, revealing an additional 159 

risk (Fig. 2E). Notably, rs4447862 demonstrated a remarkable association with uric 160 

acid (Fig. 2F), yet this risk variant could not be identified by extension of the lead SNP. 161 

These results suggested that high-risk variant from independent association could 162 

function as genomic regulation in a cell-type-specific manner, and contribute 163 

mechanistically to the genetic risk of hyperuricemia.  164 

Integrated regulatory network uncovers candidate causal genes of functional 165 

high-risk variants 166 

Genetic lesions in non-coding regulatory elements contribute to disease by 167 

modulating the causal gene expression (14). To fully explain the regulatory 168 

mechanisms of the above functional high-risk variants, we integrated the scRNA-seq 169 

and scATAC-seq profiles of kidney to construct the transcriptional regulatory networks 170 

by identifying CREs with accessibility correlated to gene expression (‘peak-to-gene 171 

links’) (Fig. 3A and Fig. S5A). Based on the regulatory network, we identified 160 172 

protein-coding genes linked to 232 variants in 118 loci (Table S2). Our approach 173 

interpreted mechanism for 1.4 to 5.2 fold more loci than the other approaches on the 174 

same GWAS study (Fig. 3B), and identified an additional 32 to 85 candidate genes (Fig. 175 

3C).  176 

To examine the relevance of the identified candidate causal genes from functional 177 

high-risk variants, we performed gene function analysis. The ontology and pathway 178 

enrichment revealed that the genes were mainly involved in urate and organic anion 179 

transport (Fig. S5B). Disease enrichment analysis showed that they were involved in 180 

urate measurement and gout (Fig. 3D). Notably, genes linked with LSS-only high-risk 181 

variants were also implicated in uric acid measurement (Fig. 3E and Fig. S5C). For 182 
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example, at the locus chr1:154,935,239-155,435,239, we found that independent high-183 

risk variant rs3814316, instead of lead SNP rs2070803, functioned as a regulatory 184 

element in distal tubular cell types and linked to gene MUC1 (Fig. 3F). MUC1 has been 185 

shown to be important for urate level as its mutation in tubulointerstitial nephropathy 186 

patients can result in clinical manifestations of gout (33). In contrast, the lead SNP 187 

rs2070803 showed no regulatory capacity for kidney MUC1 expression. In consistent 188 

with our finding, rs3814316 showed higher CADD score and cast even stronger eQTL 189 

effect on MUC1 than rs2070803 (Fig. 3G and 3H). These results suggested that the 190 

independent high-risk variant rs3814316 identified by our study was more likely to be 191 

the causal variant for disease association at the MUC1 locus. Our findings have not only 192 

identified candidate causal genes for disease-associated loci, but have also proposed the 193 

more plausible regulatory mechanisms for pathogenic genes. Taken together, LSS is a 194 

computational efficient method to deal with multiple-independent-association 195 

challenge of complex disease, and could better explore the mechanism of complex 196 

diseases. 197 

Comprehensive prioritization score nominates potential drug target genes 198 

As there are independent high-risk variants identified by LSS, there could be 199 

complex regulation between variants and candidate causal genes. For urate-level 200 

associated loci, we observed that 42% variants could be linked to more than one gene, 201 

and 44% of the identified candidate causal genes could be regulated by more than one 202 

variant (Fig. 4A and 4B). For example, SLC22A12, which encodes a known urate 203 

transporter, URAT1, was regulated by up to 15 functional high-risk variants in 11 204 

regulatory elements identified in this study at locus chr11: 64,315,390-64,815,390 with 205 

lead SNP rs71456318 (Fig. S6). In order to nominate the most probable causal genes 206 

for further targeted therapies, it is necessary to prioritize genes based on a 207 

comprehensive regulation estimation. We developed gene regulatory prioritization 208 

score (GRPS) to take full consideration of the complexity of transcriptional regulation. 209 
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GRPS did not require any previous functional evidence, but rather evaluated pathogenic 210 

risk for genes objectively based on the risk level of causal variants linked to the gene, 211 

the regulation strength of causal variants on the gene, and the polygenic effects of 212 

multiple independent causal variants (Fig. 4C). Prioritizing all 160 candidate genes 213 

using GRPS showed that the top candidates were overwhelmingly supported by 214 

evidence for trait association from previous studies (Fig. 4D).  215 

It is noteworthy that the top-ranking genes extensively enriched for known urate 216 

transporters and gene targets that are already in clinical use or clinical trials (Fig. 4E). 217 

SLC22A11 and SLC22A12 have been approved as confirmed drug targets for targeted 218 

therapies of hyperuricemia and gout (34), and SLC2A9 and SLC17A1 have been 219 

validated as potent targets for therapy in vivo (35, 36). Furthermore, the priority by 220 

GRPS ranking could more thoroughly and effectively uncover putative drug targets 221 

(Fig. 4F and 4G). For example, SLC17A1 was ranked 5th in GRPS, but was positioned 222 

at 42nd in Open Targets Genetics, and was even missed out in H-MAGMA or ABC-223 

Max (Table S3).  224 

In addition to hyperuricemia, we also applied LSS and GRPS to other complex 225 

diseases and traits including creatinine-based estimated glomerular filtration rate 226 

(eGFRcrea), blood urea nitrogen (BUN), urinary albumin-to-creatinine ratio (UACR), 227 

gout and chronic kidney disease (CKD). The results showed that LSS generally 228 

increased the interpretability of GWAS for complex diseases and traits with multiple 229 

independent associations (Fig. S7A-D), and GRPS uncovered candidate causal genes 230 

with high credibility (Fig. S7E). All these results indicated that the approach was 231 

generally applicable to GWAS of complex diseases and could leverage the investigation 232 

of mechanism and drug target of complex diseases. 233 

SLC17A4 as top nominator promoted the cellular urate transport  234 
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Among the top nominated gene targets, SLC17A4 was the one that has not been 235 

demonstrated to be involved in urate levels (Fig. 4E). Although it was supposed that 236 

SLC17A4 encodes an organic anion transporter, its role in cellular urate transport and 237 

regulatory mechanism have never been determined. At the GWAS locus 238 

chr6:25,559,488-26,059,488 where SLC17A4 located, the lead SNP rs1359232 did not 239 

show regulatory potential, but the additional high-risk variant rs1165183 located at a 240 

regulatory region and linked with the 81 kb upstream gene SLC17A4 (Fig. 5A). 241 

rs1165183-harboring-CRE was proximal tubular-specific accessible and SLC17A4 242 

specifically expressed in proximal tubular cells (Fig. 5A and 5B). In order to verify the 243 

regulatory potential of rs1165183-harboring-CRE on SLC17A4, we used CRISPRa 244 

system (37) to activate the activity of the regulatory element (Fig. S8A). Upon 245 

activation, we found that the expression of SLC17A4 was significantly up-regulated 246 

(Fig. 5C).  247 

As rs1165183 was associated with urate level with -log10(p-value) as high as 148, 248 

SLC17A4 was a strong candidate gene to affect urate level. To further determine the 249 

function of SLC17A4 on urate level, we carried out functional experimental using a 250 

sodium urate-induced model. We overexpressed SLC17A4 in HEK293T cells which 251 

did not express SLC17A4 endogenously (Fig. 5D). We then added sodium urate and 252 

monitored changes in urate levels. The results showed that overexpression of SLC17A4 253 

significantly changed cellular urate levels upon sodium urate overload (Fig. 5E and Fig. 254 

S8B). The results confirmed that rs1165183-element could modulate the expression of 255 

SLC17A4 which affected the transport of cellular urate. 256 

Discussion 257 

GWAS studies of serum urate levels have identified hundreds of genetic loci 258 

associated with hyperuricemia. However, multiple independent association in complex 259 

diseases complicates the deciphering of the mechanisms of these loci. Here, we 260 

proposed an integrated strategy that combined LSS and GRPS to deal with the multiple 261 
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independent associations of complex diseases. LSS improved the functional 262 

interpretability of GWAS for complex diseases. Based on the candidate causal variants 263 

and genes revealed by LSS, GRPS considered the complexity of transcriptional 264 

regulatory networks for gene prioritization, and comprehensively and accurately 265 

nominated causal genes. Our work further investigated and confirmed the regulatory 266 

mechanism and function of SLC17A4 locus and contributed to a theoretical foundation 267 

for the development of alternative medication in the future.  268 

Our research has introduced a strategy for full understanding of genetic 269 

contribution in complex diseases. LSS differs from previous approaches which assume 270 

single association, it can efficiently and comprehensively extract high-risk variants 271 

from all independent associations without increasing computational burden. It 272 

significantly enhances the interpretability of GWAS results of complex diseases. For 273 

example, LSS facilitates identification of the causal genes SLC22A12 and SLC22A11. 274 

In contrast, the previous colocalization analysis of serum urate GWAS and kidney 275 

eQTL did not show the two genes as causal genes (7, 34). SLC22A12 and SLC22A11 276 

are in the locus which is highly associated with urate levels with -log10(p-value) as 277 

high as 245. URAT1 encoded by SLC22A12 is the target of benzbromarone which is an 278 

well-known uricosuric drug that functions by increasing urate excretion in the kidney’s 279 

proximal tubule through inhibition of the dominant apical urate exchanger in the human 280 

proximal tubule (38). OAT4 encoded by SLC22A11 is the target of probenecid which 281 

is approved to treat gout (34). All these evidences indicated SLC22A12 and SLC22A11 282 

are truly causal genes for genetic association of urate level. Additionally, our study 283 

could reveal the regulatory mechanism for pathogenic genes. We identified the 284 

potential causal variant rs38814316 instead of the lead SNP for the regulation of MUC1, 285 

revealing an unknown regulatory mode for known pathogenic genes. Thus, LSS can be 286 

used to leverage the interpretation of GWAS of complex diseases and fully uncover the 287 

underlying mechanisms.  288 
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In evaluating the pathogenicity of all candidate causal genes, the GRPS considers 289 

all essential factors for the regulatory prioritization. This strategy reliably identifies the 290 

causal genes for complex diseases based on their fully linked genetic regulation, 291 

without the necessity of prior functional evidence. This approach is valuable for 292 

uncovering the genetic underpinnings of diseases, especially when experimental data 293 

for biological function may be limited or unavailable. Compared to other methods such 294 

as H-MAGMA, ABC-Max and Open Targets Genetics, which do not sufficiently 295 

consider the complexity of regulation at loci in complex diseases, GRPS-prioritized top 296 

genes exhibited a strong association with putative drug targets. We successfully 297 

identified 4 drug targets in kidney in the top rank. In addition to already known drug 298 

targets and our newly proposed drug target, it is interesting that IGF1R is among the 299 

top prioritized genes. IGF1R have been already approved as drug targets for treating 300 

other diseases (34). Our finding provides a favorable condition for drug repurposing. 301 

Overall, it is indicated that comprehensive integration of regulatory information 302 

provides a more reliable evaluation of gene pathogenicity, and can help identify 303 

promising drug target genes to facilitate drug development for treating complex 304 

diseases. 305 

However, a potential limitation of this study is that it focused exclusively on 306 

kidney tissue that shows the highest risk for hyperuricemia. In addition to kidney tissues, 307 

we did not explore other tissues involved in urate metabolism, such as the intestine and 308 

liver, which may also contribute to the pathogenesis of hyperuricemia (Fig. S3). 309 

Subsequent applications of our proposed strategy in other tissues may expand the 310 

understanding of the pathogenesis of hyperuricemia. Importantly, this work takes an 311 

important step forward by providing comprehensive functional annotation of risk loci 312 

in complex diseases. We have also tested our strategy to the GWAS of other kidney 313 

complex diseases or traits and demonstrated the robust applicability of our strategy and 314 

its power in tackling the complexities of genetic associations. With the ongoing 315 

expansion of GWAS interpretation, the effective integration of LSS and GRPS will 316 
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offer further opportunities and possibilities for disease prediction, treatment and 317 

prevention. 318 

 319 
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 441 

Fig. 1 Locus-specific stratification leverages interpretability of loci with multiple-442 

independent-associations. (A) Number of loci with single or multiple independent 443 
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associations in three serum urate GWAS studies, respectively. (B and C) LocusZoom 444 

plot (B) and quantile-quantile plot (C) for GWAS result at locus chr4:9,743,616-445 

10,243,616 with lead SNP rs3775947. (D) Overview of the LSS strategy. The variants 446 

were ranked by descending significance of variant-trait associations within each locus, 447 

and candidate high-risk variants defined as those in the top quartile. High-risk variants 448 

were further integrated with kidney scATAC-seq data to identify functional high-risk 449 

variants. (E and F) Quantile-quantile plots for GWAS result at locus with multiple 450 

independent associations (E) or single association (F). The lead SNP and independent 451 

(LD R2<0.8) high-risk (Rank1) SNPs were highlighted. (G) Percentage of interpretable 452 

loci for GWAS of serum urate (EA Tin). Four strategies including LSS, LD extension 453 

of lead SNP, Bayesian fine-mapping and kidney colocalization were used. (H) Odds 454 

ratios of genetic contribution for functional high-risk variants identified by four 455 

strategies. eGFRcrea, creatinine-based estimated glomerular filtration rate; BUN, blood 456 

urea nitrogen; CKD, chronic kidney disease; LM, leptin measurement; CD, Crohn’s 457 

disease; MS, multiple sclerosis. 458 
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 459 

Fig. 2 LSS reveals cell-type-dependent functional variants of hyperuricemia. (A) 460 

Number of high-risk variants overlapping with regulatory elements in each cell type of 461 

the kidney, including proximal convoluted tubule (PCT), collecting duct alpha 462 

intercalated cells (CDICA), distal convoluted tubule (DCT), collecting duct principal 463 

cell (CDPC), loop of Henle (LOH), endothelium (ENDO), podocyte (PODO), parietal 464 

epithelial cells (PEC), and mesangial cell (MES). (B) Proportion of functional high-risk 465 
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variants that exert their function in unique cell types, 2-3 cell types, and multiple cell 466 

types in kidney. (C) LocusZoom plot of GWAS result in locus chr8:75,316,533-467 

75,816,533 with lead SNP rs2941484 (top) and genome browser view for the 468 

highlighted region (bottom). The genome browser tracks include chromatin 469 

accessibilities in cell types from kidney scATAC-seq, the position of the lead SNP, 470 

proxy SNP (LD extension of lead SNP) and functional high-risk SNP. (D) The 471 

PheWAS results for rs2943549 with colors representing significantly associated 472 

diseases and traits (p<0.05). (E) LocusZoom plot and genome browser view for locus 473 

chr4:9,743,616-10,243,616 with lead SNP rs3775947 as (C). (F) The PheWAS results 474 

for rs4447862 as (D). 475 
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477 

Fig. 3 Regulatory network elucidates the regulatory mechanism for target genes 478 

and functional variants in hyperuricemia. (A) Overview of the construction of 479 

transcriptional regulatory networks of kidney cell types by computing the correlation 480 

between chromatin accessibility and gene expression. (B) Percentage of loci with 481 
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kidney candidate causal genes identified in GWAS of serum urate (EA Tin). (C) 482 

Number of candidate causal genes identified by different strategies. (D and E) Top 5 483 

diseases enriched for the candidate causal genes identified with all LSS high-risk 484 

variants (D) or LSS-only high-risk variants (E). (F) LocusZoom plot of GWAS result 485 

in locus chr1:154,935,239-155,435,239 with the lead SNP rs2070803 (top), and 486 

genome browser view of the highlighted region (bottom). The genome browser includes 487 

overlaid track of chromatin accessibilities in kidney cell types, the tracks for chromatin 488 

accessibilities in DCT or CDPC, the tracks for location of the lead SNP, proxy SNP and 489 

functional high-risk SNP, the track for gene location, and the track for the peak-to-gene 490 

linkage. rs3814316-harboring-CRE and MUC1 promoter are marked with orange and 491 

yellow boxes, respectively. (G) CADD scores for lead SNP, proxy SNPs and functional 492 

high-risk SNP. (H) Significance and effect size of the relationship between genotypes 493 

of variants and MUC1 expression in kidney tubule eQTL. 494 
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 496 

Fig. 4 GRPS determines the priority of candidate risk genes. (A) Percentage of 497 

functional high-risk variants that can regulate 1 or more genes. (B) Percentage of gene 498 

that can be regulated by 1 or more functional high-risk variants. (C) Overview of GRPS 499 

strategy. For each gene, a regulatory prioritization score is calculated based on 500 

cumulative regulations (Methods). (D) Percentage of genes supported by prior evidence. 501 

Genes are divided into 4 groups based on GRPS from highest to lowest. (E) Top 25% 502 

genes ranked by the GRPS prioritization with their annotation as putative drug targets, 503 
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urate transporter, and disease association by DISEASE displayed. (F and G) The 504 

performance of four different prioritizing methods in predicting the probability (F) and 505 

odds ratio (G) of putative drug targets, which was evaluated by logistic regression. 506 
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 508 

Fig. 5 SLC17A4 is regulated by high-risk variant and promotes the transport of 509 

uric acid. (A) LocusZoom plot of GWAS result in locus chr6:25,559,488-26,059,488 510 

with lead SNP rs1359232 (top), and genome browser view of the highlighted region 511 

(bottom). The genome browser includes tracks for chromatin accessibilities in kidney 512 
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cell types, the position of the lead SNP and functional high-risk SNP, the location of 513 

sgRNA designed for CRISPRa experiment, the location of genes, and the peak-to-gene 514 

linkage. rs1165183-harboring-CRE and SLC17A4 promoter are marked with orange 515 

and yellow boxes, respectively. (B) Gene expression of SLC17A4 in kidney cell types. 516 

(C) SLC17A4 expression determined by qPCR in CRISPRa HEK293T lines treated 517 

with non-targeting negative sgRNA or rs1165183-harboring-CRE sgRNA (CRE 518 

sgRNA) (n=3, two-tailed Student’s t test, P-value for cells treated with negative sgRNA 519 

vs CRE sgRNA is 0.005, * indicates P-value <0.05). (D) SLC17A4 expression in 520 

HEK293T cells treated with negative control plasmid and SLC17A4 overexpression 521 

(OE) plasmid (n=3, two-tailed Student’s t test, P-value for cells treated with negative 522 

control plasmid vs SLC17A4 OE plasmid is 0.0006, * indicates P-value <0.05). (E) 523 

Effects of SLC17A4 overexpression (OE) on the intracellular urate levels of HEK293T 524 

cells (n=3, two-tailed Student’s t test, P-value for negative control cells which are 525 

untreated or treated with uric acid (UA) is 0.0012; P-value for negative control vs 526 

SLC17A4 OE cells which are all treated with UA is 0.0033, P-value for negative control 527 

cells vs SLC17A4 OE cells which are all untreated with UA is 0.5185, P-value for 528 

SLC17A4 OE cells which are untreated or treated with UA is 0.0351; * indicates P-529 

value <0.05, NS indicates not significant). 530 
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